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Abstract

We show that halfspaces in n dimensions can be PAC learned with respect to the uniform
distribution with accuracy € and confidence ¢ using

o2 o+

examples.
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1 Introduction

In the PAC model [14], a learning algorithm is given examples (z1, f(21)), .., (Tm, f(Tm))
of the behavior of an unknown {0, 1}-valued function f applied to independently randomly
drawn elements of its domain. The learner then outputs a hypothesis A, and its goal is for A
to accurately approximate f. The “target function” f is an arbitrary member of a class F
of functions that the learning algorithm knows ahead of time. It is assumed that the domain
elements 1, ..., T, in the learner’s input are chosen independently at random according to
a probability distribution D. The same distribution D is used to measure the accuracy of
h: this accuracy is the probability that h would incorrectly classify another element of the
domain of f chosen according to D. If, given m examples, with probability at least 1 — ¢
(with respect to the draws of the random examples) the learner outputs a hypothesis whose
accuracy is at least as good as € it is said to (¢, ) learn from m examples.

In this paper, we examine the number of examples required for (e,d) PAC learning in
the case in which D is the uniform distribution over the unit ball in R™ and F is the set of
indicator functions for halfspaces whose separating hyperplanes go through the origin. For

this problem, we show that
1
o (n + log 3)
€

examples suffice. This improves on the best previously known bounds of
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[7] that follow from more general results, and matches a known

0 (n-l—log%)
€

lower bound [9] for this particular problem to within a constant factor. As did the general
analysis in [2] (see also [10]), our proof proceeds by showing that the set of halfspaces has
a small cover — a collection of possible hypotheses with the property that every halfspace
has a good approximation in the cover. The improved bound is obtained by showing that
there is a small cover which also has the property that no target has very many elements
in the cover that approximate it moderately well. This is helpful because hypotheses with
errors a little worse than e are especially dangerous, because it is particularly difficult to
recognize that they are not accurate enough. The remainder of our paper is organized as
follows. Section 2 takes care of some preliminaries. The proof of the bound is in Section 3,
and some other related work is described in Section 4.
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2 Preliminaries

2.1 Learning

An example is an element of X x {0,1} and a sample is a finite sequence of examples. A
hypothesis is a function from X to {0,1}. For a hypothesis h, a function f from X to {0, 1},
and a probability distribution D over X, define the error of h with respect to f and D to be

er/p(h) = Proun(h(z) # f(x)).

For a sample S = ((x1,41), .-, (Tm, Ym)), let erg(h) be the fraction of incorrect classifications
that h makes on S, i.e.

ers(h) = —I{i: h(w:) # yi}|.

A learning strategy takes as input a sample, and outputs a hypothesis. For a probability dis-
tribution D over X, a set F of functions from X to {0,1} is said to be (¢, d)-learnable
with respect to D from m examples if there is a learning strategy such that, for any
f € F, if m examples x4, ..., x,, are drawn independently at random according to D, and
(1, f(21)), -, (Tm, f(zm)) is passed to A, then, with probability at least 1—0, the hypothesis
h output by A satisfies ery p(h) < e.

2.2 Halfspaces, the uniform distribution, and distance

For each positive integer n, let U, be the uniform distribution on the surface of the unit
ball in R™. For each w € R", let hg be the indicator function for the halfspace with normal
vector @ whose separating hyperplane goes through the origin. Thus hz(Z) =1 < @-Z > 0.
Let H, be {hgz : W € R"}. For f, g € H,, let

pu, (f,9) = Prooy, (f(z) # g()).

2.3 Balls in R" and their volumes

Let V,,(r) denote the volume of a ball of radius r in R™, with respect to the usual Euclidian
distance. The following are well-known.

Lemma 1 For alln > 2, V,(r) =r"V,(1) and 2 < % < 3.

Proof: In Appendix A. i

3 PAC learning halfspaces with respect to the uniform
distribution

The following is our main result.

Theorem 2 H, can be (¢,0)-PAC learned with respect to U, from O (%) examples.

2



We will make use of the standard Chernoff bound.

Lemma 3 IfYy,...,Y,, are i.i.d. {0,1}-valued random variables and Pr(Y; = 1) = p, then
forall0 <y <1,

e m(§)) < o

=1

Pr <§:Y <(1-9)E (é Y)) < v,

=1

For each positive integer n, let Uy, be the distribution over H, obtained by sampling
«w uniformly from the unit ball, and taking hgz. Our first lemma addresses the following
question: given some halfspace h, if another halfspace g is chosen uniformly at random (i.e.
according to Uy, ), how likely is it that it will be “close” to h. The upper bound is from [9],
but its proof is included for completeness.

