Worst-case Quadratic Loss Bounds
for Prediction Using Linear Functions

and Gradient Descent
Nicolo Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth

Abstract— In this paper we study the performance of gra-
dient descent when applied to the problem of on-line lin-
ear prediction in arbitrary inner product spaces. We prove
worst-case bounds on the sum of the squared prediction er-
rors under various assumptions concerning the amount of a
priori information about the sequence to predict. The algo-
rithms we use are variants and extensions of on-line gradient
descent. Whereas our algorithms always predict using lin-
ear functions as hypotheses, none of our results requires the
data to be linearly related. In fact, the bounds proved on the
total prediction loss are typically expressed as a function of
the total loss of the best fixed linear predictor with bounded
norm. All the upper bounds are tight to within constants.
Matching lower bounds are provided in some cases. Finally,
we apply our results to the problem of on-line prediction for
classes of smooth functions.

Keywords— prediction, Widrow-Hoff algorithm, gradient
descent, adaptive linear filter theory, smoothing, inner prod-
uct spaces, computational learning theory, on-line learning,
linear systems, worst-case loss bounds.

I. INTRODUCTION

In this paper we analyze algorithms in the on-line predic-
tion model. This model was introduced by Angluin [1] and
Littlestone [16], [17]. Unlike other settings, where the pre-
dictor’s goal is to estimate a set of parameters in a nearly
optimal way with respect to some criterion, the goal in
this model is to generate predictions, in a sequential fash-
ion, so as to minimize the total (sum) loss over the whole
sequence of examples. Throughout this paper we use the
squared prediction error as the loss function for each exam-
ple. This loss is sometimes called the square loss. Though
we focus on the performance of on-line algorithms from a
purely theoretical viewpoint, one of the main contributions
of this study is the derivation of the optimal learning rate

Nicolo Cesa-Bianchi is with DSI, Universitd di Milano, Via
Comelico 39, 20135 Milano, ITALY. Part of this research was done
while this author was visiting UC Santa Cruz partially supported
by the “Progetto finalizzato sistemi informatici e calcolo parallelo”
of CNR under grant 91.00884.69.115.09672 (Italy). Email address:
cesabian@dsi.unimi.it.

Phil Long is with the Department of Computer Science, Duke Uni-
versity, P.O. Box 90129, Durham, NC 27708 USA. He is supported
by ONR grant N00014-94-1-0938. Part of this work was done while
he was supported by AFOSR grant F49620-92-J-051, and part was
done while he was at Technische Universitaet Graz supported by
a Lise Meitner Fellowship from the Fonds zur Forderung der wis-
senschaftlichen Forschung (Austria), and at UC Santa Cruz supported
by a UCSC Chancellor’s dissertation-year fellowship. Email address:
plong@cs.duke.edu.

Manfred Warmuth is with the Computer Science Department,
UC Santa Cruz, Santa Cruz, CA 95064 USA, and is supported by
ONR grant NO0014-91-J-1162 and NSF grant IRI-9123692. Email:
manfred@cse.ucsc.edu.

for gradient descent applied to linear predictors.

We assume the prediction process occurs in a sequence
of trials. At trial number ¢ the prediction algorithm

o is presented with an instance z; chosen from some do-

main X,
e is required to return a real number ;,
o then receives a real number y; from the environment
which we interpret as the truth.

The total loss of an algorithm over a sequence of m trials
is >0 (9 — y¢)*. A critical aspect of this model is that
when the algorithm is making its prediction ¢, for the tth
instance x;, it has access to pairs (zs,ys) only for s < t.

We adopt a worst-case outlook, following [27], [21], [18],
[7], [22], [3] and many others, assuming nothing about
the environment of the predictor, in particular the pairs
(Z1,91),-- -, (Tm,ym). Our results can be loosely inter-
preted as having the following message: “To the extent
that the environment is friendly, our algorithms have small
total loss.” Of course, the strength of such results depends
on how “friendly” is formalized. For the most general re-
sults of this paper (described in Section IV), the domain
X is assumed to be a real vector space.! To formalize
“friendly,” we make use of the general notion of an inner
product (-,), which is any function from X x X to R that
has certain properties (see Section III for a list). The inner
product formalization is very general. One of the simplest
inner products may be defined as follows in the case that
X =R"

n
(u,v) = Zuivi =u-v.
i=1

Notice that for any inner product space (X, (-,-)), for any
w € X, we obtain a linear function fyy from X to R by

defining
fw(@) = (w,a). 1)

Throughout the paper, we define the (square) loss of pre-
diction §; on the pair (z¢,y;) by the squared prediction
error (J; — y;)? and, accordingly, define the total loss of
a sequence of predictions by the sum Y, (4 — y;)? of the
squared prediction errors.

Typically, we express the bounds on the loss of our algo-
rithms as a function of

i%luf ;((w, T) —ye)?, (2)

IThe general results will hold for finite and infinite dimensional
vector spaces.

where the infimum is taken over all w whose norm +/(w, w)
is bounded by a parameter. Roughly speaking, this quan-
tity measures the total misfit or noise of the environment
with respect to the best “model” in the inner product
space. In other words, bounds in terms of (2) are strong to
the extent that there is a (not too large) w for which fqp
“approximately” maps x;’s to corresponding y;’s. Thus we
can also interpret (2) as an approximation error with re-
spect to some unknown law generating the pairs (x¢,9:). In
practice, estimates of this approximation error could be ob-
tained by looking a posteriori at related applications, and
calculating the quantity analogous to (2) for them.

In many cases we can even bound the additional loss
of the algorithm over the above infimum similarly to the
additional loss bounds of [3] obtained in a simpler setting.
Our bounds are worst-case in the sense that they hold for
all sequences of pairs (@, y¢). (In some cases we assume
the norm of the x;’s is bounded by a second parameter.)

Faber and Mycielski [6] noted that a natural class of
smooth functions of a single real variable can be defined
using inner products as above. The same class of smooth
functions, as well as linear functions in R", has been heav-
ily studied in statistics [9] (however, with probabilistic as-
sumptions). Thus, general results for learning classes of
functions defined by arbitrary inner product spaces can be
applied in a variety of circumstances. Faber and Mycielski
proved bounds on Y, (j: — y:)* under the assumption that
there was a w € X for which for all ¢, y; = (w, x;), and de-
scribed some applications of this result for learning classes
of smooth functions. Mycielski [24] had already treated the
special case of linear functions in R"™. The algorithm they
analyzed for this “noise-free” case was a generalization of
the on-line gradient descent algorithm? to arbitrary inner
product spaces. We call this algorithm GD (defined be-
low). In this paper we analyze the behavior of GD in the
case in which there isn’t necessarily a w for which for all ¢,
y+ = (w, z;). Faber and Mycielski [6] also studied this case,
but their algorithms made use of side information which,
in this paper, we assume is not available. Hui and Zak
[12] also studied the robustness of GD in the presence of
noise in a similar setting, however they modelled observa-
tion noise, assuming that there was a w such that for all ¢
yr = (w, x;), but that the learner’s observation of y; was
corrupted with noise. A more substantive difference is that
they assumed x; = x5 = x3....

The algorithm GD for the special case of linear functions
in R" is a central building block in area of signal processing
(see e.g. [19], [25], [26], [29], [10]) where it is usually called
Least-Mean-Square (LMS) algorithm. Therefore, there is
an extensive literature studying the convergence proper-
ties of this algorithm (see, e.g. [29], [10]). All this research,
however, is based on probabilistic assumptions on the gen-
eration of the x;’s. This paper shows that the algorithm
GD can analyzed even without probabilistic assumptions.

2Even though in the neural network community this algorithm is
usually credited to Widrow and Hoff [28], a similar algorithm for
the iterative solution of a system of linear equations was previously
developed by Kaczmarz [13].

Gradient descent is an algorithm design technique which
has achieved considerable practical success in more com-
plicated hypothesis spaces, in particular multilayer neural
networks. Despite this success, there appears not to be a
principled method for tuning the learning rate. In this pa-
per, we tune the learning rate in presence of noise with the
goal of minimizing the worst-case total squared loss over
the best that can be obtained using elements from a given
class of linear functions.

The GD algorithm maintains an element W of X as its
hypothesis which is updated between trials. For each t, let
w; be the hypothesis before trial ¢ (the initial hypothesis
1 is the zero vector). GD predicts with §; = (¢, 2¢) and
updates the hypothesis following the rule

Wyp1 = W — (P — Ye) T4 (3)

where 1 > 0 is the learning rate parameter.

If the real vector space X’ has finite dimension, then each
element v of X can be uniquely represented by the real
vector ¢(v) of its Fourier coefficients, once a basis is chosen.
If the basis is orthonormal, by simple linear algebra facts we
have §; = (¢, x¢) = c(y)-c(xy). Furthermore, the vector
2(g: — y¢)e(xt) is the gradient, with respect to the vector
c(1;), of the square loss (§; — y;)? for the pair (z¢,ys).
Hence, in this case, rule (3) is indeed an “on-line” version
of gradient descent performed over the quadratic loss.

