5 1-35 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Structural Results About On-line Learning
Models With and Without Queries

PETER AUER pauer@igi.tu-graz.ac.at

Institute for Theoretical Computer Science, Graz University of Technology, Klosterwiesgasse
32/2, A-8010 Graz, Austria.

PHILIP M. LONG plong@comp.nus.edu.sg

Department of Computer Science, National University of Singapore, Singapore 119260, Republic
of Singapore.

Editor: Leonard Pitt and Lisa Hellerstein

Abstract. We solve an open problem of Maass and Turdn, showing that the optimal mistake-
bound when learning a given concept class without membership queries is within a constant factor
of the optimal number of mistakes plus membership queries required by an algorithm that can
ask membership queries. Previously known results imply that the constant factor in our bound
is best possible. We then show that, in a natural generalization of the mistake-bound model,
the usefulness to the learner of arbitrary “yes-no” questions between trials is very limited. We
show that several natural structural questions about relatives of the mistake-bound model can be
answered through the application of this general result. Most of these results can be interpreted
as saying that learning in apparently less powerful (and more realistic) models is not much more
difficult than learning in more powerful models.

Keywords: Computational learning theory, Learning with queries, Mistake bounds, Function
learning, Learning with noise.

1. Introduction

In this paper, we present a new technique for proving structural results about on-
line learning models, and describe a number of applications of this technique. For
the most part, we will focus on the amount of information required for learning,
and will ignore computation time. Many of the models considered in this paper are
variants of the mistake-bound model, so we begin by describing it.

1.1. The standard mistake-bound model

In the standard mistake bound model [13, 3], learning is assumed to proceed in
trials, where in the tth trial the learner

e is presented with an element x; of some domain X,
e outputs a prediction g, € {0,1}

o discovers y; € {0,1} (called reinforcement).

If g # yi, the learner is said to have made a mistake on trial ¢, and the goal is
to make few mistakes. It is further assumed that the learner knows of a set F' of
functions from X to {0,1} containing a function f that satisfies f(x;) = y; for all
trials t. The performance of a learning algorithm is then measured by its worst-case
number of mistakes, over all sequences (z1,y1), (2,y2), ... of elements of X x {0,1}
for which there exists an f € F satisfying the above. Denote the optimal such
performance by optstana (F).!

1.2. Membership queries

In a heavily studied relative of the mistake-bound model [3], it is further assumed
that, between trials, the learner may query f(z) for elements x of its choosing.
The performance of a learner for a particular sequence ((z,y:))+ is then measured
by the sum of the number of its mistakes and its total number of queries between
trials. Let us denote the optimal worst-case performance for a particular class F' of
functions from X to {0,1} (defined analogously to the above) by optmemb(F).

We show that, for all F

Optmemb(F) Z (10g2 4/3)0ptstand(F)'

The VC-dimension of a class F' is a common measure of the “richness” of F. As a
direct consequence of the above bound, we obtain the following:

OPtmemb (F) > (log, 4/3)VCdim(F)

(note that log, 4/3 is approximately 1/2.41). An example due to Maass and Turdn
shows that in neither of the above bounds can the constant be improved.
The previously best bounds, due to Maass and Turdn [19], were

Optstand(F)
log, (1 + optstand (F'))

OPtamemt (F) > %VCdim(F).

Optmemb(F) Z

We further show that if F' = U;F; and X = U, X,,, then if there is an algorithm
A that, given that the hidden function is taken from F, and the x;’s come from
Xn,

e makes its predictions in time pseudo-polynomial? in » and s
e makes at most polynomial in n and s mistakes

e asks polynomial in logn and log s membership queries,

then there is an algorithm Ay that

e makes its predictions in time pseudo-polynomial in n and s

e makes at most polynomial in n and s mistakes

e asks no membership queries.

(Intuitively s measures the complexity of the function class F; and n measures the
length of the inputs z; € X,,.)

1.8. The strength of weak reinforcement

There are two very natural ways to generalize the standard mistake-bound model
to the case in which the values to be predicted come from some finite set, possibly
with more than two members [2]. At the end of a given trial ¢, either the algorithm
could be told whether or not its prediction §; was correct (“weak reinforcement”)
or it could be told the correct value y; (“strong reinforcement”). Both types of
reinforcement occur in nature. Notice that in the case in which the y;’s come from
{0,1}, both kinds of reinforcement are equivalent.

How much weaker is weak reinforcement? Suppose for a given set X and a finite
set Y of at least two elements (from which the y;’s will be chosen), for a set F
of functions from X to Y, we define® optstrong (F') and optweax(F') in an analogous
manner as optssand (F), except replacing the standard reinforcement with strong
and weak reinforcement respectively. We show that

Optweak (F) < 1.39|Y|([1 4+ log, (|Y| — 1)]optstrong (F) + 2).

A trivial lower bound shows that this bound is within an O(log |Y]) factor of the
best possible.

1.4. Agnostic learning

For many applications, it is too optimistic to assume that there is an f from a
reasonably small known class F' that perfectly maps the z;’s to the corresponding
y’s in {0,1}. A well established approach in such cases [26, 15, 14, 9, 16, 6, 7]
is to assume nothing about the (z;,y;) pairs, and instead, for a given F, to give
bounds on the number of mistakes made by a given learning algorithm in terms of
the minimum over f € F of the number 7 of trials ¢ for which f(z;) # y;. Learning
models like this are often referred to as agnostic learning models* [12].

It is convenient to assume that the learner knows a bound on 7 before learn-
ing takes place, although this assumption can be removed with a slight degrada-
tion in the bounds via standard doubling techniques. In this case, informally, let
Optagn(F,1n) be the best bound on the number of mistakes that can be obtained
given the assumption that there is an f € F such that the number of trials ¢ for
which f(z;) # y; is at most 7. As a special case of our main theorem (Theorem 4),
we obtain the following bound:

OPtagn (F,n) < 4.82(0ptagn(F,0) +n) + 1. (1)

Note that optagn(F),0) = optstanda(F'). Since, for many applications, one expects 7
to be much larger than optagn(F,0), optimizing the constant on the 1 term seems

worthwhile. By applying the more refined Theorem 5, we can show that for all
€ < 1/20,

4 1 5
Optagn (F,1) < (E In Z) Optagn (F,0) + <2 + 56) 7. (2)

Littlestone and Warmuth [15] proved that for any F with |F| > 1,
OPtagn (Fa "7) > Optagn(Fa 0) + 27.

Thus, the bound of (1) is within a small constant factor of optimal for each (nontriv-
ial) F'. This reduces the problem of determining optag,(F,n) to within a constant
factor to that of determining optagn(F,0) to within a constant factor. In other
words, in a sense, it reduces the study of the agnostic learning model to the study
of the standard mistake-bound model. (Notice, however, that this is without regard
to computational complexity.) Furthermore, using (2), the constant on the 1 term
can be brought arbitrarily close to the optimal 2, at the expense of increasing the
constant on the other term.

Similar results about optagn, (F,7) were independently obtained by Cesa-Bianchi,
Freund, Helmbold and Warmuth [7].

Littlestone and Warmuth [15], and independently Vovk [27], showed that for any
F,

ODtagn (F,n) < 2.41(log, |F| + 7). 3)

Other refinements of this result, which retain the same flavor in that they are in
terms of log, |F'| and 7, but some of which concern probabilistic algorithms, which
we don’t study here, are described in [15, 14, 26, 6].> Due to the fact that for any
finite F', optagn(F,0) < log, |F| [13], our bound of (1) is always at most a small
constant factor greater than (3). Furthermore, sometimes it is substantially less.

As an example, if SUBSP,, is the set of (indicator functions for) linear subspaces
of R™, there is a trivial algorithm for learning given that a function in SUBSP,,
maps z;’s (in R"™) to corresponding y;’s that makes at most n mistakes [21], but
SUBSP,, is infinite, so no bound on optagn(SUBSP,,7n) can be obtained from (3)
and related results. However, a bound of 4.82(n + 7)) (as mentioned above, within
a small constant factor of optimal) follows immediately from (1).

Finally, by adapting the proofs of Theorem 4 and Theorem 5, we may obtain (1)
and (2) in the case that the predictions §; and the true values y; are chosen from
any set Y, F is a set of functions from X to Y, and the goal is still to have few
mistakes, i.e. trials in which g; # y.

1.5. Closure results

For many classes F' of functions from some set X to {0,1}, one obtains a richer
class by taking k-wise OR’s of elements of F', i.e. by defining

ORk(F) :{flv---ka:fl,...,fk EF}

where fi V ---V fi, has the obvious interpretation. How much harder can ORy(F’)
be than F'? By applying our Theorem 4, we can show that for all F',

optstand (ORk(F)) < 2.41Kk[1 + log, k]optstand (F) + 1.

A trivial lower bound shows that this bound is within an O(log k) factor of the best
possible. While analogous results for the PAC model were obtained some time ago
[10, 4], to the best of our knowledge, the question of whether there was any bound
on optstand (ORE(F)) in terms of k¥ and optstand(F) had remained open. A more
general result of this type is described in Section 4.4.

1.6. Temporal credit assignment

Sometimes on-line learning algorithms cannot expect to get reinforcement before
having to predict again, and the reinforcement they get may be ambiguous, indicat-
ing that a mistake was made some time in the recent past.® We adapt the standard
mistake-bound model to include such learning situations by assuming that after ev-
ery certain number, say r, of trials, the learning algorithm is told whether any of the
past r predictions were incorrect. (Of course, for applications, the number of trials
between reinforcements seems bound to vary; however, we obtain an equivalent
model if r is an upper bound on the number of trials between reinforcements.)

