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Abstract

We consider the complexity of learning classes of smooth functions formed by bounding
different norms of a function’s derivative. The learning model is the generalization of the
mistake-bound model to continuous-valued functions. Suppose Fj is the set of all absolutely
continuous functions f from [0, 1] to R such that ||f'||; < 1, and opt(Fj, m) is the best possible

bound on the worst-case sum of absolute prediction errors over sequences of m trials. We show
that for all ¢ > 2, opt(F,, m) = ©(y/logm), and that opt(Fz,m) < 7"1()527" + O(1), matching a

V1 s -
known lower bound of y — O(1) to within an additive constant.

1 Introduction

In this paper, we continue a line of research investigating the complexity of learning, in the on-line
model, classes of functions intended to capture the idea of similar inputs tending to yield similar
outputs.

In the model that we will consider here [6, 1, 7], an algorithm is trying to learn a real-valued
function f, given the a priori knowledge that f comes from some class F'. Learning proceeds in
trials, where, in the ¢th trial, the algorithm

e gets z; € [0,1],
e outputs a prediction g of f(x;), and
e discovers f(zy).

An algorithm A is evaluated by the worst-case sum of its absolute prediction errors, i.e.! by its
worst-case value of Y 7", |9 — f(z:)|. We refer to the best possible bound on this quantity as a
function of m as opt(F, m). This is defined formally in Section 2.

'We number our trials from 0, but, as in [4], we start counting errors on trial number 1. This is for technical
reasons: we could obtain similar results without this if we set the range to be [0, 1], or required that f(0) = 0.
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Table 1: Comparison between the current and previous state of knowledge about opt(Fu, m) and
opt(Fo, m). All previous results are due to Kimber and Long [4].

Since the derivative measures the rate that the output is changing with the input, a norm of the
derivative measures the overall tendency of similar inputs to yield similar outputs. For this reason,
for various ¢, we will study the set F, of all absolutely continuous functions f from [0, 1] to R such
that [|f'(z)]|? dz < 1.

The set F, is defined analogously using the limit as ¢ goes to infinity. This set can be defined in
a simpler way (see [8]) as the set of functions with a Lipschitz bound of 1, i.e. the set of functions
f for which for all a,b € [0,1], |f(a) — f(b)| < |a — b|. Informally, this is the set of functions for
which the outputs are never more dissimilar than the inputs.

In this paper, we show that for all ¢ > 2,
opt(Fy, m) = O(y/logm). (1)

We also show that opt(Fy,m) < ¥ lofzm + O(1). Together with a known lower bound [4], this
implies that

V1
opt(Fy, m) = # +O(1). 2)
Since if p < g, F; C Fp, which implies that opt(F,, m) < opt(Fp,m), (1) can be established by
proving an O(y/log m) upper bound on opt(F2, m), and an Q(y/log m) lower bound on opt(Fs, m).
Upper and lower bounds on opt(F,,,m) and opt(Fz,m) were implicit? in the work of Kimber and

Long [4]. The state of knowledge about these classes before and after this paper is summarized in
Table 1.

In addition to the work from [4] described above, F» was studied in an analogous model using
the quadratic loss ((9; — f(z¢))?) by Faber and Mycielski [3] and in [4]. Cesa-Bianchi, Long, and
Warmuth [2] extended this work to the noisy case.

As mentioned in [4], these results can be trivially generalized via scaling, both to allow any bounded
interval as the domain, and to allow bounds other than 1 on whatever norm of the derivative.

2 Definitions

Denote the reals by R. We refer the reader to [8] for the definitions and facts from elementary real
analysis used here.

*For their proof of the upper bounds, they used slightly stronger assumptions than that the functions were
absolutely continuous. To get the bounds listed in Table 1 under “previous” from their results, all that is needed is
Lemma 3 of the present paper, which is easily proved.



For some set A C R, define floor4 and ceily by
floora(z) = sup(A N (—o0,z])
ceila(z) = inf(AN]z,00)).

For finite A, floor4(x) is the greatest element of A no bigger than x, and ceil4(z) is the least element
of A at least as big as z, so if the points of A U {z} are plotted on the number line, floor4(z) and
ceil4(z) will be the two points plotted on either side of z.

In the model considered in this paper [6, 7], learning proceeds in trials. The algorithm is trying to
learn a function f : [0,1] — R. In each trial ¢t =0,1,2, ... an algorithm

e is given x; € [0,1],
e outputs §; € R, and

e receives f(z;) € R.

For a learning algorithm A, we define
m
L(AaFam) = sup Zk‘)t_f(l‘t)'a
fEF,a}o,...,l‘mE[O,l] t=1
where the §;’s are generated from A, f, and the z;’s as described above. We then define

opt(F,m) = i%fL(A, F,m)

where the infimum ranges over learning algorithms.