Lemma 4 There are constants ci,co > 0 such that for any n € N, n > 2, for any h € H,,
and for any 0 < a < 1/2,

Pry.vy, (pv,(9,h) < @) > (ca)",
and for any 0 < a < 1,
Pry vy, (pu.(9,h) < a) < (c20)™ .

Proof: See Appendix B. i

The following lemma adds a small wrinkle to the traditional volume argument. The
usual volume argument could be used to show that there is a small set GG, of halfspaces that
contains an accurate approximation to each element of H,. The modification shows that
a similarly small set (G,, also has the property that for any element h of H,, not too many
elements of GG,, are close to h.

Lemma 5 There is a constant cg > 0 such that, for all n > 2 and all € € (0, 1], there is a
G, C H,, for which for all h € H,,

e there is an g € Gy, such that py, (g, h) < €/4, and

o foralla>c¢, |[{g€Gy:pu,(g,h) <a} < <%)n_l‘

€

Proof: Fix n. Consider GG,, constructed by repeatedly choosing an arbitrary element of H,
at a distance (w.r.t. py,) greater than €/4 from all of the previously chosen elements of Gy,
for as long as this is possible. Choose h € H,, and a > ¢. At any point in time during this
process, by the triangle inequality, the balls of radius ¢/8 centered at the elements of G,, are
pairwise disjoint. In other words, for any distinct ¢1, g» € G,,, we have

{f - pv. (91, ) < /8y {f : pu.(g2, f) < €/8} = 0.



Figure 1: By the triangle inequality, the union of the balls of radius €/8 centered at elements
of G,, at a distance at most « from h is contained in the ball of radius « + ¢/8 around h.

Thus, if we denote OR by V,

PrfNUHn ( V (pUn (g, f) S 6/8)>

9€Gn:py, (9:h)<a

= Z Pr;oyy, (pu. (9, f) < €/8).

9E€Gn:pu, (9,h)<a

If ¢; is as in the statement of Lemma 4, then that lemma implies that

PrfNUHn( V (m(g,f)sds)) > g€ Guzpulom <o}l (29)7 )

9E€Gn:py, (9;h)<a

By the triangle inequality (see Figure 1), Lemma 4 implies

Pri vy, ( V (pu. (g, f) < 6/8)) < Priuyy, (pu.(h, f) < a+¢€/8)
9€Gnpu, (9,h)<a
< (co(a+€/8))" !
< ((9c/8)a)" (2)

since « > €. Putting together (1) and (2) and solving, we get

9 n—1
{9 € G pu,(gsh) <o} < (S22) .
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Note that (3), in the case a = 1, implies that the process used to generate GG,, terminates.

When it does, all elements are within distance €/4 of some element of G,,, since otherwise,

another round would be possible. This completes the proof. i
Proof (of Theorem 2): Consider the algorithm that, given e,

e constructs GG, as in Lemma 5, and

e outputs the element of GG, with the minimum number of disagreements with the sample.

Choose f € H,, and let f* be an element of G,, minimizing ery, (f*).
Let h be the hypothesis output by the above algorithm, which is a function of the random
sample. Then

Pr(er;y, (h) > €)

< Pr(ers(f*) > €/2 or g € Gy, eryy,(g) > € and ers(g) < ¢/2)). 4)
Lemma 5 implies that er;y, (f*) < ¢/4. Applying the Chernoff bound (Lemma 3), we have
Pr(ers(f*) > ¢/2) < e~™/12, (5)

Let
p="Pr(dg € G,, eryy,(g9) > € and erg(g) < €¢/2).

Here is where the proof departs from the usual. We will decompose the elements of GG,
into layers, where the elements in each layer have approximately the same error. Specifically,
layer i contains elements of G, with error between ie and (i+1)e. Let us say that an element
of Gy, that has true error greater than e and empirical error at most €/2 is seductive. We can
apply the usual union bound to bound the probability that any member of a given layer is
seductive by the product of the number of elements in that layer and the largest probability
that any individual hypothesis in the layer is seductive. For the layers in which ¢ is small,
Lemma 5 ensures that there are not many hypotheses in the layer. For the layers in which
1 is large, the probability that each individual hypothesis is seductive is small enough to
compensate for the potentially greater number of them.

