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Abstract

We prove an
d 1 1
Q (— + —log —)
€ € 0
lower bound on the PAC learning sample complexity of learning halfspaces against the uniform
distribution on the unit ball in R%.
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1 Introduction

In the PAC (“probably approximately correct”) learning model [Val84], the learner wishes to ap-
proximately learn an unknown function f from some domain X to {0,1}, chosen from a known
class F' of such functions. The learner is given examples (z1, f(21)), -.., (Tm, f (m)) of the behavior
of f at elements x1,...,x,, of the domain X chosen independently at random according to some
distribution D. In the original formulation of the model, distribution-free PAC learning, the dis-
tribution D is arbitrary and unknown. Benedek and Itai [BI91] studied learning with respect to
particular, known D. In each case, after receiving (z1, f(%1)), .., (Tm, f (zm)), the learner outputs a
hypothesis h for f. The accuracy of h is measured by the probability that A would be different from
f on another point chosen randomly according to D. The sample complexity indicates, informally,
what is the least number m of examples so that there is a learner which, for any f € F' (and in the
distribution-free case, for any D), with probability (with respect to the random choice of z1, ..., Z,,)
at least 1 — 4, outputs a hypothesis of accuracy at least as good as e. (See Section 2 for a precise
definition.)

Ehrenfeucht, Haussler, Kearns and Valiant [EHKV89] proved a general lower bound of

€ € )

(1)

on the sample complexity of distribution-free PAC learning, where VCdim(F') is the VC-dimension
[VCT1] of F', a measure of its complexity (see Section 2 for a precise definition). For each class of fi-
nite VC-dimension, this matched earlier upper bounds on the sample-complexity of distribution-free
PAC learning [BEHW89, HLW90] to within log factors. Since the VC-dimension of homogeneous
halfspaces in R? is d, (1) implies a lower bound of

d 1 1

on the sample complexity of distribution-free PAC learning for this class. The distributions used
in the lower bound proof of [EHKV89] are concentrated on VCdim(F') elements of the domain,
and almost all the weight is concentrated on one point. It has been argued that since such dis-
tributions are inaccurate models of real-world learning situations, the lower bound of [EHKV89],
while interesting theoretically, does not provide even qualitative guidance concerning the difficulty
of real-world learning. In this note, we prove that a lower bound of (2) on the sample complexity of
PAC learning d-dimensional homogeneous halfspaces still holds even if the distribution is uniform
over the unit ball, which is among the best-behaved distributions one can imagine.

The (1/€)log(1/d) term is easy, but the d/e term requires a trick. For each distribution D, one may
place a metric pp on the set of functions from X to {0, 1} by letting pp(f, 9) = Pryep(f(z) # g(z)).
One can then define Mp(F,¢€) to be the largest subset of elements of F', each pair of which is at
least € far apart as measured by pp.

Benedek and Itai [BI91] proved a general lower bound of
log,((1 — 6) Mp(F, 2¢)) (3)

on the sample complexity of learning F' with respect to D. However, as Haussler [Hau91] has proved
that in general

10 VCdim(F)
Mp(F,e) < (—) , ()

€



the best one could ever get by directly applying (3) is a lower bound on the sample complexity of
1
Q (VCdim(F) log = + log(1 — 5)) .
€

However, we adapt the proof of [BI91] to prove a lower bound on the sample complexity for the
class HALF; of homogeneous halfspaces in d dimensions, when § = 1/2, for all distributions D, of

d—1 _
——— (Mp(HALF 4, 26)/4) /Y. (5)

One can easily see how to use the same technique to prove a general lower bound of

VCdim(F)

e

(MD(F, 26)/2)1/VCdim(F) )

The latter bound shows that for all class/distribution pairs for which one can show (4) is tight to
within a constant factor in the base of the exponent, an €2(d/e) lower bound holds. In the case of
halfspaces, however, we needed the stronger bound of (5).

The lower bound for halfspaces is then proved by establishing a tight enough lower bound on
Mp(HALF4,2¢) and applying (5). For this, we use a probabilistic method trick from [ASE92].
Usually, to use the probabilistic method to show that a large set with a given property exists, one
randomly picks a suitably large set, and shows that the probability that the randomly chosen set
has the desired property is nonzero. This methodology appears to be too crude for this application.
Instead, we use the “removing blemishes” trick from [ASE92], where one randomly picks a large
set, shows that the expected number of elements which interfere with the large set having the
desired property is not too big, and therefore that there exists a large set without too many such
“blemishes”, then removes those offending elements to get the required set.

The most closely related previous work that we are aware of is that of Opper and Haussler [OH91].
Using techniques from statistical mechanics, they calculated the learning curve (in the large d limit)
for the Bayes optimal algorithm for learning homogeneous halfspaces in R¢ according to the uniform
distribution on the unit ball, when the normal vector to the halfspace to be learned was chosen
according to the uniform distribution on the unit ball. Since their results yield lower bounds on the
performance of the Bayes optimal algorithm, they lower bound any algorithm. Further, obviously
lower bounds for a randomly chosen target yield the same lower bounds for a worst-case target.
However, their bound is for a model in which an algorithm is measured by the expected value of
the accuracy of its hypothesis. It is not clear how to modify their argument to obtain the bounds
of this paper which are for the PAC model, where the goal of the algorithm is to get a hypothesis of
a given accuracy with a given probability.! Moreover, their results depend on the unproven replica
hypothesis.