Choose g > 1. Define F; to be the set of all absolutely continuous functions f : [0,1] = R such
that

J1r @i de <1.

Since any absolutely continuous function is differentiable almost everywhere, the left hand side is
always well-defined for such functions.

The following is the first of this paper’s main results.

Theorem 1 For all g > 2,

opt(Fy, m) = O(y/logm).

Putting our upper bound on opt(F, m) (Theorem 7) together with [4, Theorem 21], we obtain the
other main result.

Theorem 2

logm

opt(Fa,m) = + O(1).



3 The upper bound
Suppose S = {(uj,v;) : 1 < i < m} is a finite subset of [0,1] x R such that
U < Ug < -+ < Uy

Define fs : [0,1] — R to be the function which linearly interpolates the points in S and extrapolates
with the constants v; and v, respectively. That is, for all z, fg(z) = 0, and

U1 if z <uy
r—u;)(viy1—v; .
fs(x) =14 vi+ (ul)+(1——+ull) if x € (uj, uit1]
Um ifz>up,

if |S| > 1.
For f :[0,1] — R, define the action of f, denoted by J[f], to be

= [ ey ®

Note that F5 is the set of absolutely continuous functions whose action is at most 1.

Facts similar to the following lemma are known (see [5]), but we include a proof in an appendix
since we do not know a reference for precisely this statement.

Lemma 3 Choose m € N. Choose (u1,v1), ..., (Um,vm) € [0,1] X R such that the u;’s are distinct.
Let S = {(ui,v;) : 1 <i < m}. If f is an absolutely continuous function such that for all i < m,

f(ui) = v, then J[f] > J[fs]-

Proof: In Appendix A. [

Next, we record a lemma implicit in the analysis of [4] that describes the change in the action of
fs when a pair is added to S.

Lemma 4 ([4]) Choose m € N. Let (u1,v1), -, (Um,VUm) be a sample with 0 < uy < ug < ++- <
Um < 1. Let S = {(uj,v;) : 1 < i <m}andlet U = {u; : 1 < i < m}. Choose an ezample
(z,y) €[0,1] x R such that ¢ ¢ U. If x € [u1,un], then

(ceily (z) — floory (2))(y — fs(z))?
(ceily(z) — z)(z — floory (z))

I fsuf@yy] = J1fs] +

If x & [u1,up], then
(y — fs(x))?

min; |z — u;|

I fsuf@yy] = Jfs] +

Finally, we establish some technical lemmas, whose proofs are given in appendices.

Lemma 5 For anym € N, q1,....qm E R and 11, e, 7, 2 > 0, if X1 ¢2/ri <1 and X7 1 < 2,
then

m
Z 9 < Vz.
i=1



Proof: In Appendix B. 0

Lemma 6 For all q,r > 0 for which g > r,

1 1 _4r(g—r)
log, — —7r)1 —qlog, — > ——=.
rlog, —+(q r)ogzq_r qlogy o > —
Proof: In Appendix C. U
Now we are ready for the main result of this section.
Theorem 7 For any m > 1,
1 2

2

Proof: Consider the algorithm, call it A, that interpolates linearly and extrapolates using the
nearest neighbor. Specifically, algorithm A, on the tth trial, gets x; from the environment, outputs
f{(wi,f(wi)):i<t} (z1), and gets f(z¢).

Choose zg, ..., Ty, € [0,1], f € Fy. Let 91, ..., Ym be the predictions generated from these by A in the
obvious way. Assume without loss of generality that the z;’s are distinct. For each ¢t € N,t < m
let X; = {zs:0 < s < t}. Define

IN={te{1,.. m}:z € [(min X}), (max X;)]}

and
OUT = {1,...,m} — IN.

Note that the elements of X; can be viewed as the dividers of a partition of [0, 1] into subintervals,
and that such a partition can in turn be viewed as a probability distribution. Define H; to be the
entropy of that probability distribution. In other words, if ug < ... < us_1 are the elements of X;
in sorted order, define

1 (A 1 1
H; = upl — —ug_1) 1 _ 1—wup_q)l —
1 =uology o+ (Z(“s us—1) log, - us_1> + (1~ up-1)logy 7— o

s=1

We will bound the total error of algorithm A by bounding the errors incurred in trials in IN and
trials in OUT separately.