When X is an arbitrary real vector space, and there-
fore its elements may not be uniquely represented by finite
tuples of reals, the GD algorithm is a natural generaliza-
tion of on-line gradient descent® and may viewed as follows
[23].4 After each trial ¢, there is a set S; of elements w
of X for which (w,z;) = y;. Intuitively, our hypothesis
would like to be more like the elements of Sy, since we are
banking on there being a nearly functional relationship fqp
between the x;’s and the y;’s. It does not want to change
too much, however, because the example (xz¢,y;) may be
misleading. The GD algorithm “takes a step” in the di-
rection of the element of S; which is closest to w; (using
the natural notion of the distance between elements of an
inner product space).

II. OVERVIEW OF RESULTS

We now give an overview of the bounds obtained
in this paper. We will use (s;); to denote sequences
$1,82,-..,5¢,.-., and S* to denote the set of all finite se-
quences (empty sequence included) over a set S.

For any v € X, |[v|| = +/(v,v) measures the “size”
of v. We show in Theorem IV.3 that for all sequences
s = {(x¢,y1))t € (X x R)* and for all positive reals X, W,

3To be precise, if X has countably infinite dimension, then GD
can still be viewed as a mapping performing on-line gradient descent.
Such a mapping is clearly noncomputable in general since each step
might involve the update of an infinite number of coefficients. How-
ever, note that the ¢-th hypothesis w; is a linear combination of the
first ¢ — 1 examples {x1,...,x¢—1} and can thus be represented by
t — 1 real coefficients.

4Actually, this interpretation was shown only in the slightly more
restricted case that (X, (:,-)) is a Hilbert space.

and E, if max; ||z¢|| < X and Ly (s) < E, where

Z((wvmt) -),

t

Lw(s) = inf
wls) = ot

then the GD algorithm (with learning rate tuned to X,W,
and E) achieves the following

> @ —ye)® < Lw(s) +2WX)WE+ (WX)2. (4)

t

(Notice that Ly (s) > Ly (s) for all W' > W.) The above
bound is tight in a very strong sense: We show in Theo-
rem VIL1 a lower bound of Ly (s) 4+ 2(WX)VE + (W X)?
that holds for all X, W, and F, also when these parameters
are given to the algorithm ahead of time.

We then remove the assumption that a bound F on
Ly (s) is known for some W. However, we require that
y¢’s are in a certain range [-Y,Y] for some ¥ > 0. In
Theorem IV.4 we show that for all positive reals X and
Y and for all sequences s = ((x¢,y¢)): € (X x [-Y,Y])*
such that max; ||z¢|| < X, the total loss incurred on s by a
variant of the GD algorithm (with learning rate tuned to
the remaining parameters X and Y) is at most

Ly/x(s) +9.2 (Y, /Ly, x(s) + YZ) : (5)

Notice that the above result also holds when Ly, x(s) is
replaced by Lw(s) for any W < Y/X. Observe that
(@t — yt)* — Ly, x(s) can be interpreted as the excess
of the algorithm’s total loss over the best that can be ob-
tained using vectors w whose norms are at most Y/X. The
above bound is tight within constant factors: We show in
Theorem VII.2 that for all prediction algorithms A and all
X,Y,E > 0, there is a sequence s on X x [-Y,Y] such
that max; ||z;|| = X, Ly,x(s) = E, and the total squared

loss of A on s is at least E + 2YVE + Y?. However, the
dimension of the inner product space must increase as a
function of E. As before, the lower bound holds also if all
three parameters are given to the algorithm ahead of time.

We continue by giving the algorithm less information
about the sequence. For the case when only a bound X
on the norm of any x; is known, we show in Theorem IV.1
that the GD algorithm, tuned to X, achieves the follow-
ing upper bound on the total loss (the sum of its squared
prediction errors):

. 2 2 2
225 jof, | (mp el) oo + 3 (00, 0) =30

on any sequence s = {(x¢,y:)): € (X x R)* such that
maxy ||2¢|| < X. Note that this result shows how the GD
algorithm is able to trade-off between the “size” of a w,
represented by its norm, and the extent to which w “fits”
the data sequence, represented by the total loss incurred
by fw-

Finally, with no assumptions on the environment of the
learner, a further variant of the GD algorithm has the

following bound on the total loss (Theorem IV.6)

: 2 2 N2
9 nf | (max||a|)||w] +Xt:((w,wt) Yt)

that holds on any sequence s = ((x¢,y:)): € (X x R)*.

Our general results are summarized in Table I.

We may apply our general bounds to a class of smooth
functions of a single real variable, in the manner used by
Faber and Mycielski [6] in the case that there is a perfect
smooth function. The smoothness of a function is measured
by the 2-norm of its derivative. Of course, the derivative
measures the steepness of a function at a given point, and
therefore the 2-norm (or any norm, for that matter) of
the derivative measures the tendency of the function to be
steep. When normalized appropriately, the 2-norm of a
function f’s derivative can be seen to be between the av-
erage steepness of f and the f’s maximum steepness. In
Theorem V.1 we show that if there is an absolutely contin-
uous function f: Ry — R with f(0) = 0 which tends not
to be very steep and approximately maps the z;’s to the
y¢’s, and if the x4’s are not very big, then an application of
the GD algorithm to this case obtains good bounds on the
total loss. More formally, we show that, for example, if the
x,’s are taken from [0, X], and if f : [0,00) — R satisfies

'l = /L)2 du < W, and 3, (f(z:) — v.)* < E,

then the special case of the general GD algorithm applied
to this problem has a sum of squared errors bounded by

+2WVXE+W?X. (6)

Hf’}lr;fsw [Zt:(f (z) — ye)

A bound of W?X was proved by [6] in the case when E = 0.
It is surprising that the time required for the algorithm we
describe for this problem to make its tth prediction g; is
O(¢) in the uniform cost model provided that all past exam-
ples and predictions are saved. This is because, although
the vector space in which we live in this application consists
of functions, and therefore the GD algorithm requires us to
add functions, we can see that the functions that arise are
piecewise linear, with the pieces being a simple functions
of the past examples and predictions. In the case £ = 0,
however, there is an algorithm with an optimal bound on
3G — y¢)* which computes its tth prediction in O(logt)
time [14], raising the hope that there might be a similarly
efficient robust algorithm. In Theorem V.2 we extend our
result to apply to classes of smooth functions of n > 1
real variables studied by Faber and Mycielski [6] in the ab-
sence of noise. We further show that upper bound (6), even
viewed as bound on the excess of the algorithm’s total loss
over the loss of the best function of “size” at most W, is
optimal, constants included.

Littlestone, Long and, Warmuth [18] proved bounds for
another algorithm for learning linear functions in R", in
which the x;’s were measured using the infinity norm, and
the w’s were measured using 1-norm. The bounds for the
two algorithms are incomparable because different norms

Known information

Bounds for L(s) = Y, (4: — y:)*

maXy ||$t|| S X

L(8) < Ly (s) + 2(WX)VE + (WX)?
MATCHING LOWER BOUND

maxy ||z¢|| < X

max |y¢| <Y

L(s) < Ly/x(s) + 9.2 (Y /Iy, x(s) + V2
L(s') > Ly/x(s') + 2Y'\/Ly;x(s") + Y?

maXy ||$t|| S X

L(s) < 2.25 infape x [(max ||| ?)[Jw||* + 3, (w, z:) — y¢)?]

None

L(s) < 9infwex [(max; ||z|[*)]|wl]® + X, ((w,) — y0)°]

TABLE 1
TABLE SUMMARIZING LOSS BOUNDS FOR GD AND ITS VARIANTS WITH RESPECT TO DIFFERENT A PRIORI INFORMATION.

are used to measure the sizes of the ’s and the w’s. How-
ever, the algorithm of [18] does not appear to generalize
to arbitrary inner product spaces as did the GD algo-
rithm, and therefore those techniques do not appear to be
as widely applicable.

One of the main problems with gradient descent is that
it motivates a learning rule but does not give any method
for choosing the step size. Our results provide a method for
setting the learning rate essentially optimally when learn-
ing linear functions. An exciting research direction is to
investigate to what extent the methods of this paper can
be applied to analyze other simple gradient descent learn-
ing algorithms.

Our methods can also be applied to the batch setting
where the whole sequence of examples is given to the
learner at once and the goal of learning is to find the
function that minimizes the sum of the squared residual
errors. In the case of linear functions this can be solved
directly using the linear least squares method which might
be considered to be too computationally expensive. Iter-
ative methods provide an alternative. We prove a total
loss bound for a gradient descent algorithm by applying
the techniques used in this paper. We then contrast this
bound to the standard bound for steepest descent on the
total squared residual error.

The paper is organized as follows: In Section III we re-
call the notion of inner product space and define the al-
gorithm GD. The upper bounds for GD and its variants
are all proven in Section IV; in this section we also prove
bounds for the normalized total loss. These results are ap-
plied in Section V to derive upper bounds for prediction
in classes of smooth functions. The comparison with the
standard steepest descent methods is given in Section VI.