We have

[1/€]
p< Y Pr(dgeG,, ic<erypy,(g9) < (i+1)e and erg(g) < €/2).
i=1

If c3 is as in the statement of Lemma 5, applying that lemma and Lemma 3, we get

[1/€] 1\2
p< Y (esi+ 1)) Lexp (- (1 - ?) iem/?) .
i=1 t
Overestimating the first 1+ 1 with e’, and underestimating 1 — % by 1/2, and rearranging
a bit, we get that if m > 8n/e, then
[1/€]
p < Y expliln—em/8))
i=1

ch exp(n — em/8)

1 — exp(n — em/8)
exp((1 +Incz)n —em/8)
1 —exp(n — em/8)
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Combining this with (4) and (5), we have

exp((1 + Ines)n — em/8)

P h) > < em/12
rlersum(h) > €) < e * 1 —exp(n — em/8)

From here simple calculations complete the proof. 0

4 Related work

For classes of VC-dimension d, general bounds of O (% log £ + log %) [15, 3] and O (% log %)
[7] are known. The only improvement on these that does not follow from Littlestone’s
analysis of PAC algorithms obtained from algorithms with mistake bounds [8], is the analysis

1
of [1] of axis-aligned rectangles in R™. In that case, an optimal O (%) bound was

also obtained, using a completely different technique. Servedio showed that a very simple
algorithm efficiently learns halfspaces with respect to the uniform distribution even in the
presence of independent misclassification noise [12]; the best bound known on the number
of examples used by this algorithm in the noise-free case is O(n/€®), however.
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A Proof of Lemma 1

The formula

71'"/2
Va(1) = T(n/2+1)

is derived in many calculus books (see [13, 4]). Applying Stirling’s formula (see [11, 5]) and
simplifying yields

1 5 1\"/? vV (1)
\/ 44— N {1== < M nit/
2T exp (2 * 36n2 — 30n> ( n) = Vo0

1 7 1\"/?
< V2 - 1—2)
= VeTexp (2 t 3602 — 300 — 6) ( n)

Applying calculus to bound each factor independently yields

V2me < VnVa (1) < V/2me®P 12

2 no1(1)

which directly implies the lemma. ]
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Figure 2: An example of the cones used in the proof of Lemma 4. The region whose volume
we want has part of the ball as part of its boundary; we lower and upper bound it by
the volumes of an inscribed cone and a circumscribed cone respectively (here pictured as
triangles).

B Proof of Lemma 4

Note that py, (hg, hg), the probability that hz and hg classify a uniformly randomly drawn
point differently, is equal to the angle between ¢ and & (in radians) divided by w. Also,
choosing an element of H, randomly by sampling its normal vector from the unit ball is
equivalent to choosing an element of H, by sampling its normal vector uniformly from the
interior of the unit ball.

We will use the latter view in our argument. Thus, we wish to approximate the volume in
weight space of the collection of hypotheses h for which py, (g, h) < a. We can lower bound
this volume by calculating the volume of the cone whose tip is the origin and whose base
contains the elements of the unit ball whose angle with ¢ is exactly ax. Our upper bound
will be obtained by calculating the volume of the smallest cone containing the region whose
base is tangent to the unit ball. (See Figure 2.) If V,,(r) is the volume of a ball of radius r
in R™,

1 cos(am) .
Vo (1) /0 Vo—i(zsin(an)) de < Prgoy, (pn(hs, hg) < @)
1 1
< : ‘
>~ Vn(l) /0 Vn_l(ac SlIl(Oz’]T)) da;

Using the fact that V,_i(r) = r"~1V,_1(1), we get

cos(am)
)(sin(om))nfl /0 a"tdr < Prgy, (pn(he, he) < a)

V)



which implies

Vn—l(]') . n—1 n
V() (sin(am))" " (cos(am))” < Prg.u,(pn(hs ha) < @)
Voo1(1)

nVa(1)

IN

(sin(am))™ .

Lemma 1 then implies

%(sin(aw))”_l(cos(aw))” < Prg.uv,(pn(hs hs) < @)
3 : n—1
< %(sm(aw))

and the identity sin(u) cos(u) = sin(2u)/2 yields

2 cos(amr)

\/ﬁ (sin(aw)/Q)"_l < PI‘@‘NUn (pn(hg, hw‘) < (,Y)

3
< —(sin(am))™ .
< sin(om))
Approximating sin using its Taylor expansion,

2 cos(am)

Vn

(am — 40’7 /3)" 1 < Prg.u,(pu, (hs, ha) < a)

——(am)™!

=

and the lemma now follows from some straightforward calculations (using the assumption
1
that a < 1/2 for the lower bound along with the fact that 1 < n2t-D < 2 for all n > 2). []