If, for a given class F' of {0, 1}-valued functions, we define optamn,-(F) to be the
worst-case number of mistakes made by the optimal algorithm in this model (where
a mistake is said to be made if the algorithm was incorrect in any of its predictions
before a particular reinforcement, see Section 4.5), we may obtain the following
bound,

OPtamb.r (F) < 2(In2r) - 2" - optamb,1 (F).
Note that optamb,1(F) = 0ptstana (F). We also describe a lower bound that shows

that this bound cannot be significantly improved.

1.7. A unifying framework: the MB and MBQ models

All of the above results are direct consequences of a single theorem about more
general models. These models (which we call the MB model and MBQ model) are
relatives of the mistake-bound model [3, 13]. As in that model, we assume learning
is an on-line process, proceeding in trials. During the tth trial,

1. the learner receives an instance x; from some set X,
2. the learner outputs a prediction ¢; in some set Y,
3. the learner receives a response g, € Y indicating that y; # .

This type of response given in the MB model is a subtle point. Instead of receiving
direct feedback to its prediction g; the learner receives only some value g, different

from the correct y;. For |Y| = 2 this is equivalent to giving the correct value y; as
a response since it can be inferred immediately. But for |Y| > 2 the environment is
more flexible in giving feedback to the learner, even more flexible than just telling
the learner if its prediction was correct or not as in the weak reinforcement model.
The learner is said to have made a mistake if §; = ¥,, i.e. if the response 7, implies
that the learner’s prediction was incorrect. The learner is not charged for trials
with §¢ # y but g, # Jr.

The learner’s prior knowledge is modeled by assuming that the learner knows of
aset £ C (X xY)* of sequences of pairs (x¢,y;) containing those pairs encountered
on any run of the algorithm.

In the MB model, the goal of the learner is simply to minimize the number of
trials ¢ in which it makes a mistake. For a particular set £, we then define optyg (L)
to be the best bound on the number of mistakes that can be obtained by a learning
algorithm given the assumption that the sequence ((xy,y:)): of (x4, y¢) pairs is in
L.

In the MBQ model, the learner is allowed to ask arbitrary “yes-no” questions
about the entire sequence ((x¢,y:)): between trials to gain additional information.
In this model, the performance of the learner is measured by the sum of the number
of questions it asked and the number of mistakes, and optmeq (L) is defined to be
the optimal performance given £ in a similar manner to the above. More formal
descriptions of both models are given in Section 3.1. All the models considered in
this paper are summarized in Table 1.

We show for all £ C (X x Y)* that

2ly| —1+ optmBq (£)—log, |V if |Y| < 90ptmBQ(L)

optms(£) < {

20ptmsQ(£)+1 otherwise
which implies the looser but more suggestive bound
optme(L) < 1.39|Y| (OptMBQ (L)+2).

These are the general results which imply the results mentioned in previous sections.
We also show that this bound is within a constant factor of the best possible for
all values of |Y'| and optmsg(L).

We also consider the natural variant of the MB and MBQ models where the
response p; € {TRUE,FALSE} does indicate whether the learner’s prediction has
been correct or not. These models are denoted by MBp and MBQp. Note again
that for |Y| = 2 the MB and MBp models are equivalent (as are the MBQ and
MBQp models) and that they are a generalization of the standard mistake-bound
model from learning functions to learning sequences. For the relationship of the
MBp and MBQp models we show the bound

optms, (£) < (|Y[In Y |)optmeq,(£) + 130(]Y | Inln [Y])optme,(£)

which is almost best possible.

Table 1. A summary of the learning models studied in this paper. In each trial ¢, the learner is
presented with an element z; of some domain X, outputs a prediction §; from some set Y, then
possibly gets some information about the correct y:. In some models queries are allowed between
trials; for these the algorithms are evaluated by summing the number of prediction errors and the
number of queries. In different models, different types of assumptions about the relationship between
the z:’s and y+’s are considered. We denote by F' a class of functions from X to Y, we denote by
L C (X xXY)* aset of sequences of pairs (z¢,yt), and we denote by Q@ C L a subset of £. Note that
for |Y| =2, optmB(£) = optmB,(£) and optmBQ (L) = optMmBQ(L)-

notation Y relationship information at queries
for optimal between x+’s and y’s end of trial allowed
OPtstand (F') {0,1} for some f € F, Yt none
for all ¢, f(xt) = y¢
OPtmemb (F) {0,1} for some f € F, Yt what is f(z)?
for all ¢, f(zt) = y¢
optagn (F,7) {0,1} for some f € F, Yt none
H{t: f(zme) #Zye} <m
OPtamb,r (F) {0,1} for some f € F, in every rth trial, none
for all ¢, f(z¢) = y¢ was there a mistake
in the past r trials?
optstrong (F') | any finite set for some f € F, Yt none
for all ¢, f(xzt) = y¢
OPtweak (F) any finite set for some f € F, is yr = g7 none
for all ¢, f(zt) = y¢
optmB(£)	any finite set	((me,y))t € L	Y, # Yt	none
optmBQ(L)	any finite set	((mt,y¢))t € L	Y # Yt	is ((zt,9t))t € Q7
optmB,(L)	any finite set	((mt,ye))t € L	is yt = 947	none
optmBQp(L)	any finite set	((me,y))e € L	is yp = 97	is ((zt,ut))t € Q7

1.8. Related results and the organization of the paper

Our technique to prove the above results builds on the “weighted majority” tech-
nique of Littlestone and Warmuth [15]. The weighted majority technique uses a
fixed set of specialized subalgorithms, and it uses a weighting scheme to combine
the predictions of these algorithms. In contrast, our technique dynamically creates
subalgorithms depending on information gathered during a particular run.

Kulkarni, Mitter and Tsitsiklis [11] studied PAC learning using only “yes-no”
questions. Bshouty, Goldman, Hancock and Matar studied the use of membership
queries to reduce the number of mistakes as much as possible [5].

The paper is organized as follows. In Section 2 we illustrate our main technique by
showing how membership queries can be simulated by an algorithm which cannot
ask membership queries. In Section 3 we present our general results from which
most of the other results can be derived. In Section 4 we give various applications
of our main result, and we conclude in Section 5. Appendix A contains several
lower bound proofs.

2. Bounds on the usefulness of membership queries

In this section we illustrate the techniques of this paper with an example. We
bound the number of mistakes in the standard mistake-bound model in terms of
the number of queries and mistakes in the mistake-bound model with membership
queries.

Choose a set X. In this subsection, we study a model due to Angluin [3]. (To
make our notation and terminology more uniform throughout the paper, on the
face of it, the model we describe looks somewhat different than Angluin’s original
model, but the two can be shown to be equivalent [13].) In this model, we assume
that a function f from X to {0,1} is hidden from the learner, and that learning
proceeds in trials, where in the tth trial, the learner (a) receives z; € X from the
environment, (b) outputs a prediction g; € {0,1}, (c) discovers f(x;). We further
assume that, before each trial, the learner may determine f(z) for different € X of
its choosing (membership queries). The performance of an algorithm on a particular
run is the total of the number of mistakes and the number of membership queries,
and the overall quality of an algorithm is measured by its worst-case performance.
Then optmemb(F) is the optimal performance that can be obtained in this model,
and optstand (F') is the optimal performance that can be obtained with an algorithm
that never asks membership queries.

THEOREM 1 Choose X, and a set F of functions from X to {0,1}. Then

Optmemb (F)

ad(F) <
Optsta d()_ 10g2(4/3)

The VC-dimension [25] of a class F' is defined by
VCdim(F) = max{d : 321, ...,xq € X, {(f(z1), ..., f(zq)) : f € F} ={0,1}%}.

The fact that optstand (F) > VCdim(F) [13] trivially yields the following corollary.

THEOREM 2 Choose X, and a set F of functions from X to {0,1}. Then

OPtmemb (F) > log,(4/3)VCdim(F).

As discussed in the introduction, the following theorem due to Maass and Turdn
shows that the constant cannot be improved in either Theorem 1 or Theorem 2.

THEOREM 3 ([19]) There is a family (X,)n of sets and a family (F,), such that
for each n, F,, is a set of functions from X, to {0,1} and

OPtmemb(Fn) < (logy(4/3) + 0o(1))VCdim(F,) < (log,(4/3) + o(1))optstana (Fn)

as n — O0.

Proof of Theorem 1: Let A™*™P be an optimal learning algorithm which for all
targets f € F and z1,xs,... € X has its total number of mistakes and membership
queries bounded by optmemb(F). We construct a learning algorithm Asta"d which
makes at most optmemn(F)/log,(4/3) mistakes, and asks no membership queries.

The algorithm A3 runs copies AM®™P of Amemb a5 subalgorithms and keeps a
weight w; for each copy. These weights indicate how “reliable” the corresponding
copies are. Initially A%%2"9 starts with one copy of A™®™P and its weight is 1. To
prove the theorem we (as observers of the algorithm A%%2"d) investigate how the
total sum of all weights w; changes, and we keep track of a special copy A™*™P (and
its weight) which performs in the same way as A™*™" would perform if membership
queries were available. Initially the single copy is the special one. During the ¢th
trial, algorithm Ast2"d bhehaves as follows:

e As long as any copy A™™P wants to ask a membership query “f(¢q) = 1?7,
this copy is split into two copies, one copy receives the answer YES and the
other copy receives the answer NO. The weight w; /2 is assigned to both copies.
Intuitively the weight is split between the two copies since it is unknown whether
the YES or the NO answer is correct.

Clearly the total sum of weights is not changed.

If Amemb jg the special copy then one of the new copies represents the correct
answer to the query and this copy becomes the special one. Its weight is half
the weight of the original special copy.

e Since we can assume that no copy asks more than optyemp(F) queries, eventu-
ally all copies are ready to make a prediction. When this happens, algorithm
Astand constructs its prediction §; using a majority vote of the predictions §; ;
of the subalgorithms according to their weights,

o= 4 D Dm0 2 2, 0 Wi (4)
¢ 0 if Zi:m’izlw,~<zi:m’t:0wi.