Corresponding lower bounds for the upper bounds of Sec-
tions IV and V are then proven in Section VII. The paper
is concluded in Section VIII with some discussion and open
problems.

III. PRELIMINARIES

Let IN denote the positive integers, R denote the reals.
Each prediction of an on-line algorithm is determined by
the previous examples and the current instance. In this
paper the domain of the instances is always a fixed real
vector space X. An on-line prediction algorithm A is a
mapping from (X x R)* x X to R. For a finite sequence s =
((z¢, y¢))1<t<m of examples we let §; denote the prediction
of A on the t-th trial, i.e.,

9t = A(((w1,91)5 - -5 (Te—1,Y6-1)), Tt)-

and we call §1,...,90, the sequence of A’s on-line predic-
tions for s.

An inner product space (sometimes called a pre-Hilbert
space since the imposition of one more assumption yields
the definition of a Hilbert space) consists of a real vector
space X and a function (-,-) (called an inner product) from
X x X to R that satisfies the following for all u, v,z € X
and k € R:

L (u,v) = (v,u);

2. (ku,v) = k(u,v);

3. (u+v,z) = (u,z) + (v, x);

4. (z,z) > 0 whenever z # 0.

The last requirement can be dropped essentially without
affecting the definition (see e.g. [30, page 25]). For ¢ € X,
the norm of x, denoted by ||z||, is defined by

|zl| = V (=,).

Algorithm GD.
Input: n > 0.
o Choose X’s zero vector as initial hypothesis w;.
e On each trial ¢:
1. Get x; € X from the environment.
2. Predict with :ljt = (’ﬁ]t, :z:t).
3. Get y; € X from the environment.
4. Update the current hypothesis w; according to
the rule

W1 = Wi + (Y — o)

Fig. 1. Pseudo-code for algorithm GD. (See Theorems IV.1, IV.2,
IV.3, and Corollary IV.1.)

(These definitions are taken from [30].)

An example of an inner product is the dot product in
R"™. For z,y € R" for some positive integer n, the dot
product of and y is defined to be

n
T-y=Y ziyi
i=1

The 2-norm (or Euclidian norm) of £ € R" is then defined
to be

llzll> = vz -z =

If f is a function from R to R, we say that f is abso-
lutely continuous® iff there exists a (Lebesgue measurable)
function g : R — R such that for all a,b € R, a < b,

IV. UPPER BOUNDS FOR THE GENERALIZED GRADIENT
DESCENT ALGORITHM

In this section, we prove bounds on the worst case to-
tal loss made by the GD algorithm (described in Figure
1). (Technically, Figure 1 describes a different learning al-
gorithm for each initial setting of the “learning rate” 7.
For a particular n, we will refer to the associated learning
algorithm as GD,, and we will use a similar convention
throughout the paper).

For the remainder of this section, fix an inner product
space (X, (+,+)). In what follows, we will analyze the GD
algorithm and its variants starting from the case where only
a bound on the norm of xy, for all ¢, is available to the
learner ahead of time. We will then show how additional
information can be exploited for tuning the learning rate
1 and obtaining better worst-case bounds. Finally, we will
prove a bound for the case where no assumptions are made
on the environment of the learner.

A. Bounding the size of the instances

In this section we prove that, when given a bound on
maxy ||x¢||, the algorithm GD can obtain good bounds on

5This is shown to be equivalent to a more technical definition in
most Calculus texts.

the total loss. We will remove the assumption of this knowl-
edge later through application of standard doubling tech-
niques.

As a first step, we will show the following which might
be interpreted as determining the “progress” per trial, that
is the amount that GD,, learns from an error. The deriva-
tion is based on previous derivations used in the proof of
convergence of the on-line gradient descent algorithm (see,
e.g. [3])-

Lemma IV.1: Choose x,wi,w € X,y € R,n > 0. Let
§J = (W1, x) and Wy = W1 + n(y — §)x. Then

|y — wl|* — ||, — w||*

= 2n—n*ll2l]*) G - y)* = 2n(y — §) (v — (w, x)).
Proof: Let a = n(y — §). Then 1y = Wy + ax. Thus

(7)

—wlf?

(2 — w), (w2 — w))
(
|

||§

(W1 + az — w), (1 + az — w))
+ (20, (1 — w)) + o?[|||*.

[, —wl|* +
This implies
|ls — wl||* — [[i1 — w|[?
= 2a(x, (1 — w)) + 2||z||?
=2a(§ — (w,z)) + o?||z|]?
=2a(j —y) + 2a(y — (w, z)) + o’||z|]*.

Expanding our definition of «,

[z — wl]* — [Jd1 — w]|?
=2 —y)*+2n(y -9y —
+n? (|| (y — §)?
—@2n—n?|lz|*) (@ - v)* + 20y — §)(y — (w, x)),
establishing (7). m|

(w,z))

We need the following simple lemma:
Lemma IV.2: For all ¢,r,c € R such that 0 < ¢ < 1,

2

- 8
4(1 —¢) ®
Proof. Inequality (8) is equivalent to

(21 —c)g—r)
BECECEE

@ —qr>cq’

which is clearly true as 0 < ¢ < 1. m|

As a second step, we show a lower bound on the progress
per trial. This lower bound will be used to prove the main
theorem of this section.

Lemma IV.3: Choose x,wi,w € X,y € R. Choose
X,B,c € Rsuch that X > ||z|]|, 0 < 8<2and 0 < ¢ < 1.
Let

g = (1,) and We = W1 + F(y 9)x.
Then
|1 — wl? - [Jz — w||?

2832 8>
> “x o (

-1 -]

Proof. Applying Lemma IV.1 with n = %, we get

e~ w]? [l —]
- (B2,
2 i)y (aw,))
> (i—@—)‘;—z)«—w?
2 i)~ (w,2)) (10)
> Zﬂ);ﬁ?[(z?—y)2
e R)
> PPy

B 2
- - 11
where Inequality (10) holds because X > ||z|| and Inequal-
ity (11) is an application of Lemma IV.2. |

The next theorem shows that the performance of the
GD algorithm degrades gracefully as the relationship to be
modelled moves away from being (w, -) from some w € X.
Throughout the paper, for all sequences s = ((x;, y:)): €
(¥ x R)* and all w € X, let

Lw(s) = Z((w7mt) - yt)27

t
and for all W > 0 let

L = inf L .
w(s) ||'U}T|1§W w(s)

Theorem IV.1: Choose 0 < < 2,0<c<1,mé€ N,
and s = (@4, ye))i<m € (X x R)™. Let X > max ||a¢]|,
and let §i1,...,7n, be the sequence of GDg,x2’s on-line
predictions for s. Then,

S 2 . X2 |w]|? La(s)
20w < ot [(m —B)e " @=pPel—)
(12)
In particular, if 8 =2/3 and ¢ =1/2,
DG —y0)? <2.25 inf [X°[lw]* + Luw(s)] . (13)
t=1

Notice that, by setting ¢ = 1/2 and by letting 8 — 0,
the constant on the Lqy(s) term can be brought arbitrarily
close to 1 at the expense of increasing the constant on the
other term.

Proof: Choose w € X. If W, Ws,..., Wyt is the se-
quence of GDg,x=’s hypotheses, we get

2 2
Sy 2 el — 90 — sy e — (w,2))’]
<> (|l — w|* — ||@e1 — w|[*) by Lemma IV.3
= |liy — w|* — || @ms1 — wl]?
< |jw|[?> since @y =0 and || - || is nonnegative.

Thus

R 2
Z;il I:C(yt - yt)2 - (Qﬁ_ﬂg)z(l_c) (yt - (w:wt))z
< Xw|?
= 22

Solving for Y-, (4 — y¢)? yields
- X?|Jw]? B
Z(yt —y)? < @8-) + @B = el = o) Law(s)

t=1

establishing (12). Formula (13) then follows immediately.
O

Observe that the assumption W, = 0 is chosen merely
for convenience. If @; # 0, then the factor ||w|[? in (12)
is replaced by |[w — 4|[*>. Thus, in this more general
form, the bound of Theorem IV.1 depends on the squared
distance between the starting vector w; and the “target”
w.

A.1 Normalized loss

If we run algorithm GD with learning rate 7 set in each
trial ¢ to ﬁ, we can then prove a variant of Theo-
rem IV.1 for a different notion of loss (previously studied
by Faber and Mycielski [6]) which we call normalized loss.
The normalized loss incurred by an algorithm predicting
§¢ on a trial (x¢,y:) is defined by uﬁa?ﬁff We begin by
proving the following result via a straightforward variant
of the proof of Lemma, IV.3.

Lemma IV.4: Choose z, w1, w € X,y € R, 0< (8 < 2,
and 0 < ¢ < 1. Let

B

and Wy = W1 + (y — g)IB
|l

||y — wl[* — || — w||?