2 Definitions

Denote the reals by R and the positive integers by N.

!The distribution constructed in the proof of [EHKV89] had the property that any reasonable algorithm always
had an error of at most a constant times €, which enabled them to argue that producing a hypothesis that was good
on average was effectively equivalent to producing a hypothesis that is good with a certain probability (see [EHKV89]
for further details). Since the uniform distribution does not have this property, this trick cannot be used for our
problem.



These definitions are a commonly studied version of Valiant’s PAC model [Val84]; study of the
distribution specific version was initiated by Benedek and Itai [BI91]. Choose a set X, a probability
distribution D over X, and a set F of functions from X to {0,1}. Define pp : {0,1}* x {0,1}* —

[0,1] by pp(f,9) = Pryep(f(u) # g(u)). For each € > 0, define
Mp(F,¢) = max{n € N : 3f1, ., fn € F,V1 <i,j, < m, p(fi, f;) > €}.
For a finite sequence ¥ = (x1, ..., ;) of elements of X and f € F, define sample(Z, f) € (X x

{0,1})™ by
sample(Z, f) = (@1, f(z1)), .., (Tm, [(@m)))-

A learning strategy for X is a mapping from Upen(X x {0,1})™ to {0,1}*. That is, given a
finite sample, the learner outputs a hypothesis. Note that the learner is not required to output
hypotheses from any restricted class. If A is the set of learning strategies for X, for a probability
distribution D on X, € > 0, and § > 0, define

m(F,D,€,8) = min{r € N: 34 € A,Vf € F,Przcpr(pp(A(sample(Z, f)), f) > ¢€) < d}.
The VC-dimension [VCT71] of F is defined to be
max{d : 3z1,....,zq € X, {(f(x1), ..., f(zq)) : f € F} = {0,1}¢}.
For d € N, define

e HALF, to be the set of homogeneous halfspaces in R, i.e., the set of all f : R — {0,1} for
which there exists @ € R® such that for all # € RY, f(Z) = 1 & Y%, w;z; > 0, and

e UBALL, to be the uniform distribution on the surface of the unit ball in R€.

3 The lower bound

The following is the main result of this note.

Theorem 1

1
m(HALF 4, UBALLg,€,6) = Q (C—i + —log 1) .

3.1 The d/e term

We will make use of the following bound on the “growth function” of halfspaces, due to Cover
[Cov65] (see [HKPI1, page 113]).

Lemma 2 ([Cov65]) Choose d € N. For any 1, ..., ., € RY,

{(f(@1), -, f(m)) : f € HALFq}| < 2(em/(d — 1)),

The following is the key lemma used in proving the d/e term. Its proof is based on [BI91, Lemma
4.8].



Lemma 3 Choose d € N,d > 2, a distribution D over R%, and € > 0. Then

d—1 (MD(HALFd,26)>l/(d_1)

m(HALF,, D,¢,1/2) > i

e

Proof: Fix d,D, and €, and let m = m(HALF4, D,¢,1/2). Let A be a learning strategy for X such
that for all f € HALF,
Prgcpm (pp (A(sample(Z, f)), f) > €) <1/2. (6)

Let G C HALF, be a set of Mp(HALF, 2¢) elements of HALF; such that for all g1,9, € G,
pp(91,92) > 2e.
For each ¥ € X™, f € HALF,, define

0 otherwise

(&, f) :{ L if pp(Alsample(Z, £)), f) < ¢

and define
5= Ezcpm(p(T,9)).
9€eG
By (6),
S > |G|/2 = Mp(HALF4, 2¢) /2. (7

Moving the sum inside the expectation, we have

S =Ezepm (), ©(F,9)). (8)

geG

For any g1,92 € G,Z € X™ for which sample(Z, g1) = sample(Z, g2), since pp(g1,92) > 2¢ and pp
is a metric, it cannot be the case that both ¢(#,¢1) =1 and ¢(Z, g2) = 1. Thus, (8) implies

S < Egepm (|{sample(Z, g) : g € G}).
Applying Lemma, 2 yields
S < Egepm (2(em/(d - 1))*7") = 2(em/(d — 1))*".

Combining with (7) and solving for m completes the proof. 0

We will make use of the following easily verified technical lemmas.

Lemma 4 For all z € [0,7/4], tanz < 2z.

Lemma 5 (see [Bau90]) For all d € N, if V; is the volume of the unit ball in RY, then for all
d>2,
Va1/Va < V.

Now we are ready to lower bound Mygparr,(HALF4,¢). For this, we use the “removing blemishes”
probabilistic method trick from [ASE92].