10

Then the correct answer y; is passed to all copies AMemb of Amemb Jf gstand
made a mistake, then those copies A®™P whose predictions §; ; were the same
as Astand’g prediction §; also made mistakes. The weights of all these copies are
multiplied by 1/2 (since they seem less reliable). The copies that predicted cor-
rectly have their weights unchanged. If A%%2"d predicts correctly, for simplicity,
none of the copies have their weights reduced.

Since 700 =g, Wi = D g, 29, Wis ATgUINg as in [15], we have for the modified
weights w} that

i

:9i,6=Tt Yt Yt
1
TN
it =t 9t # Yt
3 1 1
= q2wimg D wity > w
? ©Yi, 6 =Y it £t

Thus the total sum of weights decreases by at least a factor 3/4 if 45284 makes
a mistake.

The weight of the special copy is multiplied by 1/2 only if it predicted incor-
rectly.

To summarize, if A%%2"d has made M mistakes the total sum of all weights is at
most (3/4)™. On the other hand the weight of the special copy is always at least
(1/2)°Ptmems(F) since the number of mistakes plus the number of membership queries
of the special copy is bounded by optmemb(F). By taking logarithms and solving
for M, we get

Optmemb(F)
— log,4/3

which implies the theorem. ([l

To get a feel for how A%2"d works, it is worthwhile to view its state as a tree,
where the various copies of A™¢™P correspond to the leaves. For example, suppose
Astand g learning f, and that the single copy of A™*™P would be ready to make
a prediction. Then the tree at this point would consist of a single node labeled
READY. The prediction of A4%%2"d would then be just that of the single copy of
Amemb - Guppose that A%%2"d made a mistake in the first trial. Then the single
copy A™*™P made a mistake on the first trial, too. This is reflected in the tree by
giving the node corresponding to the single copy of A™*™P a child (see Figure 1a).
Suppose that the single copy of A™®™P then wanted to ask a membership query
q1. Then Astnd would create two copies of A™*™P one which it would give the
response YES, and the other which would get the response NO. If the copy that

mlstake
mistake \
(a) (b)
mlstake
. NC/ YES
mlstake

NO

5 C

C

Figure 1. A succession of trees corresponding to states of the algorithm Astand,

‘ NO .
NO/ YES mistake
\(ES

()

11

12

got the response YES did not want to ask another membership query, and the copy
that got the response NO asked another membership query, call it g2, then we can
visualize the state of 452" with the following tree in Figure 1b. Now, A%%2nd would
“expand” the leaf on the left, again creating two copies, which would be given YES
and NO respectively as answers to their most recent question. If neither of these
copies wanted to ask a membership query, then the tree in Figure 1¢ would encode
the state of A%t2"d. Now Astad would be ready for the second trial. Its prediction
> would be calculated as the weighted majority vote of the copies of A™*™P in the
leaves of the tree, see equation (4). The weight of each copy is simply 2~¢ when d is
the depth of the corresponding leaf in the tree. The leaves corresponding to those
copies of A™®™P which made a mistake would be given children, and the new tree
would look for example like Figure 1d. The process would continue in this manner,
with Astand “expanding” all leaves whose copies of A™e™P ask membership queries
until there are no more such leaves, and then constructing its prediction using those
of the copies on the leaves as described above.

3. The MB and MBQ models

In this section we present our general result from which the other results can be
obtained.

3.1. Definitions

Choose sets X and Y, and let £ C (X x Y)* be some set of sequences of elements
of X xY (|JY] > 2). A kind of subset of (X x Y)* will be of particular interest. For
a set F of functions from X to Y, let Lr consist of those sequences ((z,y:)): of
elements of X x Y for which there is an f € F such that for all ¢, f(z;) = y;. Our
results, however, will hold for arbitrary sets of sequences of (x;,y;) pairs.

We consider the following MB model for on-line learning of sequences o = ((x¢, y¢))+
from L. This model is included to provide the cleanest statement we can of a gen-
eral result unifying our treatment of the applications in the paper; it is not intended
itself as an accurate model of applied learning problems.

As in the standard mistake-bound model, we assume learning proceeds in trials.
In the tth trial,

e the algorithm is given z,
e the algorithm outputs a prediction ¢; of y;
o the algorithm receives a response §, € Y with y, # y;.

In the MBQ model, we further assume that the learner may ask arbitrary “yes-
no” questions about o between trials. Since for any “yes-no” question about o
one is equivalently asking whether o is contained in the set of those elements of £
for which the answer is “yes”, a “yes-no” question can be formalized as asking “Is
o € L'"? for some L' C L.

13

A prediction of an algorithm is counted as mistake if §, = ¢;, i.e. an algorithm
is only charged for a trial when evidence of a mistake is given. We measure the
performance M (L, A) of an algorithm A for learning £ in the MBQ model by the
maximum, over o € £ and any consistent responses, of the number of mistakes and
queries made by A. We define optmsq (L) to be the minimum of M (L, A) over all
learning algorithms A, and optymp(£) to be the minimum of M (£, A) over learning
algorithms A that do not ask queries.

For some of the applications, we will want to assign different costs to YES answers
to queries, NO answers, and mistakes. Choose positive constants cyrs, cno and
¢m, and let &= (eyms, cNo, ¢m)- Define M (L, A, &) to be the maximum, over o € £
and consistent responses, of cygs - nygs + ¢NO - NO + € - ™, Where nygs, nxo and
m are the number of A’s queries answered YES, the number answered NO, and
the number of A’s mistakes. Define optypg (£, €) to be the minimum of M (L, A, ©)
over learning algorithms A.

3.2. Upper bounds

The following result limits the usefulness of “yes-no” questions.

THEOREM 4 For any sets X and Y for which |Y| > 2, and any L C (X x Y)*

2v| — 14 ehumalt) B [¥l f |y| < goptama(s)
OptMB(E) < logs sy 7—1 -
90ptmBQ(L)+1 otherwise
< 1.39]Y| (optmpq(L) + 2).

We also have the following result concerning different costs for the number of
YES and NO answers and the number of mistakes.

THEOREM 5 Choose 0 < a, 3,y < 1 such that a + 8 = 1. Choose sets X and Y
for which |Y| > 2, and some L C (X x Y)*. Then for the weighted cost M =

OptMBQ (‘E’ (10g2 é; 10g2 %7 10g2 %));

L4+ ot 4 S if Y] < oM
optme(L) < o 2 TYT=(1-7)

— otherwise
—

The first inequality” of Theorem 4 follows from Theorem 5 by setting o = 8 =
v = 1/2. The proof of Theorem 5 is similar to the proof of Theorem 1 in that a
master algorithm that does not ask questions keeps track of several copies of an
algorithm that does, and generates its predictions from the copies using weighted
voting. But the generality of the theorem gives rise to some new issues.

First, if |Y| > 2, if the master algorithm finds out that its prediction §; on trial
t is wrong, i.e. J, = Ui, it cannot tell whether the predictions of those copies of the
question-asking algorithm that didn’t predict y; were correct or wrong. But since
in the MBQ model such feedback is not required, it is sufficient that the master

14

algorithms gives response g, to all the copies. (For the MBQp model of Section 3.4,
where such feedback is required, this problem has to be dealt with differently.)
Another complication is that the weights are adjusted by factors other than 1/2.
This is needed for some of the applications. Finally, the analysis for Theorem 5 is
divided into two stages. In the first stage, we show that the total weight goes down
by a certain factor, as we did in the proof of Theorem 1. In the second stage, we
use an additive bound on the reduction of weight, which is sometimes tighter due
to the fact that |Y| can be large. This is apparently required to get bounds that
are tight to within a constant factor.

Proof of Theorem 5: Choose an MBQ algorithm AMBQ which is optimal with re-
spect to costs log, é, log, %, and log, % for YES answers, NO answers, and mistakes

respectively. Consider the MB algorithm AMB which uses AMBQ as a subroutine
defined in Figure 2.

By induction, at any time during the execution of when learning some
sequence o with responses (7,)¢, there is a special copy AMB? which corresponds to
a state of AMBQ when learning o with responses (7,);. This follows from the fact
that both answers to queries are given to corresponding copies of AMBQ and that all
responses ¥, are given to the copies. The weight wy = aves(8) gnNo(s) 4 m(s) of the
special copy satisfies w; > 27", where M = optmpq(L, (log, 7,108, 5,108, 7).

Denote by W = ¥, w; the total weight of all copies AMP? maintained by AMB.
First W is 1 when AMP starts. Note further that since o + 8 = 1, that W does not
change when copies are duplicated and given both answers to “yes-no” questions
during the simulation of queries.

Our proof proceeds by using W as a measure of progress. As mentioned earlier,
the analysis is divided into two stages. The first stage consists of those trials ¢ such
that, before the beginning of trial ¢, W > 27M|Y|. The second stage consists of the
remaining trials. In both stages we are ignoring the change of W during trials in
which the master algorithm does not make a mistake since W never increases.