_p2 ~ 2
2 2|[|3$\?2 [(y - y)2C - (2ﬂ—,3§)2(1—c)_ (y - (w,m))z] .
We now extend Theorem IV.1 to the normalized loss. Let

qu](S) — i (fw(-’ft) _yt)z_

2
= =zl

Theorem IV.2: Choose 0 < f < 2, m € N, and 8 =
(@1, 9))i<m € (X x R)™. Let g1, ...,Ym be the sequence
of GDg/||z,||2’s on-line predictions for s. Then,

S [|w]? Lay(s)

(Z)t — yt)2 in
2 e S i [mz — B @-prel—o)

t=1

for all 0 < ¢ < 1. In particular, if 8 =2/3 and ¢ = 1,

— (G —)’
t — Yt . 2 !
< 2.25 inf |||w]||* + Lap(s)] -
; ||mt||2 — wex [” || w()]
The above theorem shows that the knowledge of a bound
on ||z||, for all ¢, is not necessary when the normalized
loss is used. This raises the question of whether the setting

n= W (for some fixed 3 not depending on ||x;||) can be
successfully used when the goal is to minimize the total un-
normalized loss and no bound on ||z;|| is available before-
hand. On the other hand, suppose X = R, and the inner
product is just the ordinary product on the reals. Suppose
further that for € > 0, z1 = €, and y; = 1, whereas for all
t>1,z; =1and y; = 0. Then for smaller and smaller
€, the total (unnormalized) quadratic loss of the GD with
the above setting of 7 in this case is unbounded, whereas
there is a w such that), (wz; —y;)? = 1, namely 0. (This
example is due to Ethan Bernstein.)

B. Tuning 8

The next result shows that, if certain parameters are
known in advance, optimal performance can be obtained
by tuning 8. We need a technical lemma, first. Define the
function G : R3. — (0,1] by

WX
GEW,X)= ———.
() vE+WX
Lemma IV.5: For all E,W, X >0

(W X)? E

3@ Py + R =E+ (WX)?+2WXVE

(14)

whenever 8 = G(E,W,X) and ¢ = 72‘/\/%:";’[};)

Proof. First notice that, when § and ¢ are chosen as in
the lemma’s hypothesis, 0 < 8 < 1 and % < ¢ < 1 for all
E,W,X > 0. Second, observe that (14) can be rewritten
as

SR T
B2 =B (2-PB)%c(l-0)
where y = ¥Z. Now let
8=G(E,W,X)= y—-lu and c= 21;;11.
Then
2-Bc=1 and (2-Pf)2cl—-c)=1-f=—L_

y+1

By making these substitutions in (15) we obtain y + 1 +
yly+1) = (y+1)% O

Theorem IV.3: For each E, X, W > 0, the algorithm
GDg¢(E,w,x) /x> has the following properties. ~Choose
m € N, s = (x5, yt))t<m € (X x R)™, such that
max ||z¢|| < X, and Lw(s) < E. Let §1,...,9m be
the sequence of GDg(g,w,x),x2’s on-line predictions for
s. Then,

Dt (G — Ok
< Lw(s) + 2WXVE + (WX)2.
Proof. Choose m € N, s = ((z¢,yt))t<m € (X x R)™ for
which Ly (s) < E and max; ||z¢||* < X. By TheoremIV.1,

for all 8 and ¢ such that 0 < 8 <2 and 0 < ¢ < 1, we have

E;ll (Gt — yt)2

i X?|w|? Ly (8)

S lnf'weX I:ﬁ(2*ﬁ)c + (2*5)26(170)]

< (Wx)? L Lw(8)

_eE O Y

=poppet o e — Lw(s) + Lw(s)
(WX) E

< 3e=pr T @Arai=g ~ £ +Lw(s)

since Ly (s) < E and 0 < (2 — B)%¢c(1 —¢) < 1 for the
given ranges of ¢ and 3. Applying Lemma IV.5 for g =
G(E,W,X) and ¢ = YELWX

SWErwx e then conclude
m

Z(ﬂt —y)? <

=1

E+2WXVE + (WX)? - E + Lw(s)

Lw(8) + 2WXVE + (WX)?

as desired. O

A corollary to Theorem IV.3 can be obtained for the
normalized loss.

Corollary IV.1: For any E,W > 0 and for any m € N.
Choose s = ((z¢,Y1))t<m € (X x R)™, such that Ly (s) <
E. Let §1,-..,9m be the sequence of GDg(g,w,1)/|z.|2’s
on-line predictions for s. Then,

(G —ye)”
S :% < Liy(s) + 2WVE + W2.
t
t=1
Proof. Lemma IV.5 can be applied to Theorem IV.2 with
X =1andc= % The derivation then closely re-

+
sembles that of Theorem IV.3. O

The following corollary shows an application of Theo-
rem IV.3 to the class of linear functions in R™. For each
W,n, let LINw,, be the set of all functions f from R" to
R for which there exists w € R", |[|w||a < W, such that
forallz € R", f(z) =w - x.

Corollary IV.2: For each E, X, W > 0, the GD algo-
rithm has the following properties. Choose m,n € IN,
((xt, y¢))t<m € (R"x R)™, such that max; ||z¢|]» < X, and
there is an f € LINyy,, for which ;" (f(z¢) — y:)? < E.
Let g1, ...,9m be the sequence of GDg(g,w,x)/x2’s on-line
predictions for s, when GD is applied to the inner product
space LINw,,. Then,

E;L (Gt —we)*

<infpering, [YDrm (f(@r) —ye)?] +2W XVE+ W2 X2
It has been shown recently [15] that even on very simple
probabilistic artificial data, the above tunings and worst-
case loss bounds are close to optimal.

In the next section, we show that techniques from [3]
may also be applied to obtain a Ly, x(s) + O(YVE +Y?)
bound on the total loss (unnormalized) when bounds X
on ||z¢|| and Y on |y| are known for all ¢. However, the
delicate interplay between Ly and W (loosely speaking,
increasing W decreases Ly) has so far prevented us from
obtaining such a result without knowledge of any of the
three parameters W, X, and E.

Algorithm G1.
Input X,Y > 0.
e Foreach:=0,1,...
— Let ki = Zi(aY)Q.
— Repeat
1. Give z; to GDG(k,-,Y/X,X)/XZ-
2. Get GDG(k,-,Y/X,X)/XZ’S prediction ht.
3. Predict with

-Y ifh<-Y
g)t = ht lf |ht| S Y
Y otherwise.

4. Pass Yt to GDG(ki,Y/X,X)/XQ .
until the total loss in this loop exceeds

ki +2Y \/k; + Y2

Fig. 2. Pseudo-code for the algorithm G1. (See Theorem IV.4.)
Here GD is used as a subroutine and its learning rate is set using
the function G defined in Section IV-B. Optimized values for the
parameters are z = 2.618 and a = 2.0979.

C. Bounding the range of the y;’s

We now introduce an algorithm G1 for the case where a
bound X on the norm of ; and a bound Y on |y|, for all
t, are known ahead of time. The algorithm is sketched in
Figure 2. In the following theorem we show a bound on the
difference between the total loss of G1 and the loss of the
best linear predictor w whose norm is bounded by Y/X,
where X bounds the norm of the x;’s and Y bounds the
norm of the y;’s. The bound Y/X on the norm of the best
linear predictor comes from an application of Theorem IV.3
and is the largest value for which we can prove the result.

Theorem IV.4: For each X,Y > 0, the algorithm G1
has the following properties. Choose m € N, s =
(e, 9e))e<m € (X x [-Y,Y])™ such that max ||| < X.
Let 91,...,9m be the sequence of G1x y’s on-line predic-
tions for s. Then

m

Z(?)t —y)® < Ly/x(s) +9.2 <Y\/LY/X(3) + YZ) .

t=1

Proof of Theorem IV.4. In Appendix A.

Our next result is a corollary to Theorem IV.4 for the
normalized loss. We introduce a new algorithm, G1-norm,
that differs from the algorithm G1 only in the setting of
the learning rate for the subroutine GD (cfr. Figure 2.)
That is, in each trial, G1-norm sets GD’s learning rate
to G(k;,Y,1)/||x¢||>. Thus, there is no need to know a
bound X on the norm of the x;’s.

Theorem IV.5: For all Y > 0, the algorithm Gl-norm
has the following properties. Choose m € N, s =
(x4, y¢))e<m € (X x [-Y,Y])™. Let §1,...,9m be the se-
quence of G1-normy’s on-line predictions for s. Then

f: (ﬁt - yt)2
|||

< Ly (s)+9.2 (Y L, (s) + Y2>)
t=1

Proof. Given Corollary IV.1, the proof follows from a
straightforward adaptation to the normalized loss of the
proof of Theorem IV.4. O

D. Predicting with no a priori information

In this section we remove all assumptions that the learner
has prior knowledge. We introduce a new variant of the
GD algorithm which we call G2. This new variant is de-
scribed in Figure 3. A bound on G2’s total loss follows
quite straightforwardly from Theorem IV.1 via the appli-
cation of standard doubling techniques.