Lemma 6 For all0 <e<1/2,d€ N,

Vd /1 \% !
> (= — 1.
Muyparr, (HALF 4, €) > 5 <2m) 1

Proof: For each unit-length @ € R%, define fz to be the homogeneous halfspace whose normal
vector is 1, i.e. the function fz: R? — {0,1} defined by

fa(%) =

1 ifw-2>0

0 otherwise.
It is well known, and very intuitive, that pysarw,(f7, fz) is equal to the angle between ¢ and W
(in radians) divided by w. Further, for all @ > 0, fos = fg, so, by symmetry, choosing an element
of HALF; randomly by sampling its normal vector from the unit ball is equivalent to choosing an
element of HALF; by sampling its normal vector uniformly from the interior of the unit ball. Thus,
for fixed ¥, the probability that a uniformly randomly chosen @ has puparr, (f# fi) < € is equal
to the volume of those vectors w in the interior of the unit ball whose angle with ¥ is at most e,
divided by the volume of the unit ball. We upper bound the first volume by calculating the volume
of the smallest cone containing it centered at ¢’ with its base on the hyperplane tangent to the unit
ball at #. In this manner, we get that if Vy(r) is the volume of a ball of radius  in R?,

1 1
Prgcusary, (puBaLL, (fo, fo) <€) < —/ Vi 1(z tan(er)) dz.
Va(1) Jo

Using the fact that Vz_i(r) = r? 1V;_1(1), we get

Va_1(1) (tan(ew))d*1 /1 24 1 dg

Prgcusary, (puBary, (f, fa) <€) < Vo) |

which implies
< Va-1(1)
~ dVu(1)

PrgcupaLy, (puBaLL, (fs fo) <€) (tan(em))?~!

and applying Lemmas 4 and 5 yields

1 _
PrgcupaLy, (puBaLL, (fo fo) <€) < ﬁ(%ﬂ)d L

By symmetry, if ¥ is chosen randomly,

1
Pr(yw)e(UBALL,)? (PUBALL, (f7, fa) <€) < %(QGW)d_l-

Thus, for s € N, if we pick s normal vectors uniformly at random from the unit ball, the expected
number of pairs of resulting halfspaces that are e-close according to pyBarL, is at most

§2
2vd
Hence, for each s € N, there exists a set S of s homogeneous halfspaces such that at most

%(267‘(’)d_1 pairs of elements of S are e-close according to pyparr,. Removing one element of
each such pair from S yields a set of

(2em)d 1L,



halfspaces, each pair of which is of distance at least € according to pyBarL,- Setting

|

(2emr)d—1

and simplifying completes the proof. 0

3.2 The (1/¢)log(1/d) term

Definition 7 Choose X, a probability distribution D over X, and F C {0,1}X. We say that F
has continuous hard pairs with respect to D if for each 0 < € < 1, there exist f,g € F such that

Preep(f(z) # g(z)) = €.

This definition is stronger than we need. Obviously, the set of halfspaces has continuous hard pairs
with respect to the uniform distribution on the unit ball.

The following theorem is a fairly straightforward extension of the corresponding result in [BEHW89].

Theorem 8 Choose X, a probability distribution D over X, and F C {0,1}X. If F has continuous
hard pairs with respect to D then

1 1
—0(=log=).
m(F, D,e, ) (6 ogé)

Proof: Choose 0 < € < 1/2. Recall that pp(f,g9) = Pryep(f(z) # g(z)). Let f,g € F be such
that pp(f,g) = 2¢. Choose a learning algorithm A for F.

Choose m € N. Define
MISS = {(z1, ..., Zm) : VJ, f(z5) = g(=;)}-
Note that

Pr(wl,...,zm)EDm (pD(A((:Ela f(-Tl)), L) ('Tma f(wm)))’ f) > €|MISS)
=Pr(,,.an)epm (pD(A((71,9(21)), s (Tm, 9(2m))), f) > €[MISS).

Call the above quantity by (for “bad”). Define

bg = Pr(wl,...,wm)EDm (PD(A((-’El,f(xl)), ) (:Cm, f(37m))),g) > 6|NHSS)
= Pr(ml,...,wm)EDm (pp(A((z1, 9(21))s s (T, 9(Tm))), 9) = ElMISS)

By the triangle inequality, a hypothesis cannot be e-close to both f and g, and therefore by +b, > 1.
Assume without loss of generality that by > 1/2. Then, if f is the target concept,

Pr(g,,. . am)epm (pp(A((21, (1)), ) (Tm, [ (2m))), f) = €)
> Pr(wl,...,wm)EDm (pD(A((xl’ f(wl))v ey ("Ema f(a;m)))a f) > e|1\/IISS)]?P(.'E1,...,:cm)EDm (MISS)
> (1/2)(1 =26,

Using the fact that for small €, 1 — 2¢ ~ e2¢ and solving for m completes the proof. 0

Putting together Lemmas 3 and 6, together with Theorem 8, proves Theorem 1. The proof can be
trivially modified to establish the same lower bound for any distribution whose density is within
a constant factor of the uniform distribution. It would be nice to determine a wider class of
distributions for which the lower bound holds.
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