Let us assume as a first case that |Y| < 2M. In this case, the first stage has at
least one trial. We begin by bounding the number m; of mistakes made by AMB
in the first stage. Choose some trial ¢ in the first stage. Suppose ¢; is a mistake,
i.e. ¥, = ¥+ Then

AMB

Wnew — Z anYES,new ('l) ﬂnNO,new (i),ymnew(i)

i
— Z QVYES,old (%) /BnNO,old (%) ,Ymold(i)
i AYP A (20) G
+ Z ,yanYES,old (i)IBnNo,old ('i),ymold(i)
i AMBQ(2,) =g,

(1 =1/|Y)Woid + YWora/|Y|

1—v
1— -1
(|Y|)Wolda

IA

15

Notation:

Maintains a set of copies A} % of AMBQ where each copy corresponds
to a subset £; C L which denotes the current information of A?/IBQ
about the target sequence ¢. Each copy maintains its number of
YES answers, NO answers, and mistakes received so far, denoted by
nygs (i), nno (i), m(i). The weight of a copy A?/IBQ is calculated as
w; = aves() . gnwo(d) L 4m() (thus o weights YES answers, 3 weights
NO answers, and weights mistakes in predictions). We assume that a
copy AYBQ terminates if nygs (i) log, L+ nxo(i)log, %+m(i) log, % >
optmeq (L, (logs 510g, 5log, 3)).

Initialization:
Initially there is only a single copy All\/IBQ with £; = £ and nygs(1) =
TLNQ(I) = m(l) =0.

Simulating queries:
As long as there is a copy which wants to ask a yes-no question
this copy is duplicated giving a copy A?/IBQ and the answer YES is

AMBQ

given to copy A?/IBQ and the answer NO is given to copy A?/IBQ.

Making a prediction:
If no copy wants to ask a yes-no question z; is received from the envi-
ronment and the prediction

Ut = argmax,cy Z w;
i:A?/IBQ(wt):y
is calculated as the value with the highest weight.

Update:
The response 7, is given to all copies A?/IBQ.

The steps Simulating queries, Making a prediction, and Update are re-
peated as long as required.

Figure 2. Algorithm AMB from the proof of Theorem 5

16

where “old” and “new” indicate whether the values of the variables are considered
before or after trial t. The inequality follows from the fact that AMP makes the
prediction with the greatest weight, and therefore a fraction at least 1/|Y| of the
weight is behind this prediction. By induction, after AMP has made m mistakes in
the first stage, we have that

W< (1 - 1_—7)m (5)
- vy,
Since the first stage is over if W < 2-M|Y| inequality (5) implies that
1- ’7) et -M
- = > 27 MY].
(Y
Solving for m; yields that

my <14 M —log, |Y|

(6)

108y =
82 VT=(1-7)

Now, we bound the number of mistakes in the second stage. For any trial in the
second stage with a mistake,

Wnew - Wold
— Z (anYES,new (2) IB"NO,new(i) ,ymnew () _ QVYES,old () BnNO,old(i) ,Ymold(i))

i

Z (aﬂYES,new (i) N0 new (i) yMinesw (i) _ gnves,ola(i) N0l (4) AyMeld (%))
i: AP (z0) 20
(’Y _ 1) Z anYEs,old(i) ﬂnNO,old(i) ,ymold ()
AT (24)#
<(y-n27M

since there is a special copy AMBQ with w, > 27 and AMB made the prediction
with the greatest weight. Since, prior to the start of the second stage, W was at
most 2~M|Y|, and at any time the total weight is at least 2~ this implies that
the number of mistakes in the second stage is at most (]Y|—1)/(1—+). Combining
this with (6) completes the proof in the case that |V| < 2M.

The proof in the case that |Y| > 2M goes as above, except that there is no first
stage in this case, and in the analysis of the second stage, in place of the assumption
that the weight at the beginning of the second stage is at most 2~ M|Y|, we use
that it is at most 1. O

3.3. A lower bound

In this section we present a lower bound that matches Theorem 4 to within constant
factors. The proof is given in Appendix A.1.

17

THEOREM 6 Choose positive integers a and u such that u > 2. Then there are sets
X, Y such that |Y| = u, and there is a set L C (X xY)* such that optmeq (L) < a,
and

20 — 1 if Y] > 22

>
optms (L) 2 { Xl (1+12(a—log, [Y]) otherwise.

3.4. The MBp and MBQp models

As a natural variant of the MB and MBQ models we consider the MBp and MBQp
models where the response to the learner is p; € {TRUE,FALSE} (instead of
7, € Y) indicating whether g = y; or §; # y;. A prediction §; is a mistake if
¥+ # y: and we measure the performance M,(L, A) of an algorithm A for learning
L in the MBQp model by the maximum, over ¢ € £, of the number of mistakes
and queries of A when learning . We define optypq,(£) to be the minimum of
M,(L,A) over all algorithms A, and optms,(£) to be the minimum of M,(L, A)
over algorithms A which do not ask queries.

For the relationship between the MBp and MBQp models we get a similar but
slightly weaker result than for the MB and MBQ models and we show that this
result is close to best possible.

THEOREM 7 For any sets X and Y for which |Y| > 3, and any £ C (X xY)*
optms, (£) < (|Y]In[Y|)optmeq,(£) + 130(]Y [Inln [Y|)optmsas (L)

THEOREM 8 Choose positive integers a and u such that u > 2981. Then there
are sets X, Y such that |Y| = u, and there is a set L C (X x Y)* such that
optmBQ, (L) = 2a + [2log, Y]], and

optmn,(£) > al[Y|In[Y]/4].

The proof of Theorem 8 is given in Appendix A.2.

The proof of Theorem 7 is similar to the proof of Theorem 5. The main difference
is that in the proof of Theorem 7, the copies which didn’t predict §; are split into
two copies each, one which is told that its prediction was correct, and another that
is told its prediction was not.

Proof of Theorem 7: Choose an optimal MBQp algorithm AMBQ? and consider
the MBp algorithm AMB? which uses AMBQ® as a subroutine defined in Figure 3
and set y = m

The key difference between AMBP and AMP is in the update after a mistake.
Loosely speaking, when AMB? makes a mistake, reinforcement TRUE or FALSE
must be given to all copies of AMBQ?_ Those copies that we do not know whether
they made a mistake are split into two copies, one which receives the reinforcement
that it made a mistake, and one which receives the reinforcement that it did not.

18

Notation:
Maintains a set of copies Ay > of AMBQP where each copy corresponds
to a subset £; C £ which denotes the current information of A?/IBQ”
about the target sequence o. Each copy maintains its number of queries
and mistakes denoted by ¢(i) and m(7).
The weight of a copy Ay > is calculated as w; = 279D ym().
We assume that a copy A?ABQ‘O terminates if ¢(¢) +m (i) > optmsq,(L).

Initialization:
Initially there is only a single copy AIIVIBQ” with £; = £ and ¢(1) =
m(1) = 0.

Simulating queries:
As long as there is a copy which wants to ask a yes-no question
this copy is duplicated giving a copy A?/IBQ" and the answer YES is

A?/IBQP

given to copy Ai.VIBQp and the answer NO is given to copy A?/IBQP .

Making a prediction:
If no copy wants to ask a yes-no question z; is received from the envi-
ronment and the prediction

Yt 1= argmax, cy E w;
i AYB (24)=y

is calculated as the value with the highest weight.

Update when §; # y:
If the prediction was wrong then all copies with A?ABQ” (z¢) = §¢ are told
that they have made a mistake. Each copy A?ABQP with A?/IBQ” (z¢) # Ot
is duplicated giving a copy A?-/IBQ” , the copy AP is told that its
prediction was correct, and the copy A;VIBQ" is told that its prediction
was wrong.

Update when g; = y;:
If the prediction was correct then all copies with A?/IBQ” (z¢) = §; are
told that their prediction was correct, and all copies with A?ABQ" (x¢) #
J; are told that their prediction was wrong.

The steps Simulating queries, Making a prediction, and Update are re-
peated as long as required.

Figure 3. Algorithm AMBP from the proof of Theorem 7

19

Our proof proceeds by using W =", 2-9() ™) a5 3 measure of progress. Ini-
tially W is 1, and W does not change when copies are duplicated and given both
answers to “yes-no” questions during the simulation of queries.

Now choose some t. Obviously, if §; is not a mistake, W only decreases after trial
t, but we will ignore this decrease in our analysis. Then if §J; is a mistake, since each
copy A?/IBQ" for which A?/IBQ” (z¢) # U is split into two copies, one whose weight
is multiplied by 7, and the other whose weight remains the same, and all copies for
which AYB9° (z,) = §j; have their weights multiplied by 7, we have

Woew = Z 27qnew(i),ymnew(i)
i
= Z (1 4)2 Geora(D) ymoia(d) 4 Z 2~ Go1a (i) mata (i)
i AYBP (24) £ #AYPRP (z,)=g,
I+ = 1/[Y)Wowa +7Woa/|Y |
Woia(1+1/[Y[In Y| = 1/[Y]).

IA

By induction, after AMP? has made m mistakes, we have

1 1\™ 1 m
we (e Y e (C (1) ™Y, :
VImvy]] W) 7] @)

Also by induction, at any time during the execution of AMB?, there is a special copy
AMBQr with q(s) + m(s) < optmBqy(£). Then W > 2-(s)ym(s) > yoptusq, (L)
since v < 1/2. Combining this with (7), we get

1 m
1= —°) > ~optmBQ,(£)
e"p((1n|Y|) |Y|) =TT

and solving for m and substituting the value of 7 yields

m < <|Y|1n<|Y|1n|Y|)

1
1- In|Y]

> optmBQ, (£)

1
(|Y| In |Y| + |Y| Inln |Y|) (1 + m) OptMBQp(ﬁ)
|Y| In |Y|OptMBQp(£) + 130|Y| Inln |Y|0ptMBQp(£),
since |Y| > 3. O

IA

3.5. Relationship between MB,MBQ and MBp,MBQp models

As mentioned before the models are equivalent if |Y| = 2 since the correct value
y¢ can be immediately deduced from the response g, or p;. In this case Theorem 4
gives the better bound for the relationship between MBp and MBQp model.