Theorem IV.6: For any 0 < [< 2, the algorithm
G2 has the following properties. Choose m € N,s =
(@, 9¢))t<m € (X x R)™. Let @1, ..., Jm be the sequence
of G24’s on-line predictions for s. Then,

Yoy (e — ye)?

2 2
< infyer [4(maxb\(\wtu) [w]]

2—3)c

Ly (8)
+ (2—m2c(1—c>]
for all 0 < ¢ < 1. In particular, if 8 =4/3 and ¢ =1/2,

m

> (G~ p)* <9 inf [(max ||)] + L (s)]

— wex Lt
Proof: Choose 0 < 8 <2 and 0 < ¢ < 1. Notice that, in
addition to a vector of hypothesized weights, G2 maintains
an integer j between trials. Before learning takes place, j
is set to 0. After G2 receives x1, it sets X1 = ||21]| and
starts as a subroutine GDg/(x,)2. Thereafter, at each trial
t, after G2 receives xy, it sets

: o]
J < max{ J, |log 5 X, .

Then G2 uses GDg/(2i/2x,)> for prediction on that trial.
Thus G2 uses GDg/(x,)2 as long as the x;’s are smaller
than X;, at which time it switches over to GDﬁ/(ﬁXl)z,

which it uses as long as the z;’s are no bigger than v/2X;
(possibly for 0 trials), and continues in this manner, succes-
sively multiplying its assumed upper bound on the 2-norm
of the x;’s by v/2. Let X = max; ||z;||. It follows immedi-
ately from Theorem IV.1 that

Z;r;1 (QFI_ yt();/x . y
08 5(X/X1)] ||Jw)|*(2/2,)? Loy ()
< (Zizo 5 B)e) + @A)

_ lw|Px? (=logym(X/X0)] Lo (8)
= Be-Be (Zi:o 2) + T =0

lw(*x? L (8)
< g 2 ee) 4 R
_AWPX L Lap(s)
= Fe-dc T T e

Plugging in 8 = 4/3 and ¢ = 1/2 completes the proof. O

V. APPLICATION TO CLASSES OF SMOOTH FUNCTIONS

In this section, we describe applications of the inner
product results of the previous section to classes of smooth
functions. While we will focus on applications of Theo-
rem IV.3, we note that analogs of the other results of Sec-
tion IV can be obtained in a similar manner.

Algorithm G2.
Input 0 < 8 < 2.
o Let j =0.
o Let X]_ = ||$1||
¢ On each trial ¢:
1. Let j « max{ [logf ||th" }

2. Give x; to GDﬂ/(21/2X1)2.
3. Use GDg/(2i/2x,)2’s prediction .
4. Pass Yt to GDE/(Q]‘/2X1)2-

Fig. 3. Pseudo-code for the algorithm G2 that uses GD as a sub-
routine. (See Theorem IV.6.) The learning rate of GD is dy-
namically set depending on the relative sizes of the @¢’s.

A. Smooth functions of a single variable

We begin with a class of smooth functions of a single real
variable that was studied by Faber and Mycielski [6] in a
similar context, except using the assumption that there
was a function f in the class such that y; = f(z;) for
all . Their methodology was to prove general results like
those of the previous section under that assumption that
there was a w with fy(x¢) = y: for all ¢, then to reduce
the smooth function learning problem to the more general
problem as we do below. Similar function classes have also
often been studied in nonparametric statistics (see, e.g. [9])
using probabilistic assumptions on the generation of the
Ty'S.

Let R, be the set of nonnegative reals. We define the
set SMOyy to be all absolutely continuous f : Ry — R for
which

L f(0) =

2.4/ (2?2 dz < W.
The assumptlon that f(0) = 0 will be satisfied by many
natural functions of interest. Examples include distance
traveled as a function of time and return as a function
of investment. We will prove the following result about
SMOw .

Theorem V.1: For each E, X, W > 0, there is a predic-
tion algorithm Agymo with the following properties. Choose
m € N, s = ((z¢,¥))t<m € ([0, X] x R)™, such that there
is an f € SMOw for which ;" (f(z¢) — y¢)? < E. Let
U1, ---,Um be the sequence of Agmo’s on-line predictions
for s. Then,

2?1:1(?% —y1)?

<infresmow [Yopm: (f(@e) —4)?] + 2WVXE + W2X
Proof: For now, let us ignore computational issues. We’ll
treat them again after the proof.

Fix E,X,W > 0. The algorithm Agyo operates by
reducing the problem of learning SMOp to a more general
problem of the type treated in the previous section.

Let L?(R,) be the space of (rneasurable) functions g
from Ry to R for which fo 2 du is finite. L2(Ry) is
well known to be an inner product space (see, e.g. [30]),
with the inner product defined by

(91,92) = /000 g1(u)g2(u) du.

Algorithm ASMO-
Input: E,W, X > 0.
¢ On each trial ¢:
1. Get z; € [0, X] from the environment.
2. Give X<z: € LQ(R+) to GDG(E,W,X)/XZ-
3. Use GDg(g,w,x)/x2’s prediction g;.
4. Pass Yz to GDG(E,W,X)/XQ-

Fig. 4. Pseudo-code for algorithm Agyo. (See Theorem V.1.) Al-
gorithm GD (here used as a subroutine) is applied to the inner
product space X = L?(R4). The function G, used to set GD’s
learning rate, is defined in Section IV-B.

Further, we define g3 = g» + g1 by

(Vz) g3(z) = ga(z) + 91 (=),

and g3 = kg1 by

(V) g3(x) = Kgu ().

Now apply algorithm GD to this particular inner product
space, L?(R,), with learning rate n set to G(E,W, X),
where the function G is defined in Section IV-B. For any
x > 0, define x<, : Ry =+ R by

1 fu<ze
0 otherwise.

X<a(u) = {

Note that for any z < X

lx<ell = /OOOXSw(u)QduZ\/ES\/)_(, 16)

and therefore x<, € L*(R..).
In Figure 4, we give a short description of the algorithm
Asymo- Note that for any f € SMOyy,

171l = / " i) du< W (17)

Finally, note that since f(0) =

(f'sx<z) /f u)x<a (u du—/f f(z).

(18)
Thus, if there is an f € SMOw for which ;" (f(z:) —
y1)?> < E, then f' € L?(R,) has ||f'|| < W and satisfies

m

> ((f'sx<e) =) < E.

t=1

Combining this with (16) and Theorem IV.3, we can see
that GD’s predictions satisfy

>y (G —ye)?
<inf) gy <cw [y ((Fs X<o) =

The result then follows from the fact that Agyo just makes
the same predictions as GD. O

y)? | +2WVXE+W?2X.

10

A

Y
(¢, Y1)
L]
x
Gy F-------> hiy1
hy
Y
Fig. 5. An example of the update of the application of the GD

algorithm to smoothing in the single-variable case. The derivative
of the hypothesis is modified by a constant in the appropriate
direction to the left of x4, and left unchanged to the right.

By closely examining the predictions of the algorithm
Agno of Theorem V.1, we can see that it can be imple-
mented in time polynomial in ¢. The algorithm GD main-
tains a function @ € L?(R,) which it updates between tri-
als. As before, let W be the tth hypothesis of GD. We can
see that w; can be interpreted as the derivative of Asyo’s
tth hypothesis. This is because GD’s tth prediction, and
therefore Asyvo’s tth prediction, is

(1, X<or) = / ot (4) X <m0 () du = / doe(u) du
0 0

Hence Agpo’s tth hypothesis h; satisfies hy = w;
GD sets w1 to be the constant 0 function, and its update
is
- gt)XSZt I’
where 1 doesn’t depend on t (see the proof of Theo-

Wip1 = Wy + (ye

rem IV.3). Integrating yields the following expression for
Agymo’s t+ 1st hypothesis:
i1 (z) = he(x) +n(ys — g)x if o <y
o he(x) +n(ys — Je)xe otherwise

and therefore

hiyi(z) = he(z) +n(y:

By induction, we have

) =03,

s<t

— g¢) min{xy, z}.

ht+1 — s mln{xsa .’L‘}

trivially computable in O(t) time if the previous §,’s are
saved. This algorithm is illustrated in Figure 5.
B. Smooth functions of several variables

Theorem V.1 can be generalized to higher dimensions
as follows. The analogous generalization in the absence of

noise was carried out in [6]. The domain X is R. We
define the set SMOw,,, to be all functions f: R} — R for

which there is a function f such that

1. Vx e R" f() = Owl ...foz" Fflug, .. up) duy, ... duy
2. \/fo Fury... un))? dup ...dus < W.
It is easily verlﬁed that when f exists, it is defined by
~ _ 6”f(u1,...,un)
fluas-sun) = Ouy...0u,

We can establish the following generalization of Theo-
rem V.1.