We begin with the trials in IN. Lemma 4 implies that for each ¢ € IN, the action of A’s hypothesis
increases by
(ceilx, (z¢) — floorx, (1)) (f (z1) — §¢)°
(ceily, (z¢) — x¢)(z¢ — floorx, (7))

Since

e A’s original hypothesis has action zero,

e Lemma 3 implies that the action of A’s hypothesis is at most that of f which is in turn at
most 1, and

e Lemma 4 implies that the action of A’s hypothesis does not decrease after trials in OUT,



we have

3 (ceily, () — floorx, (z¢)) (f (z1) — in)°

teIN (CeilXt (wt) - .’L‘t)(.’L‘t — floory, (-Tt)) <1 (5)

By inspection, for ¢ € IN,

Hy 1 — Hy = (-’Et — ﬂOOI‘Xt (iEt)) ]0g2 m
+(ceil, (z1) — 2) 1082 sty

—(ceilx, (z¢) — floorx, (z)) log, ceilx, (mt)—lﬂoorxt @)’

so Lemma 6 implies that for ¢ € IN,

Hy—H, > 4(ceily, (act) — z¢)(z¢ — floory, (:ct)) (6)
ceilx, (z¢) — floorx, (z)
Since H; = 0, since H; is nondecreasing in ¢, and since for all ¢, H; < log,(t + 1), (6) implies that

Z (ceily, (z1) — z¢)(z¢ — floorx, (z¢)) < logy(m + 2)
ceilx, (z;) — floorx, (z) - 4

teIN

Putting this together with (5) and Lemma 5, we have

> 1f(m) — il < VR (”

teIN

Now we turn to the trials in OUT. Here, applying Lemma 4, for each t € OUT, the action of A’s
hypothesis increases by at least
(f(ze) —91)°

min{|z; —u|:u € Xy}

Arguing as above, this implies that

Z (f(xt) - :gt)2 <1 (8)

reorr min{|zy —ul ru € Xp} T )
Since for each t € OUT,
max X; 41 — min Xy11 > (max X; — min Xy) + min{|z; — u| : u € X;},
the fact that X,,41 C [0, 1] implies that

> min{|z; —ul:ue X} <1
teOUT

Putting this together with (8) and Lemma 5, we have

> 1f(me) =9 <1

teOuUT

Putting this together with (7) completes the proof. 0



4 The lower bound

To prove Theorem 1, all that remains is to prove a lower bound for Fo,. This proof builds on a
lower bound argument for F [4].

Theorem 8 For m € N,
[logy(1 +m)]
g .

Opt(FOOam) >

Proof: Let k = |logy(1+m)]|. Let zo =1 and 0 =0. Fori e N,j € Z,0 < j < 2071, let

1 J
.’EQi—1+j = ? + 2i—1'

Consider trials 2/ through 2 — 1 to be part of stage i. For example, for large m, we have

stage 1: z1 =1/2,
stage 2: xzo = 1/4,23 = 3/4,

stage 3: z4=1/8,25 =3/8,26 =5/8,2z7 =7/8

Choose an algorithm A for learning Fo,. We will construct, using algorithm A, a sequence
fos fiss for_1 € Foo and y1,...,y96_1 € R where if for_; is the target function, then for_; is
consistent with the z;’s and y;’s and algorithm A has total error at least vk /8.

For the sake of the argument, we will also define

91,0,91,1,92,05 -y 92,25 --+5 k.05 "'agk,Qk_l € F2

and vy, ...,v9:_1 € R.
Set fo to be the constant 0 function.

Choose a stage i. Let g;0 = foi-1_1, that is, f; for the last trial ¢ before the beginning of stage 1.
Choose a trial ¢ in some stage i. Set vy = fi_1(x¢) £ m, whichever is furthest from ¢, and let
9i—oi-141 be the function which linearly interpolates {(0,0), (1,0)}U{(zs, ys) : s < 27 JU{(zs,vs) :
201 <5 < t}.

Let wje, and urigny be the two elements of {0,1} U {5 : s < t} that are closest to z;. Then if
|vg — fr—1(uiers)| < 27" and |vg — fr 1 (Uright)| < 27° then set y; = vy. Otherwise, set y; = f;1(z¢); in
this case, we say that we pass on trial ¢. Informally, we set y; = v;, unless doing so would make any

function consistent with (x1,¥1), ..., (x¢,y:) violate the Lipschitz condition. Let f; be the function
which linearly interpolates {(0,0), (1,0)} U {(zs,ys) : s < t}.

By construction, each f; € Fi,. We claim that, for each g; ;, J]g; ;] < 1/4. This is proved by double
induction, first on the index of the stage. We claim that for each 1,

, — 1
Tfpm1 1] € 9)

When i = 1, this is true since J[fo] = 0.



Choose a stage 1 > 1. We assume that (9) holds for 7, and will prove that it holds for i + 1. We
claim that for each j = 0,...,2°"!, that

i-1 .