For any Y it holds that

OPtMBp(E) S OptMB(£)7 (8)
optmee(L) < optmeq(L), 9)

20

since any MB or MBQ algorithm can be transformed into an MBp or MBQp al-
gorithm, respectively, by translating a response p, = FALSE into y, = g, and
pt = TRUE into some g, # §;. That the converse of equation (9) is not true follows
from Theorem 8 together with Theorem 4 and equation (8). That the converse of
equation (8) is not true follows from a similar proof as for Theorem 8.

The converse of equation (8) does hold for sets of sequences Lp C (X x Y)*
derived from classes F' of functions from X to Y: if Lp is the set of all sequences
((z¢,y¢))¢ such that there is an f € F with y, = f(=;) for all ¢ then

optme,(Lr) = optme(LF).

This follows from the fact that the maximum number of mistakes of an optimal MBp
algorithm for £r does not increase if it is made to ignore trials where it predicted
correctly.® Then such an algorithm can be used in the MB model by ignoring trials
with 7, # ¢;. We also conjecture that for L the converse of equation (9) holds
but we were unable to prove that.

4. Applications of the general results

In this section we describe applications of the general results of the previous section.
These applications are obtained by applying Theorem 4 or Theorem 5 to particular
sets L. Essentially we will show that all models considered in Section 1 are special
cases of the MB and MBQ model, respectively.

4.1. The usefulness of few membership queries

First note, that a membership query is a special case of a yes-no question; i.e., for
any class F of functions from X to {0, 1} we have optypq(Lr) < 0ptmemn(F).? Fur-
thermore, when learning £r, the MB model is equivalent to the standard mistake-
bound model so that optys(Lr) = optstand (F). Thus, modulo a small additive
constant, Theorem 1 is a special case of Theorem 4. By examining the proof of
Theorem 1 more closely, we may draw conclusions regarding the usefulness of poly-
logarithmically many membership queries in generating computationally efficient
algorithms.

THEOREM 9 Choose X, F C {0,1}%. Then if there is an algorithm A™*™> that
takes at most T time between trials to learn F, and A™*™P asks at most ¢ member-
ship queries, then there is an efficient algorithm A% for learning F that makes
no membership queries and requires O(29T) time between trials.

Proof: We construct Ast2"d from A™e™P a5 in the proof of Theorem 1, except
with the following change: Any copy of A™*™P that asks more than ¢ membership
queries is terminated. This does not affect the proof of Theorem 1 since AmemP
asks at most ¢ membership queries when learning a function from F.

Since the time required by A%%2"d to make a prediction is bounded by the number
of copies AP™P times the time for A™™P to make a prediction, all that needs to
be shown is that the number of copies maintained by A%t#"4 never exceeds 2¢.

21

To see this, it is useful to view the copies A™®™P as the leaves of a binary tree
as discussed after the proof of Theorem 1. Since a node has two children only if
it corresponds to a membership query and since there are at most ¢ such nodes
on any path from the root to a leaf, the number of leaves is bounded by 29.

([l

4.2. Function learning with weak and strong reinforcement

Here we consider two generalizations of the standard mistake-bound model to func-
tions with range possibly larger than two that were previously studied in [2]. Choose
some set X, a finite set Y of at least two elements, and a class F' of functions from
XtoY.

We begin with the weak reinforcement model. Here learning also proceeds in
trials, where in the tth trial, the learner (a) receives z; € X from the environment,
(b) outputs a prediction §; € Y, (c) gets a response true or false indicating whether
9t = f(x¢) or not where f € F'is the function to be learned. For a learning algorithm
A for F' let Myeax (A4, F') be the maximum number of mistakes of A when learning
a function in F' with weak reinforcement, and let optyeax(F) = ming Myeax (A4, F).
Note that the weak reinforcement model is simply the MBp model for learning L.

Next, we define the strong reinforcement model. Here again learning proceeds in
trials. In the tth trial, the learner (a) receives z; € X from the environment, (b)
outputs a prediction §; € Y, (¢) discovers y; = f(x¢). For a learning algorithm A let
Mstrong (4, F') be the maximum number of mistakes of A when learning a function
in F' with strong reinforcement, and let optstrong (F') = ming Mstrong (A, F). The
following result bounds the relative strength of strong reinforcement.

THEOREM 10 For any set F' of functions from X to Y,

Optweak (F) < 1.39|Y[(T1 +logy (Y| — 1)]optserong (F) + 2)-

Proof: We show that an MBQ algorithm can simulate an algorithm which re-
ceives strong reinforcement: the MBQ algorithm predicts with the strong rein-
forcement algorithm and after a mistake it determines y; by asking log,[|Y]| — 1]
yes-no questions. Thus optmeqQ(Lr) < [1 4 logy(|Y| — 1)]optstrong (F). Since
OPtweak (F) = optump,(Lr) < optms(Lr) (by equation (8)) the theorem follows
from Theorem 4. O

The following trivial lower bound shows that the above cannot be improved by
more than an O(log|Y|) factor.

THEOREM 11 For each positive integer a, and each integer u > 2, there is a set X,
a setY of u elements, and a set F' of functions from X toY such that optsirong (F) =
a and

Optweak(F) > (|Y| -]-)Optstrong(F)-

22

Proof: Choose a and u. Consider the set F' of all functions from {1,...,a} to
{1,...,u}.

Trivially, optstrong(F') is a, since, with strong reinforcement an algorithm never
need make a mistake on the same element of the domain twice.

To see that optweak(F) > (|Y| — 1)a, consider an adversary that first sets z; =
-+ =zy|-1 = 1, and tells the algorithm that all its predictions are wrong, then sets
Ty, = --+ = Ty(y|-1) = 2, and so on. Since the algorithm makes at most |Y'| — 1
predictions on each element of the domain, there is some function from {1,...,a}
to {1,...,u} consistent with the adversary’s responses. This completes the proof.

([l

4.8. Agnostic learning

In the agnostic learning model the learner again has to learn a function from X
to {0,1} from some class F' on-line, but some of the reinforcements given to the
learner might be noisy. In the ¢th trial, the learner (a) receives z; € X from the
environment, (b) outputs a prediction g; € {0,1}, (c¢) discovers y; € {0,1}. If
Uy # y¢ the learner has made a mistake. Denote by M (A, F,n) the maximum
number of mistakes of a learning algorithm A when the reinforcements y; are such
that there is an f € F with |{t : f(z¢) # y:}| < n, i.e. at most 5 reinforcements are
noisy. Finally, let optagn(F,n) = ming M (A, F,n). We have the following result.

THEOREM 12 For all sets X, for all sets F of functions from X to {0,1}, for all
nonnegative integers 1, and for all 0 < € <1/20,

Optagn (F, 1)

4.82(0ptagn(F,0) +n) +1
Optaga(Fym) < 2

<
< 4(InL)optaga(F,0) + (2 + 2.

Proof: We show that an MBQ algorithm can simulate an algorithm for the
standard mistake-bound model without noise. Let Lg, C (X x {0,1})* consist of
those sequences {(x¢,y¢))+ such that there exists an f € F with [{t : f(z) #y:}| <7
(there may be many such f for the same sequence). Note that Lp, is closed
under subsequences. Now let A be a standard mistake-bound algorithm for F'. We
construct an MBQ algorithm B for L, as follows. Algorithm B maintains a list
of correct reinforcements z; € {0,1}. In each trial it predicts with algorithm A.
If g, = y; both algorithms ignore this trial. If §; # y; algorithm B determines if
the reinforcement was noisy by asking “Is o = {((z,,y,)), such that there is an
f € F with f(z;) = 2, for 7 < t, f(z:) = ys, and {7 : f(z;) #y-} <0V
(It is worth emphasizing at this point that this question is about the sequence o
of examples.) If the answer is YES algorithm B sets z; = y;, otherwise it sets
zt = 1 — y;, and it passes z; to algorithm A. By induction, there is an f € F
such that for all trials ¢, f(x;) = 2, and |{t : f(z:) # y:}| < 1. Therefore the
number of trials ¢ on which §; # z; is at most optssand (F)) = Optagn(F,0) and the
number of trials on which §; # y; is at most optagn (F,0) + 7. Finally, since B asks
a question after each mistake, we get optmeq(Lr,n) < 2(0ptagn(F,0) 4+ n). Since

23

Optagn(F,n) = optme(LF,,), the first bound of Theorem 4 gives the first bound of
the theorem.

To get the second bound, note that at most i of B’s questions are answered NO

and at most Optagn(F,0) are answered YES. Applying Theorem 5 with a = €2,

B=1—¢€2 v=1—¢, gives the result after some calculations. O

The proofs of Theorem 5 and Theorem 12 can be modified to obtain the same
bounds for agnostically learning sets of functions from an arbitrary set X to an
arbitrary set Y with strong reinforcement.

For comparison, we give the following lower bound of Littlestone and Warmuth.

THEOREM 13 ([15]) For any X, and any set F' of at least two functions from X
to {0,1},

Optagn (Fa 77) Z Optagn(F, 0) + 277

4.4. Closure Results

Now we return to the standard mistake-bound model. Choose an integer £ > 2 and
aset X. If f1,..., fr are functions from X to {0,1}, and g is a function from {0, 1}*
to {0,1}, then define the function g(f1,..., fx) from X to {0,1} by

(9(f1, s fe)) (@) = 9(f1(2), s fi()).