Theorem V.2: For each E, X, W > 0 and n € N, there
is a prediction algorithm Agyon with the following prop-
erties. Choose m € N, 8 = (24, y1))t<m € ([0, X]" x R)™
such that there is an f € SMOw,, for which >°;" | (f(z:) —
y1)> < E. Let §1,...,9m be the sequence of Asmon’s on-
line predictions for s. Then >°;" | (§: — y¢)? is at most

: S 2 n/2 2yn
fesi%wm l;(f(wt) Yi)] +2WX"2VE + W2 X"
Proof. Fix E, X, W,n > 0. The algorithm Agyon op-
erates by reducing the problem of learning SMOw,, to a
more general problem of the type treated in the previous
section.

Let L?(RY) be the space of (measurable) functions g

from R’} to R for which

foo)y e

is finite. Again, it is well known (see e.g. [30]), that L (R})
has an inner product defined by

(gl,gz)=/0°°.../0°°gl<w)92(w) dz, ...de,

d:cn .dzy

Now apply algorithm GD to this particular inner product
space, L?(R’), with learning rate 7 set to G(E,W,X),
where the function G is defined in Section IV-B. For any
x € R, define x<z : R} — R as the indicator function
[0, 2]

of the rectangle [0,z1] x ... X
z €0, X]"

Note that for any

Ix<zll = (19)

and therefore x<z € L*(RY).
The algorithm Asyvon is sketched in Figure 6. Note that
for any f € SMOyw,y, there is a function f such that

(fs x<z.)
f ...f
).

Thus, if there is an f € SMOw,,, for which >;", (f(z) —
y:)*> < E, then the corresponding f € L?(R,.), which has
[[f]| < W, satisfies 3 ;" ((f, x<a,) —9¢)* < E. Combining

“‘»z

ml)"'an)XSwt(m]-?"'Jmn

Algorithm ASMOn-
Input: E,W, X > 0.
¢ On each trial ¢:
1. Get z; € [0, X]™ from the environment.
2. Give X<x, € LQ(Rz) to GDG(E,W,X)/X2-
3. Use GDg(g,w,x)/x2’s prediction §;.
4. Pass Yz to GDG(E,W,X)/XZ-

Fig. 6. Pseudo-code for algorithm Agyon. (See Theorem V.2.)
Algorithm GD (here used as a subroutine) is applied to the inner
product space X = L2(R’j_). The function G, used to set GD’s
learning rate, is defined in Section IV-B.

this with (19) and Theorem IV.3, we can see that, for GD’s
predictions, > -, (9: — y¢)? is bounded by

inf “ r . 2
HfIIIIISW l;((ﬁ)&wt) Yt)

The result then follows from the fact that Agyon just
makes the same predictions as GD. O

+2WX"2VE + W2X".

It is easy to see, by extending the discussion following
Theorem V.1, that the predictions of Theorem V.2 can be
computed in O(tn) time, if previous predictions are saved.

VI. A COMPARISON TO STANDARD GRADIENT DESCENT

METHODS

The goal of this section is to compare the total square
loss bounds obtained via our analysis to the bounds ob-
tained via the standard analysis of gradient descent meth-
ods. Standard methods only deal with the case when all
the pairs (z;,y;) are given at once (batch case) rather than
in an on-line fashion. Thus we consider the problem of
finding the solution & € R™ of a system of linear equations

1,171 + a1 222+ +a1,nTn = b1

Am,12T1 + Qm 2T2+ +Am Ty = bm

where a; j,b; € R. The above system can be given the more
compact representation Ax = b, where b = (by,...,by)
and A is a m x n matrix with entries a; ;. (Ax denotes the
usual matrix-vector product.) For simplicity, we assume in
this section that Az = b has a solution. However, we do
not assume that the matrix A has any special property.

A standard iterative approach for solving the problem
Ax = b is to perform gradient descent over the (total)
squared residual error R(z) = ||AZ — b||3, where % is a
candidate solution. We will prove upper bounds on the
sum of R(&;) for the sequence &, X2, ... of candidate so-
lutions generated by the gradient descent method tuned
either according to the standard analysis or to our analy-
sis. The bounds are expressed in terms of both the norm
of the solution & and the eigenvalues of AT A, where AT
denotes the transpose matrix of A.

We define the norm ||A|| of a matrix A by

IAll2 = sup [[Av][2.

\’U =1

11

This is the norm induced by the Euclidean norm for vectors
in R" (see [8].) Notice that ||Av]||2 < ||4||2||v]]2 (Cauchy-
Schwartz inequality). We will make use of the following
well-known facts.

Fact VI.1 ([11]) For any real matrix A, ||4||2 = vV Amaz>
where \,q; is the largest eigenvalue of AT A.

Fact V1.2 ([11]) For any real matrix A,

14T]2 = [|A]l2-

Given a candidate solution & € R"™ with squared resid-
ual error R(&), the gradient of R(&) with respect to & is
VR(&) = 2AT (A& — b). By applying the gradient descent
(Kaczmarz) rule for the batch case we derive the update

#p1 = & — 1247 (AZ — b) (20)
for some scaling factor > 0. Simple manipulation shows
that

= R(&:) + n*||AVR(&,)|13 — nl|[VR(&:)|[3. (21)

DIl

Following the standard analysis of gradient descent, we find
the value of n minimizing the LHS of (21) at

R(Z¢41)

_ _IVR@)IE
2| AVR(&0)]I3

By plugging this optimal value of 5 back in (21) we get

4[AVR(24)|13

Proposition VI.1: For all m,n > 0, for any m X n real
matrix A and for any vector x € R"™. Let b = Az and let
Amin> Amaz D€, respectively, the smallest and the largest
eigenvalues of AT A. Then, if £y = 0 and &, is computed
from #; using formula (20) with = 7,

(min +)\mam)z

ZIIAwt bll3 < |l][5-

Proof. If /\mm = 0, then the bound holds vacuously. As-
sume then A,,;, > 0. Via an application of the Kantorovich
inequality to the square matrix ATA (see e.g. [20]) it can
be shown that

R(&141) = R(&:) —

4}\mz’n)\maw

R(&11) < (1 - Omin + /\maz)2> R(&¢). (22)

Therefore, we get

4/\min)\ma:c

mR(i‘t) < R(zy) -

R(&441).
By summing up over all iterations ¢ we obtain

4)\min)\maz -

O sy D R(@) < R(#0).

t=0

12

Recalling that &y = (0, ..., 0) and making use of Fact VI.1,

Amin + Amaz)*
4/\min)\maw

()\mz’n +)\mam)z
- 4)\min/\mam
)‘min + Amaz 2
i & Arae)) 12
(/\mz'n +)\maz)2
4)\min)\maw
()‘mzn + Amaz)

> 2
= —_— ||
o a3

> 1Az, - bl < R(&)
t=0

1Az[3

IA

IA

’\maz”w“%

concluding the proof. |

A different analysis of update (20) can be obtained by
applying the techniques developed in Section IV. Let D (&)
be the distance || — || of & to the solution . An easy
adaptation of Lemma IV.1 shows that

D(#¢41) = D(&1) +n?||VR(@)|3 — 4nR(&:). (23)

Here, the minimization over 7 yields the optimum at
2R(&:)
= a2
IIVR(Z:)|[3
We then have the following result.
Proposition VI.2: For all m,n > 0, for any m X n real
matrix A and for any vector x € R". Let b = Ax and let

Amaz be the largest eigenvalue of AT A. Then, if £y = 0 and
&141 is computed from &; using formula (20) with n = 72,

o0
D l[A&: = blI3 < Amaal] 3.

t=0
Proof. By plugging - for n in (23) we obtain
. . AR(&4)?
D(@11) = D(&y) (#:)

IVR(&4)[3
|| A, — b||2

= D(ﬁ:t) - ||A§3t - b||g||AT(A§:t — b)“%

. |1z, — bl
< D) - 1Az bl
! [1AT13
(by definition of ||AT||5)
Ad, — 2
< D(#)— % (by Fact VL.2).
2

Therefore, rearranging the above and summing up over all
iterations t,

> llA# —bl; < [|A[3D(&0)
t=0

14113113

since &y = (0, ...,0). By Fact VI.1, this implies

oo
D I[A&: = bl < Amaa|lz] 3.
t=0

O

In summary, we compared two tunings of 7 for the learn-
ing rule (20). The first and standard one maximizes the
decrease of ||AZ — b||3 and the second one maximizes the
decrease in ||& — x||3, where z is a solution.

The first method has the advantage that one can show
that ||AZ — b||3 decreases by a fixed factor in each trial (In-
equality (22)). (Note that this factor is 1 when Ap:, = 0,
and this holds when A does not have full rank.) In contrast,
matrices A can be constructed where updating with the op-
timal learning rate 7, causes an increase in ||AZ — b|[3.

The second method, however, always leads to better
bounds on Y, ||AZ; — b||3 since

)\ < (Amzn +)\maz)Q
mer = 4)\mzn

for all A\pin, Amaz > 0. (Notice that the corresponding
bound for the first method is vacuous when A,;, = 0,
which holds, as we said above, when A does not have full
rank.)