When j = 0, this is true by (9) and the definition of g; 9. Choose j € {0, ...,2"! — 1}, and assume

(10) holds for j. Applying Lemma 4,

2 (3i). 1
Jgij+1] = Jlgigl + —=57— = Jgisl + 157

Applying the induction hypothesis, we get

i—1 1
J[gi;j'i'l] < 4k + k2i—|—1 + k2i—|—1 )

This completes the proof of the induction step for the induction over j. Plugging in j = 271, we
get

J[gz',gi—l] < L (11)

But, since Lemma 4 implies that for all j =0, ...,2°~!

I fai-1-144] < Jlgisl;

(11) implies
i
i < —.
TMfwoi] < 5
This completes the proof of the induction step for the induction over i. Applying (9) with ¢ =
k + 1 implies that for all i, J[g; 9i-1] < 1/4, and since Lemma 4 implies that the action of g; ; is
nondecreasing in j, this implies that for all 7, j, J[g; ;] < 1/4.

We claim that, for each stage ¢, we pass on at most half of the trials in stage 7. Note that for
each trial j of the ith stage in which we pass, g; ; has (absolute) slope at least 1 on one of the
subintervals on either side of the domain element presented on that trial, thus for all j' > j during
the ith stage, g; » also has slope at least 1 on that subinterval. At the end of the ith stage, there
are 2* subintervals. If at least p trials were passed, then, integrating only over the subintervals of
absolute slope at least 1 resulting from these passed trials yields

T[gi2i-1] > p/2".

But J[g; 9i-1] < 1/4. Hence, p < 2°72. Therefore, during stage 4, there must have been at least
2i—1 _ 212 — 20=2 trjals that were not skipped. Since, on those trials, we force A to have error at

least m, the total error of algorithm A is at least
k 1 \/_
21—2( _ ) = Vk/8.
z; 9i+1 \/E /
This completes the proof. []
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A Proof of Lemma 3

We will make use of the following lemma, known as Jensen’s inequality.

Lemma 9 Choose a random variable Y and a convex function 1. Then

E(y(Y)) = y(B(Y)).

Proof (of Lemma 3): Assume without loss of generality that u; < ug < ... < Uy,. Define ug = 0
and 11 = 1. By definition, J[f] = [, f'(x)? dz, which implies

Uj+1

J[f]= Z/ f'(z)? dz,
1=0" "

u;

which in turn implies

J[f] = i(uﬂ—l — ;) (# /uum f!(x)? dm) .



Applying Lemma 9 yields

THEDY (o [ e an)
(wip1 —w;) | ——— x)dz )| .
e i Uil — U Ju

%

Since f is absolutely continuous, this implies

m . — flu: 2
:0

Uil — Uj
However, since for any = € (u;, ui+1),
fs(@) = (wir1 — i)/ (wir1 — i) = (f(uig1) = f(ui))/ (uig1 — us)

and fi(z) =0 for all z & [u1,um], we have

m—1 . — f(u; 2
J[fs] = z (wis1 — us) (f(uﬂ—l) f( z)) _

=1 ui+1 — U

Combining this with (12) completes the proof. 0

B Proof of Lemma 5

Assume without loss of generality that 37, 7; = z and Y_1", ¢?/r; = 1.

Fix 7q,...,7nm > 0 such that /", r; = z, and consider the problem of maximizing > ;" ¢; subject
to 7, ¢?/r; = 1. Applying Lagrange multipliers, a necessary condition for a maximum is that
there is a A such that for all 4,

1-— 2)\q,~/7"i =0.

Solving, we get that for each i, ¢; = r;/(2)), and therefore, that

m 1 ™
Zqi: —Z’/‘i. (13)
=1 2 =1

However, substituting into the constraint yields >, (r;/(2X))?/r; = 1, which implies >, r; =
4)\%. Since Y™, r; = z, this implies A = ++/z/2. In (13), replacing A\ with each of +./z/2,
replacing 7", r; with z and simplifying, we see that the maximum is one of +4/z, and therefore
is 4/z, completing the proof. [

C Proof of Lemma 6

First, we need the following.

Claim 10 For all r € [0,1/2],In 11 > (4In2)r?

10



Proof: Define g : [0,1/2] - R by

g(r) =1In T, (41n2)r?.

Then

1
" __ - 1 2
g (T) (1 — T‘)2 8In 3

which is negative for all r € [0,1/2]. Thus g is minimized at 0 and 1/2, where it takes the value 0.
O

Proof (of Lemma 6): By symmetry, we may assume without loss of generality that r < ¢/2. Fix
r. Define f : [2r,00) — R by

o) oL ol (@2 —r)
flg)=rin4(g—r)n_— —qln . :
Then 1
') =n— i (41n2)(r/q)*.

Applying Claim 10, we have that f' is nonnegative over the domain of f, and therefore that f is
minimized when ¢ = 2r, where it takes a value of 0. Dividing through by In2 completes the proof.

i
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