For any fixed g : {0,1}* — {0,1}, and any sets F1, ..., F}, of functions from z to
{0,1}, define

COMPOSE(F17 "'JFk7g) = {g(fb "'7fk) : fl € F17 -"7fk € Fk}
and for any set G of functions from {0,1}* to {0,1}, let

COMPOSE(Fh, ..., Fi, G) = UyegCOMPOSE(F, ..., Fy, 9).
THEOREM 14 For any sets F1, ..., Fy, of functions from X to {0,1}, for any function
g from {0,1}* to {0,1}, and for any set G of such functions

Optstand (COMPOSE(F1 RS Fk, g))
k

< 2.41[1 + log, k| Z OPtstand (F3) + 1,
i=1
optstand (COMPOSE(F, ..., Fi, G))

k
< 2411 + logy(k + 1)] (optstand(G) + ZOptstand(Fi)) + 1.
i=1

Proof: We begin with the first bound. Suppose, for a known g, functions f; €
Fy,..., fr € F}, are unknown to the learner, who is trying to learn g(fi,..., fr).- A

24

harder problem is to try to predict, for each trial ¢, the vector (fi(x¢), ..., f&(z¢))
in the weak reinforcement model above. This problem becomes easy, however, if
after each mistake, the learner can determine a component of its prediction that
was incorrect: The learner can then simply run separate algorithms for learning
each of fi,..., fr. Any time the master algorithm makes a mistake, it can make one
of the subroutine algorithms make a mistake (all other subalgorithms ignore that
trial), and therefore the number of mistakes made by the master algorithm is at
most Zle Optstand (F;) if optimal algorithms are used for the subalgorithms. Since
an MBQ learner can determine a component of its prediction that was incorrect
through [log, k] “yes-no” questions, an MBQ learner can obtain a performance
guarantee of (14 [log, k) Zle Optstand (F;)- Applying the first bound of Theorem 4
then yields the first bound of this theorem.
For the second bound, we do the analogous thing, except using the value of

(fl(xt)7 "'7fk(wt)7g(fl(wt)7 Ry fk(wt)))

Whenever the master algorithm makes a mistake it determines the least component
of the prediction of the above which was incorrect through [log,(k + 1)] questions.
If it was of an f;(z;), it simulates for the corresponding subalgorithm the trial
with z¢, the subalgorithm’s prediction, and f;(z;). If the only incorrect component
of the prediction was of g(f1(z¢), ..., fr(z¢)) then the algorithm simulates for the
subalgorithm learning g the trial consisting of (f1(z¢), ..., fr(z:)), the subalgorithm’s
prediction, and g(f1(z¢), ..., fr(x¢)). Since such trials are only simulated when all
predictions of fi(x¢), ..., fr(x¢) are correct, the trials given to the algorithm for
learning g are consistent with g. Continuing as in the previous paragraph yields
the second bound. O

The following lower bound shows that Theorem 14 is within an O(log k) factor of
optimal. The proof is given in Appendix A.3. From the proof one can also easily
see that corollaries obtained by applying Theorem 14 with many natural concrete
g are also within this O(log k) factor of optimal. (Of course, there are exceptions,
e.g.g=0.)

THEOREM 15 Choose an integer k > 2 and positive integers ay, ...,ar. Then there
is a set X and sets Fi,...,Fy, of functions from X to {0,1} such that for all i,
Optstand (F}) = a;, and there is a g : {0,1}* — {0,1} such that

k
Optstand(COMPOSE(FY, ..., Fk, 9)) >) _ optstand (Fl).-
=1

Choose a positive integer apyq < 2%. Then there is a set X and sets Fy, ..., Fy of
functions from X to {0,1} such that for all i, optstanda (F3) = a;, and there is a set
G of functions from {0,1}* to {0,1} such that optstana (G) = art1 and

k
1
Optstand(COMPOSE(Fl, ,Fk,G)) > 5 <0ptstand(G) + E Optstand(Fi)> .
i=1

25

The restriction axy1 < 2F is needed since for any set G of functions from {0, 1}*
to {0, 1}, optstana (G) < 2F.

4.5. Mistake bounds with delayed, ambiguous reinforcement

Finally, we formally define what we call the delayed, ambiguous reinforcement
model.

In this model the learner again has to learn a function f from a class F' of functions
from X to {0, 1}, but it receives no immediate reinforcement. Learning proceeds in
rounds, where in each round ¢ the learner is given z; ; € X, outputs a prediction g 1,
..., is given x4, € X, outputs a prediction § ,, then receives reinforcement FALSE
or TRUE indicating whether any of the predictions §1,...,9:, Was incorrect,
i.e. the reinforcement is FALSE iff §;; # f(z:,) for any ¢ € {1,...,r}. Denote
by Mamb,r(4, F) the maximum number of false rounds of an algorithm A when
learning a function f € F and let optamb (F) = ming Mamb (4, F). Note that
Optamb,l(F) = Optstand (F)

Note that before the algorithm outputs g ;, it does not know the values of z; ;
for 7 > 4. A natural question is if knowing these values could help the algorithm.
If this were not the case, then learning in the r-trial delayed ambiguous feedback
model would reduce to learning in the weak reinforcement model as follows. For
some set X and some set F' of functions from X to {0,1}, we might set X' = X"
and define ' = CART,(F) to be all functions f' from X' to {0,1}" such that there
exists f € F for which for all (z1,...,z,) € X", f'(z1,...,2,) = (f(21), ..., f(z,)). If
it didn’t help the algorithm to know z¢ 1, ..., ¢ ,, then we could assume without loss
of generality that z;1,..., 2, were all given at the beginning of the round, and it
would be the case that optamb,r(F) = 0ptweak (CART,(F)). The following theorem
shows that this is not the case. The proof is given in Appendix A.5.

THEOREM 16 There ezists a set X and a set F' of functions from X to {0,1} such
that

OPtweak (CART2(F)) < optamb,2(F).

The following result bounds the relative difficulty of learning with ambiguous
reinforcement.

THEOREM 17 For any set F' of functions from X to {0, 1},

OPtamb,r (F) < 2(In2r) - 2" - optamb,1 (F).

Proof: If, after each round in which it makes a mistake, a learning algorithm
is told of a trial during that round in which its prediction was incorrect, then by
ignoring the other trials of those rounds, an algorithm can make at most optamn,1(F’)
mistakes. Similar to the proof of Theorem 5 knowledge of the incorrect trials can
be simulated by splitting into r copies, each given one of the trials as a mistake.
Since the master algorithm can choose its predictions such that at least a fraction

26

of 1/2" of the total weight predicted the same on all r trials of a round the bound
follows analogously as in the proof of Theorem 5. |

Finally, we describe a polynomially related lower bound. The proof is given in
Appendix A 4.

THEOREM 18 For any integers a,r > 1, there is a class F' of functions such that
Optamb,1(F) = a and

1 Optamb,l(F) r
OPtamb,r (F) > min Z(T — 1)optamb,1(F), Z <z) -1
1=0

5. Conclusions and future directions

In this paper, we have presented a new method for simulating on-line learning
algorithms which have access to queries by algorithms that have no such access,
and presented applications of this simulation concerning structural questions about
several natural on-line learning models.

An interesting open question is to try to find a more efficient simulation, in
particular with respect to computational requirements. Significant progress in this
direction would result in a strengthening of Theorem 9. A more computationally
efficient simulation which achieved a worse mistake-bound would be potentially
interesting.

An anonymous referee asked whether arbitrary boolean queries are significantly
more powerful than membership queries for learning {0, 1}-valued functions.

Finally, many of the bounds of Section 4 have small gaps that it would be nice
to remove. Furthermore, it would be interesting to try to find computationally
efficient algorithms for learning in the models described in Section 4.

Acknowledgments

We thank Wolfgang Maass for his advice and encouragement, and for his comments
on an earlier draft of this paper. We are also grateful to Manfred Warmuth for
posing the problem solved in Theorem 12. We thank Nick Littlestone for discussions
relating to the delayed ambiguous reinforcement model treated in Theorem 17.
Finally, we are very grateful to two anonymous referees for their thoughtful reviews.

Appendix A
A.1. Proof of Theorem 6

First, we restate Theorem 6 for easy reference: Choose positive integers a and
u such that w > 2. Then there are sets X, Y such that |Y| = u, and there is a set
L C (X xY)* such that optmeq(L) = a, and

27

9optmBe(£) _ 1 if [Y| > 20ptmsa(L)

optms (L) > i
ptms(L) > { % (1 + 515 (optmeq (L) —log, [Y])) otherwise.

This theorem is proved through a pair of lemmas. For any positive integers u, v,
let SVAR,,, be the set of all functions f : {1,...,u}” — {1,...,u} such that there
exists ¢ for which for all Z € {1,...,u}?, f(Z) = z;.

LEMMA 1 For any nonnegative integer a and any positive integer u,

optMBQ (LSVAR,, 20) < a.

Proof: There are at most 2% elements of SVAR,, 2. Therefore, by asking for the
bits of the index of the function mapping the z;’s to the y;’s before the first trial
(a questions), this MBQ algorithm never makes a mistake. O

LEMMA 2 For any positive integer v and any positive integer u > 2,

v—1 ifv<u

optmB(LsVAR,,,) 2 { %(1 + %ln %) otherwise.

Proof: If u = 2, then the theorem follows from the fact [14] that optmps(LsvaRr.,,,) =
|log, v]|. Assume from here on that u > 2.

As a first case, assume v < u. Choose an MB algorithm A. Let 91, ...,J,—1 be
the predictions made by A when given x; = -+ = z,—1 = (1,2,...,v) on-line with
response ¥, = ¥ at the end of each trial. Choose y € ({1,...,u} — {G1, .., Gv—1})-
Thus if o = ((21,9), .-, (Tv—1,9)), A makes v — 1 mistakes on o, and o € LsvaRr,, -

Now, assume v > u. Construct a sequence o € (X x Y)* using an adversary as
follows. The adversary operates in two stages. The adversary maintains a list of
functions in SVAR,,,, which map previous z;’s to y;’s (or equivalently a list of the
coordinates defining those functions). Let /; be the number of elements in this list
before the tth trial (I; = v). The first stage ends when l; < u. During the first stage,
on each trial, the adversary divides up the l; remaining coordinates into v nearly
equal sized groups, each consisting of either [l;/u] or |l;/u] members. Then z; is
chosen so that the coordinates in the first group take the value 1, the coordinates in
the second group take the value 2, and so on. Whatever the algorithm’s prediction
it is given same value as the response (resulting in a mistake), and the “live”
coordinates which evaluated to the algorithm’s prediction are no longer so.