VII. LOWER BOUNDS

In this section, we describe lower bounds which match
the upper bounds of Theorems IV.3, V.1, and V.2, con-
stants included. In fact, these lower bounds show that even
the upper bound on the excess of the algorithm’s squared
loss above the best fixed element within a given class of
functions is optimal.

Theorem VII.1: Fix an inner product space X for which
an orthonormal basis can be found.® For all E, X, W >
0 and all prediction algorithms A, there exists n € N
and a pair (z,y) € X x R, such that ||z|| < X and the
following hold: There is a w € X for which ||w|| = W and
((w,z) —y)? = E. Furthermore, if §j = A(x;) then

(1 —y)? > E+2WXVE + (WX)2.

Proof. Choose an orthonormal basis for X. Set
xz = (X,0,...), y = sgn(—§)(WX + VE), and w =
(sgn(=9)W,0,...). The result then follows easily. i

To establish the upper bound of Theorem IV .4, in which
general bounds were obtained without any knowledge of
an upper bound on Ly (8), we required the assumption
that the y¢’s were in a known range [-Y,Y] and com-
pared the total loss of the GD algorithm on s against
Ly (8), where W = Y/(maxy ||z¢|]). Therefore, the above
lower bound does not say anything about the optimality
of those results. The following lower bound shows that
Theorem IV.4 cannot be significantly improved, at least
for high-dimensional spaces. That is, we show that for any
given X,Y, E > 0 there is some ng such that for all n-
dimensional inner product spaces X,,, with n > ng, any
prediction strategy incurs loss at least E + 2YVE +Y? for
some sequence on X, x [—Y,Y]. This theorem further has
obvious consequences concerning the finite dimension case

6 An orthonormal basis can be found under quite general conditions.
See e.g. [30] for details.

when the “noise level” E is not too large relative to the
number n of variables as well as X and Y.

Theorem VIL.2: Let (X4),.;v be any sequence of in-
ner product spaces such that X; is a d-dimensional vector
space. Choose X,Y, E > (. Let n be any integer such that

2
vVE
>|11+— .
_(+Y
Then for any prediction algorithm A there is a sequence
((1,y1))t<n € (X x [-Y,Y])" such that
1. Forall 1 <t <, ||z = X

2. If for each t, s = A(({(x1,y1),---
then

(24)

’ (mtfly ytfl))7 mt):

n

Z(yt

t=1

—)2 > (Y +VE?2=E+2YVE +Y2

3. There exists w € R" such that ||w| =Y/X and

n

Z (ye — (w;il%))2 =E.

t=1
Proof. Choose X,Y,E > 0 and choose n € N so that (24)
is satisfied. Let ey, ..., e, be an orthonormal basis of X,
(since X, is a finite-dimensional inner product space, such
an orthonormal basis can always be found). Let ; = Xe;,
for i = 1,...,n. Since the basis is orthonormal, ||z;|| = X
for all 4, fulfilling part 1. Consider the adversary which at
each step ¢t = 1,...,n feeds the algorithm with vector x,
and, upon algorithm’s prediction g;, responds with

Y +VE
—

, (Y +VE)
2<«ﬁ>

for all t = 1,2,...,n. This proves part 2. Now let w be
the vector of X,, with coordinates

Yyt = sgn(—y)

This implies

(ye — 9t)

Y/X

-+ +>5g0(—0n)

RN

N vn
with respect to the basis eq,...,e,. To prove part 3, first

notice that |w| = Y/X. Second, for each t = 1,...,n we
have

(90 = (1, w))? 2

= [sen(- t)” ~ (21, 0)]

= [sBn(=30 Y52 — X (et)]

= [sen(—5) Y5 — X (sen(-9) 2X)]’
= (- %)

13

This concludes the proof of part 3. Finally, notice that (24)
implies that for all t =1,2,...,n

Y+\/E<Y
N

The proof is complete. a

|Z/t| =

We conclude with a lower bound for smooth functions.

Theorem VII.3: Choose E,X,W > 0, n € N, and
a prediction algorithm A. Then there exists m € N,
s = (&4, y))e<m € ([0, X]™ x R)™, such that the fol-
lowing hold: There is a function f € SMOy,, for which
S (f(xe) —y)? < E. If for each t,

gt = A(((®1,91)5 - - - (Te—1,Yt-1)), Tt),

then

—y)? > E+ 2WX"?V/E + 2W2X"

m

> G

=1
Proof. In fact m = 1 suffices in this case.
(X,...,X).
positive. Let

Let 1 =
Suppose the first prediction g; of A is non-

=WX"?+VE
and let the function f: R} — R be defined by

w
f(w) = Xn/2 Hx'h
i=1

if z € [0,X]", and f(xz) = 0 otherwise. Then, for any

z € [0, X]",
:/ / fluy, ... up) du, ... duy,
0 0
where f = X" . The following are then easily verified
1. f(0) =
2. (f(z1) —y1)> = WX"? - (WX"? +VE))® =
3o\ f f(u)? duy, .. dug = /XM(W/X/2)2 =
w
4. (1 —y1)? > WX™?2 +VE)? = E+ 2WX"/?/E +
WZXn
since 91 < 0. The case in which g; > 0 can be handled
symmetrically. |

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the performance of
the gradient descent rule applied to the problem of on-line
prediction in arbitrary inner product spaces. Through a
reduction, we then applied our results to natural classes of
smooth functions.

One of the most interesting contributions of this work is
perhaps the derivation of the optimal “learning rate” for
gradient descent methods when the goal is to minimize the
worst-case total loss (here the sum of the squared predic-
tion errors). Our tuning of the learning rate is based on a
priori information that can be guessed on-line with an in-
crease in the total loss of constant factors only. In the case

14

of iterative solution of systems of linear equations, we also
showed that, with respect to the sum of squared residual
errors, the tuning provided by our analysis compares favor-
ably against the tuning obtained via the standard gradient
descent analysis.

It is an open problem whether, instead of using adversar-
ial arguments as we do here, our lower bounds can already
be obtained when the examples are randomly and indepen-
dently drawn from a natural distribution. For more simple
functions this was done in [3]: the lower bounds there are
with respect to uniform distributions and the upper bounds
which essentially meet the lower bounds are proven for the
worst-case as done in this paper.

An interesting open problem is whether a variant of
the GDx y algorithm (see Figure 2) exists such that, for
all sequences s = ((z¢,yt))i<m satisfying ||| < X and
lys] < Y for all ¢, the additional total loss of the algo-
rithm on s over and above infqyecx Lqy(8) is bounded by a
function of X,Y only. Notice that this does not contradict
Theorem VII.2.

The most challenging research direction is to prove worst
case loss bounds for other gradient descent applications (by
tuning the learning rate) as we have done in this paper for
linear functions and the square loss. For example, are there
useful worst case loss bounds for learning linear functions
with other loss functions than the square loss. Another in-
teresting case would be worst case loss bounds for learning
the class of linear functions passed through a fixed trans-
fer function (such as tanh or the sigmoid function) for any
reasonable loss function.

Acknowledgements

We thank Ethan Bernstein for helpful conversations, and
for pointing out an error in an earlier version of this paper.
Thanks to Jyrki Kivinen for simplying the proof of Theo-
rem VIL.2 and to an anonymous referee for simplying the
proof of Lemma 8. Thanks also to Peter Auer, Gianpiero
Cattaneo, and Shuxian Lou for their comments. Finally,
we are grateful to Jan Mycielski for telling us about the
paper by Kaczmarz.

REFERENCES

[1] D. Angluin. Queries and concept learning. Machine Learning,
2:319-342, 1988.

[2] A.Barron. Universal approximation bounds for superpositions of
a sigmoidal function. IEEE Transactions on Information The-
ory, 39(3):930-945, 1993,

[3] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E.
Schapire, and M.K. Warmuth. How to use expert advice. Pro-
ceedings of the 25th ACM Symposium on the Theory of Com-
putation, 1993.

[4] A.Dawid. Statistical theory: The prequential approach. Journal
of the Royal Statistical Society (Series A), pages 278-292, 1984.

[5] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. Wiley, 1973.

[6] V. Faber and J. Mycielski. Applications of learning theorems.
Fundamenta Informaticae, 15(2):145-167, 1991.

[7] M. Feder, N. Merhav, and M. Gutman. Universal prediction of
individual sequences. IEFE transactions of information theory,
38:1258-1270, 1992.

[8] G.H. Golub and C.F. Van Loan. Matriz Computations.
Johns Hopkins University Press, 1990.

[9] W. Hardle. Smoothing Techniques. Springer Verlag, 1991.

The

[10] S.S. Haykin. Adaptive Filter Theory. Prentice Hall, 2nd edition,
1991.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge Uni-
versity Press, 1985.

S. Hui and S.H. Zak. Robust stability analysis of adaptation
algorithms for single perceptron. IEEE Transactions on Neural
Networks, 2(2):325-328, 1991.