During the first stage, we have [; = v, and

liyr > b= [l/u] (A1)
> I — 20
u

= lt(]. - 2/U)

28

Thus, by induction, for any trial ¢ in the first stage l;11 > v(1 — 2/u)t. Thus, the
number of trials (and therefore mistakes) in the first stage is at least
max{q : v(1 —2/u)?"! > u}

—2(¢—1)/u
1-2/u

> (u/2 —1)In % (A.2)

> max{q: vexp () >u} since u > 2

The number of “live” coordinates I before the first trial ¢’ of the second stage is at
most u, so the adversary may force the algorithm to make [y —1 mistakes similarly as
in the first paragraph of the proof. We claim that l;; = u—1 which is seen from (A.1):
Ifly_y =wthenly =u—1. Ifly_4 > u+1thenly > (u+1)(1-2/u) >u—1-2/3
since u > 3.

Thus, the number of “live” coordinates prior to the onset of stage two is at least
u — 1, and therefore there are at least u — 2 mistakes during the second stage.
Combining with the lower bound of (A.2) on the number of mistakes during the
first stage, we arrive at a total of

(u/2—1)1n%+(u—2) = (u—2) (1+%1n%)

u 1. v
21+ Zm2
3(+2nu)

completing the proof. O

v

Theorem 6 is an immediate consequence of Lemma 1 and Lemma, 2.

A.2. Proof of Theorem 8

We restate Theorem 8 for reference: Choose positive integers a and u such that u >
2981. Then there are sets X, Y such that |Y| = u, and there is a set L C (X xY)*
such that optmsq, (L) = 2a + [2log, |Y|], and

optms, (£) > al[Y|In[Y]/4].

Proof: For any positive integers u,v, let SVAR,, , be the set of all functions f; :
{1,...,u}’ = {1,...,u} with f;(Z) = z;, i € {1,...,v}. Informally, this is the set of
all functions which “pick out some component” of their input.

Now let Y = {1,...,u},v =% and X = Y". The set £ consists of sequences of
length ar, r = ||Y|In|Y'|/4], where each sequence

0= <($1,1,yl,1)7 RN} (wl,rayl,r); RN} (xa,laya,l); RN} (xa,myaﬂ‘)) € ‘C

consists of a subsequences of length r. Each subsequence is consistent with one
of the functions in SVAR,, , except for two elements of the subsequence, i.e. there
are i1,...,04 € {1,...,0}, $1,...,8¢ € {1,...,u}, and t1,...,t, € {u+1,...,2u}

29

with yg.y = fi,(Tey) for ¢ & {sg,ts} and ysy # fi,(Tg,4) for ¥ € {s4,%4},
¢ € {1,...,a}. Furthermore, sy and ¢4 encode the function consistent with the
next subsequence, i.e. igy1 = u-(sy — 1) + (t4 —r) for ¢ € {1,...,a} (assume
ig+1 = 1). Observe that such a coding is possible since r > 2u for u > 2981.

An MBQ algorithm can ask [log, v] yes-no questions to determine ;. Then it
will predict with f;, for the first subsequence. The elements for which it makes
a mistake determine sy and t;. Continuing this way the algorithm will make two
mistakes for each subsequence which gives optmeg(£) < [2log, |Y[] + 2a.

To get a lower bound for any MB algorithm we define an adversary strategy.
For each subsequence the adversary maintains a list of functions in SVAR,,, (or
equivalently coordinates) which are consistent with the previous trials of this sub-
sequence. Let I, be the number of elements in this list before processing the 7th
element of the subsequence (I = v). On each trial the adversary divides the [,
remaining coordinates into u nearly equally sized groups, each consisting of either
[l /u] or |l;/u] members. Then z, is chosen so that the coordinates in the first
group take the value 1, the coordinates in the second group take the value 2, and
so on. Whatever the algorithm’s prediction is it is given the reinforcement “false”,
and the “live” coordinates which evaluated to the algorithm’s prediction are no
longer so, yielding by induction that

Loy > 1 — [l Jul > 1y — % = 1,(1—2/u)

and
b1 2 (1 =2/u)" > vexp(—In|Y]) > u.

Thus for all ¢ = 1,...,a there is a function f;, € SVAR,, which is consistent with
the r trials of the subsequence.

Now we show that after all ar trials there is a sequence in £ consistent with all
the reinforcements given by the adversary. For ¢ = 1,...,a let s4 and t4 be such
that 4941 = u - (8¢ -1+ (t¢ —u). We set Yoo = fi¢ (.’L’¢,¢) for ¢ & {S¢,t¢}, Y54
to a value different from fi,(z4,,) and g4 s,, and ygs¢, to a value different from
fig(®g,t,) and §g¢,. Since u > 3 this is always possible. Thus optmg (L) > ar.

([l

Remark. By amore careful analysis the constants in the theorem can be improved.
Furthermore, along the same line it can be shown that for positive integers a and
u there are X, Y, and £, such that |Y| = u, optmeq (L) < a, and

optms(£) > a|Y|(In|Y |+ Inln|Y| - C)
for a > log® |Y'| and some constant C'. Thus the upper bound in Theorem 7 has the

correct constant at the first order term and the correct magnitude of the second
order term.

30

A.3. Proof of Theorem 15

LEMMA 3 Choose finite sets X1 and Xo such that X1 C Xs, an integer a such that
a < |Xa|, and a function fi from X; to {0,1}. Then there is a function fa from X,
to {0,1} such that for all x € X1, fi(z) = f2(x), and there is a set F' of functions
from X2 to {0,1} such that fo € F and optstanda(F) = a.

Proof: Extend f; to fo arbitrarily. Trivially, optstana({f2}) = 0. Furthermore, if
P is the set of all functions from X» to {0,1}, optstana(P) = | X2| > a. Also, for
any G C P and any g € P,

OPtstand (G) < Optstand(G U {g}) < Optstand(G) + 1

Therefore, if we start with F' = {f2} and add the elements of P to F one by one,
Optstand (F7) goes from being 0 to | X[, increasing by at most one each time we add

an element to F. Since a < |X3|, there must be a time when optstanda(F) = a.
O

Here is a restatement of Theorem 15: Choose an integer k > 2 and positive integers
a1, ...,ar. Then there is a set X and sets F,..., Fy, of functions from X to {0,1}
such that for all i, optstana(Fi) = a;, and there is a g : {0,1}* — {0,1} such that

k
optstana(COMPOSE(F, ..., Fx, 9)) > Y _ optstana (Fl).-
=1

Choose a positive integer apy1 < 2%. Then there is a set X and sets F, ..., Fy of
functions from X to {0,1} such that for all i, optssanda (F3) = ai, and there is a set
G of functions from {0,1}* to {0,1} such that optsiana(G) = ary1 and

k
1
Optstana(COMPOSE(Fy, ..., Fy, G)) > o <optsmd (@) +) obtstana (F,-)) :
i=1

Proof: We begin with the first bound. Let X7 = {1,...,a1}, X2 = {a1+1, ..., a2},...,
Xr={1+ Zf;ll ai, ...,Zle a;}. Let X =UE X; = {1, ...,Zle a;}. For each i,
let F; be the set of all functions from X to {0, 1} that are zero everywhere in X — X;.
Then for each i, optsgana(F;) = |X;i| = a;. Let g : {0,1}F — {0,1} evaluate to the
disjunction of its arguments. That is g(by,...,bx) =1 if and only if 1 € {b1, ..., by }.
We claim that COMPOSE(Fy, ..., Fy, g) is the set of all functions from X to {0,1}.
Choose a function f from X to {0,1}. For each i, let f; € F; be defined by

[fl2) fz e X;
filz) = { 0 otherwise.

Then, trivially, f = g(f1, ..., fx). Since f was chosen arbitrarily, COMPOSE(F1, ..., Fy, g)
is the set of all functions from X to {0,1}, and therefore,

31

k
Optstand(COMPOSE(Fl, ...,Fk,g)) = |X| = Zai,
i=1

completing the proof of the first bound.

Now for the second bound. We will distinguish two cases, a1 > Zle a; and
ag+1 < Zle a;, proving that optstanda(COMPOSE(Fy, ..., Fy,G)) > apy1 and
optstand (COMPOSE(F, ..., Fy,, G)) > S°F_ a;, respectively.

Assume as the first case that ag41 > Zle a;. For each i, let f; : {0,1}* — {0,1}
simply output the ith component of its argument, i.e. f;(F) = z;. Let X' be a set
containing all the elements of {0, 1}* which has a total of at least max; a; elements.
Apply Lemma 3 to obtain functions fi,..., f;, from X' to {0,1} and sets Fi, ..., F},
of functions from X' to {0, 1} such that for all ¢ < k,

o forall ¥ € {0,1}*, fI(Z) = =;

i
s fiek
® Optstand (Fz) = a;.

Since for any & € {0, 1}, (f{(Z), ..., f4(Z)) = &, even if a learning algorithm knows
fi, - fr, learning g(f1, ..., f1.) is at least as hard as learning g. Therefore

k+1
1
Optstand(COMPOSE(Fl, ceny Fk, G)) 2 Optstand(G) = Q41 Z 5 Z a;,
i=1

completing the proof of the second bound in the case a1 > Zle a;.