S. Kaczmarz. Angenaherte Auflésung von systemen linearer gle-
ichungen. Bull. Acad. Polon. Sci. Lett. A, 35:355-357, 1937.
D. Kimber and P.M. Long. The learning complexity of smooth
functions of a single variable. The 1992 Workshop on Compu-
tational Learning Theory, pages 153—-159, 1992.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus
gradient descent for linear predictors. Report UCSC-CRL-94-16,
University of California, Santa Cruz, June 1994. An extended
abstract appeared in Proceedings of STOC 95.

N. Littlestone. Learning quickly when irrelevant attributes
abound: a new linear-threshold algorithm. Machine Learning,
2(4):285-318, 1988.

N. Littlestone. Mistake Bounds and Logarithmic Linear-
threshold Learning Algorithms. PhD thesis, Technical Report
UCSC-CRL-89-11, University of California Santa Cruz, 1989.
N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning
of linear functions. Proceedings of the 28rd ACM Symposium on
the Theory of Computation, pages 465-475, 1991.

R.W. Lucky. Techniques of adaptive equalization of digital com-
munication systems. Bell System Technical Journal, 45:255-286,
1966.

D.G. Luenberger. Linear and Nonlinear Programming. Addison-
Wesley, 1984.

N. Littlestone and M.K. Warmuth. The weighted majority al-
gorithm. Technical Report UCSC-CRL-91-28, UC Santa Cruz,
October 1991. A preliminary version appeared in the Proceed-
ings of the 30th Annual IEEE Symposium on the Foundations
of Computer Science, October 89, pages 256-261.

N. Merhav and M. Feder. Universal sequential learning and
decision from individual data sequences. The 1992 Workshop
on Computational Learning Theory, pages 413-427, 1992.

J. Mycielski and S. Swierczkowski. General learning theorems.
Unpublished, 1991.

J. Mycielski. A learning algorithm for linear operators. Pro-
ceedings of the American Mathematical Society, 103(2):547-550,
1988.

M.M. Sondhi. An adaptive echo canceller. Bell System Technical
Journal, 46:497-511, 1967.

M.M. Sondhi and D.A. Berkley. Silencing echoes in the telephone
network. Proceedings of the IEEE, 68:948-963, 1980.

V. Vovk. Aggregating strategies. In Proceedings of the 3nd
Workshop on Computational Learning Theory, pages 371-383.
Morgan Kaufmann, 1990.

B. Widrow and M.E. Hoff. Adaptive switching circuits. 1960
IRE WESCON Conv. Record, pages 96-104, 1960.

B. Widrow and S.D. Stearns. Adaptive signal processing. Pren-
tice Hall, 1985.

N. Young. An introduction to Hilbert space. Cambridge Univer-
sity Press, 1988.

(11]

(12]

(13]

[14]

(15]

(16]
(17]

18]

(20]

(21]

(2]

(23]

(24]

(25]
[26]

(27]

28]
[29]

(30]

APPENDIX
I. PROOF OF THEOREM IV.4

Before proving the theorem we need some preliminary
lemmas.

Lemma A.1: The total loss of G1 incurred in each loop
i is at most k; + (2a2¥/% + 5)Y2.
Proof. By construction of G1, the total loss incurred in
each loop i is at most k; + (2az*/2 + 1)Y2 plus the possi-
ble additional loss on the trial causing the exit from the
loop. To upper bound this additional loss observe that G1
always predicts with a value ¢; in the range [-Y,Y]. By
hypothesis, y; € [-Y, Y] for all ¢. Hence the loss of G1 on
a single trial ¢ is at most 4Y 2. O

In what follows W = Y/X. Let s; be the subsequence
of s fed to G1 during loop 4.

Lemma A.2: If G1 exits loop 4, then Ly (s;) > k;.
Proof. By construction of G1, if G1 exits loop 4, then the
total loss incurred on subsequence s; is bigger than

ki + 2V /k; + Y2

Since |y:| <Y and since G1 predicts on each trial of loop
i by “clipping” the prediction of GDg s, w,x)/x2 to make
it fit in the range [-Y,Y], we conclude that the total loss
incurred by GDg(; w,x);x2 on loop i is bigger than k; +
2Y /k; +Y? as well. Hence by Theorem IV.3 Ly (s;) > k;
must hold. m|

Lemma A.3: Let £ be the index of the last loop entered
by G1. Then

(z=1)Lw(s)
< —_— .
£<log, (1 + (aY)?
Proof.
L = inf L
w(s) ||u}ﬂlgw w(s)
¢
= inf L (s;
foll<w l; wls)]
¢
> in
- ; [||w||<w (')]
¢
= Z Lw(s:)
=0
-1
> ki + Ly (sg) by Lemma A.2
=0
-1
> (aY)? Z 2t
=0
¢
-1
= (aV)?Z
(@¥)*——
Solving for ¢ finally yields the lemma. O

Lemma A.4: The total loss on G1 on the last loop ¢
entered is at most

Lw(8¢) + (2az*/? + 5)Y?
Proof. By construction of G1, the total loss Ly of G1
on loop £ is the total loss of GDg,,w,x)/x2 on sg. If
Lw (sg) < kg, then by Theorem IV.3

Ly, < Lw(sy) +2WX ke + (WX)2
< Lw(s))+2YVk +Y? sinceY = WX
= Lw(se) + (2022 +1)V?
< Lw(se) + (2a2*? + 5)Y2.

On the other hand, if Ly (s;) > k¢, then by Lemma A.1

L < ke+ (2022 +5)Y?
< Lw(se) + (2a2'% + 5)Y?

and the proof is concluded. |

15

Lemma A.5: For all z > 0, llr:’(gllé'lwg) < 0.8362/x.

Proof. The inequality in the statement of the lemma is
equivalent to

In(1
In(1+2) _) 83621n(2.618) < 0.
VT
The function @ has a unique maximum at = = 3.921.
At this value of x the above inequality is seen to hold. O

Proof of Theorem IV.4. By Lemmas A.1 and A.4,

e 1(th Yt)®
< [k + (2az%/% + 5)Y?]
+LW(34) + (Qaz[/2 +5)7?
< ki 4+ 2aY2 Y 22 + L (s¢) + 5(£ + 1)Y?
< X8 Lu(s9) + L (s0) + 2ay? 222021
+5(€ +1)Y? by Lemma A.2
< Lw(s) + 2aY”

LU+1)/2 242
T — S 450+ 1)Y?

(z=1)Lw (S)
z (H‘W)
24Y?

Va1 Ve 1

by Lemma A.3
w(s) +2aY2\/\[1 1+ G DLw(3)
2qY2

(aY)?
_\/2_1 + 5([+].)Y2
< Ly (s) + 20y o (1 ¥
2
25 + 5L+)Y
= 2LVYV2(S) + 2aY? f +2Y /G =1 Lw(s)
-2 +5(0+1)Y”?
< Ly (s) + 2Yff

< Ly (8) + 2aY?
+5(¢ + 1)Y?

=L

(z=1)Lw(S))
(aY)?

“V/(z — 1)L (8) + 2aY?

+5 [logz (1 + %) + 1] y2

by Lemma A.3. The factor \/\E/E 7Vz—1 is minimized
at z = 2.618. Plugging back in this value and using

Lemma A.5 we get

Dty (G — ye)?
< Lw(s) + 6.6604Y /Ly (s) + 2aY
1.618Lw (S
+5 [0.8362 /025 4 1] 2
< L (8) + (6.6604 + 2219) Y\ /Ly (s)
+(2a+ 5)Y2.

Finally, by letting a = 2.0979 to trade-off between the last
two terms we obtain

-

t=1

2 < Ly(s +92<Y\/LW—+Y2)

16

Nicolo Cesa Bianchi received his M.S.
(1988) and Ph.D. (1993) in information sci-
ences from the University of Milan, Italy. He
was a visiting scholar at the University of
California at Santa Cruz in 1991-92 and at
the Graz University of Technology, Austria, in
1994. Currently, he is an assistant professor at
the department of computer science, Univer-
sity of Milan, Italy. His main research interests
are computational learning theory and on-line
analysis of algorithms.

Phil Long got a B.A. from Oberlin College
in 1987, and a Ph.D. from the University of
California at Santa Cruz in 1992. He was a
postdoc at the Graz University of Technology
during 1992-93, and at Duke University during
1993-95. He was at Research Triangle Institute
during 1995, and is now doing another postdoc
at Duke. His research interests are computa-
tional learning theory and data compression.

Manfred Warmuth did a Vordiplom in Infor-
matik at Fredrich Alexander Universitat. He
then received a Fulbright Scholarship, and did
his M.S. and Ph.D. at the University of Col-
orado at Boulder. He is currently a profes-
sor in the Computer Science Department of
the University of California at Santa Cruz.
His research interests include machine learning,
on-line learning algorithms, parallel and dis-
tributed algorithms, and complexity theory.