To establish the second bound in the case agy; < Zle a;, again apply Lemma, 3
to obtain a set G of functions from {0, 1}* to {0, 1} such that G contains the function
g4 computing the disjunction of its arguments and that optstand (G) = ag+1. Using
the argument for the first bound, there exist Fi, ..., F}, such that

k
Optstand (COMPOSE(Fl, veey Fk, gd)) Z z a;,

i=1
and therefore

k k+1
1
Optstand(COMPOSE(Fl,...,Fk,G)) > E a; > B E a;,
i=1 =1

completing the proof. O

A.4. Proof of Theorem 18

Recall the statement of Theorem 18: For any integers a,r > 1, there is a class F
of functions such that optamn 1 (F) = a and

32

1 Optamb,l(F) r
OPtamb,: (F) > min Z(ZT — 1)optamb,1(F), Z (z) -1
=0

Proof: The first term in the min holds in the case a > r. In this case, let F' be
the set of all functions from {1,...,a} to {0,1}. Trivially, optamb,1(F) = a. To
show that optamb,(F) > 2= (2" — 1)a, we construct an adversary to generate a hard
sequence for any learner.

Choose a learning algorithm A. The adversary gives z¢1 = 1,...,2¢, = r for
2" — 1 rounds, then gives ;1 =r +1, ...,z = 2r for 2" — 1 rounds, and does this
| 2] times. It always answers FALSE. The total number of mistakes is

a T
s
For each {(i — 1)r + 1,...,ir} there is some sequence of r elements of {0,1} that
was not guessed by A. If we define f to take on those values, then the resulting
sequence is consistent with f.

When a < r, let F' be the set of all functions from {1,...,r} to {0,1} which map
at most a elements to 1. Then optamb,1(F) = a, see e.g. [19]. The adversary sets
z1 = 1,2, =1, for t =1,..., (37 (7)) — 1. The reinforcement FALSE is
given in all rounds. Again, for any algorithm, there must be some sequence of
r predictions with at most a 1’s that the algorithm didn’t make on any of those
rounds, and therefore there is a function in F' consistent with all those rounds.

([l

A.5. Proof of Theorem 16

We restate Theorem 16: There exists a set X and a set F' of functions from X to
{0,1} such that

Optweak(CART2 (F)) < Optamb,z (F)

Proof: Let X = {1,2,3}, and consider the set F' = {f1,..., fa} of functions from
X to {0,1} defined in the following table.

T | fi(z) faolx) fi(x) fa(z)
1 0 0 1 1
2 0 0 0 1
3 0 1 1 1

First, we claim that optamb 2(F) > 3. To see this, imagine an adversary that sets
xz1,1 = 1. If the algorithm’s prediction 1,1 = 1, it sets z1 2 = 2, otherwise it sets
x1,2 = 3. In either case the reinforcement for the first round is FALSE.

If 41,1 = 91,2 = 1, then any of fi, fo, f3 are consistent with the information of the
first round. In this case, the adversary can set 51 = 1,222 = 3. No matter how

33

the algorithm predicts, the adversary can give reinforcement FALSE, and has two
functions remaining, trivially enabling it to force a mistake in the third round.

If 91, = 1,912 = 0, then any of fi, fo, f4+ are consistent with the information
of the first round. In this case, the adversary can also set 27 = 1,222 = 3. No
matter how the algorithm predicts, the adversary can give reinforcement FALSE,
and has two functions remaining, again trivially enabling it to force a mistake in
the third round.

If 11 = 0,912 = 1 (recall that in this case 1 3 = 3), then any of fi, f3, fs4 are
consistent with the information of the first round. In this case, the adversary can
set £o1 = 1,222 = 2. No matter how the algorithm predicts, the adversary can
give reinforcement FALSE, and has two functions remaining, also trivially enabling
it to force a mistake in the third round.

Finally, if g1 1 = 0,%1,2 = 0 (again, z1,3 = 3), then any of fa, f3, f4 are consistent
with the information of the first round. In this case, the adversary also can set
221 = 1,222 = 2. No matter how the algorithm predicts, the adversary can
give reinforcement FALSE, and has two functions remaining, enabling it to force a
mistake in the third round. This completes the proof that optamn,2(F) > 3.

Next, we claim that optweax (CART2(F)) = 2. Consider the following algorithm
in the weak reinforcement model. If z; € {(1,2),(2,1)}, the algorithm predicts
(0,0). If z; = (2,3), it predicts (0,1). If z; = (3,2), it predicts (1,0). If z; €
{(1,3),(3,1)}, the algorithm predicts (1,1).

In any of those cases, by inspection, after the first trial, there are at most two
functions in F' consistent with the information received. Therefore, if the algorithm
predicts with some consistent function for the second trial, it can ensure that it will

make at most two mistakes. O
Notes

1. This quantity is called opt in [13, 14] and LC-ARB in [17, 18, 19].

2. Recall that pseudo-polynomial is commonly defined to be exp(poly(logn)).

3. optstrong(F') was denoted by LC-ARB(F) in [2].

4. The model studied in [12] is considerably different than the model considered here. The

common aspect is measuring the performance of a learning algorithm by comparison with the
best function in F'.

5. These results can also be viewed as bounding optagn(SVAR,,n) and related quantities (for the
randomized algorithms), where SVAR,, is the set of all functions f from {0,1}™ to {0,1} that
output a single variable; i.e., such that there is an ¢ such that for all € {0,1}", f(Z) = ;.

6. Some theorems have been proved about a popular approach to combat this problem, called
temporal difference [20, 22, 23, 28, 8|, but they rely on probabilistic assumptions about the
environment of the learner, unlike the worst-case analysis done here for our new approach. Re-
cently, Schapire and Warmuth [24] proved worst-case results about temporal difference learning
in conjunction with the Widrow-Hoff rule in a model different from that of this section.

7. Getting the second is easy if [Y| > 2°PtMBQ(£); otherwise, since for all positive «, In(1 + z) >

z/(1 4 z), we have log, % > m, which implies the second.

34

To see this, consider that as long as possible the environment might present z; for which
the algorithm predicts incorrectly. Presenting in between z; for which the algorithm predicts
correctly only helps the algorithm by providing additional information at no cost. Thus by
ignoring trials for which it predicted correctly the algorithm ignores this additional information
but does not increase the maximum number of mistakes for the worst possible sequence from
Lr. Note that this argument only holds since L is closed under permutations. For arbitrary
L the position of a pair (z¢,y:) in the sequence might encode information that is lost if the
corresponding trial is ignored, for example see the proof of Theorem 8.

To simulate a membership query “what is f(z)?” while learning £Lr in the MBQ model,
one may ask “is the target sequence such that there is an f € F with f(x) = 1 and which is
consistent with the target sequence and all previous queries?”

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. P. Auer and P.M. Long. Simulating access to hidden information while learning. Proceedings

of the 26th ACM Symposium on the Theory of Computing, pages 263—-272, 1994.

P. Auer, P.M. Long, W. Maass, and G.J. Woeginger. On the complexity of function learning.
Machine Learning, 18(2):187-236, 1995.

D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. JACM, 36(4):929-965, 1989.

Nader H. Bshouty, Sally A. Goldman, Thomas R. Hancock, and Sleiman Matar. Asking
questions to minimize errors. J. of Comput. Syst. Sci., 52(2):268-286, 1996. Earlier version
in 6th COLT, 1993.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the Association for Com-
puting Machinery, 44(3):427-485, May 1997.

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. K. Warmuth. On-line prediction and
conversion strategies. Machine Learning, 25:71-114, 1996.

P. Dayan. The convergence of T'D()) for general A. Machine Learning, 8:341-362, 1992.
M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences. IEEE
Transactions of Information Theory, 38:1258-1270, 1992.

M. Kearns, M. Li, L. Pitt, and L.G. Valiant. On the learnability of Boolean formulae.
Proceedings of the 19th Annual Symposium on the Theory of Computation, pages 285-295,
1987.

S.R. Kulkarni, S.K. Mitter, and J.N. Tsitsiklis. Active learning using arbitrary binary valued
queries. Machine Learning, 11(1):23-36, 1993.

M.J. Kearns, R.E. Schapire, and L.M. Sellie. Toward efficient agnostic learning. Machine
Learning, 17:115-141, 1994.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold
algorithm. Machine Learning, 2:285-318, 1988.

N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD
thesis, UC Santa Cruz, 1989.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108:212-261, 1994.

N. Merhav and M. Feder. Universal schemes for sequential decision from individual data
sequences. IEEE Trans. Inform. Theory, 39(4):1280-1291, 1993.

W. Maass and G. Turan. On the complexity of learning from counterexamples. Proceedings
of the 30th Annual Symposium on the Foundations of Computer Science, pages 262-267,
1989.

W. Maass and G. Turdn. On the complexity of learning from counterexamples and member-
ship queries. Proceedings of the 81st Annual Symposium on the Foundations of Computer
Science, pages 203-210, 1990.

W. Maass and G. Turdn. Lower bound methods and separation results for on-line learning
models. Machine Learning, 9:107-145, 1992.

20.

21.
22.

23.

24.

25.

26.

27.

28.

35

A.L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal on
Research and Development, pages 210-229, 1959.

H. Shvaytser, 1988. Manuscript.

R.S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University
of Massachusetts, Amherst, 1984.

R.S. Sutton. Learning to predict by methods of temporal difference. Machine Learning,
3:9-44, 1988.

R.E. Schapire and M.K. Warmuth. On the worst-case analysis of temporal-difference learning
algorithms. Machine Learning, 95-121, 1996.

V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.
V. Vovk. Aggregating strategies. In Proceedings of the 3nd Workshop on Computational
Learning Theory, pages 371-383. Morgan Kaufmann, 1990.

V. Vovk. Universal forecasting algorithms. Information and Computation, 96(2):245-277,
1992.

C.I.C.H. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge,
1989.

