On-line Learning of Smooth Functions
of a Single Variable

Don Kimber Philip M. Long
Information Systems Laboratory Computer Science Department
Department of Electrical Engineering Duke University
Stanford University P.O. Box 90129
Stanford, CA 94304 Durham, NC 27708
kimber@parc.xerox.com plong@cs.duke.edu

April 12, 1994

Abstract

We study the on-line learning of classes of functions of a single real variable formed through bounds
on various norms of functions’ derivatives. We determine the best bounds obtainable on the worst-case
sum of squared errors (also “absolute” errors) for several such classes. We prove upper bounds for these
classes of smooth functions for other loss functions, and prove upper and lower bounds in terms of the
number of trials.

1 Introduction

We consider the learning of real-valued functions of a single [0, 1]-valued variable in a model introduced by
Mycielski [11], and independently by Littlestone and Warmuth [10]. A learning problem consists of a class F
of such functions. We assume that a function f € F is hidden from the learner, and that learning proceeds
in trials, where in the tth trial, the learning algorithm receives z; € [0, 1] from the environment, is required
to output a prediction g; of f(x;), then finds out the value of f(z;). For each p > 1, the p-performance of a
learning algorithm A for F on a finite sequence o = (z:)1<m € [0,1] and an f € F is'

Ly(A, f,0) = o — flz:)]P.
=2

The p-performance of A on F is then defined to be

L,(AF)= sup L,(A, f o).
fEF,0€UL[0,1]™

We will focus primarily on the choices p € {1,2}. Extending the terminology of [8], we define

opt, (F) = igf L,(4,F).

1 Note that we begin summing the algorithm’s errors on the second trial. This is not unreasonable, since the algorithm’s
performance on the first trial is not indicative of learning ability anyway. Furthermore, we could begin summing on the first
trial if we assumed in addition that f(0) = 0.

We limit our attention to continuous functions that are piecewise twice differentiable (i.e., twice differ-
entiable except on a finite set). Let’s call such functions well-behaved.

We wish to model the intuition that, for many functions encountered in practice, similar inputs tend to
yield similar outputs. Toward this end, for ¢ € {1, 2, oo}, we will study the class F, of well-behaved functions
whose first derivatives have g-norm at most 1. Recall that, for 1 < ¢ < oo, the g-norm of a function f defined

on [0, 1] is defined to be
1/q

(/ 1 f@lda)

and that the infinity norm of f is the limit, as ¢ approaches infinity, of its g-norm. The infinity norm roughly
corresponds to the maximum value of |f(z)|, and the one-norm, to the average, while the two-norm lies
somewhere in between. Thus, Fo, roughly corresponds to the class of functions that are never very steep,
and F; to the class of functions that are not very steep on average.

In this paper, we determine the value of opt,(F,) for each (p,q) € {1,2} x {1,2,00}.

Our main negative result is that opt;(Fs) = oco. This result, loosely speaking, says that even the
assumption that the hidden function never has slope greater than one is not sufficiently strong to enable an
algorithm to obtain any finite bound on the sum of the absolute values of the differences between predictions
and true values.

Our main positive result concerns the algorithm which at each trial linearly interpolates between pre-
viously seen function values, and extrapolates by predicting with the value of the hidden function at the
nearest previously seen point.? We show that the worst-case sum of squared errors made by this algorithm
while learning Fy is 1. A trivial lower bound establishes the fact that this algorithm is optimal for Fy with
respect to the worst-case sum of squared errors, and therefore that opt, (F2) = 1.

Since, as is easily verified, the l-norm of a function is at most its 2-norm which is in turn at most its
oo-norm, we have that F, C Fy C F;. Combining the first inclusion with the positive result above implies
that opty(Fs) < 1. Again, a trivial lower bound shows that this is the best possible, and therefore that
opty(Foo) = 1. Similarly, it follows from our main negative result that opt,(F1) > opt,(F2) > opt,(Fuso) =
oo. A simple argument establishes that opt,(F1) = oo for all p > 1.

We next show that)
opt Foo) <14 —=—
Pipe(Foo) < 1+ (2In 2)e
for 0 < e < 1. Combining this with the aforementioned results about o, we may conclude that opt, (Feo) <
oo exactly when p > 1. For this upper bound, we analyze the algorithm which simply predicts with the value
of the hidden function at the nearest previously seen element of the domain, which, though intuitively worse

than the “linear interpolation” algorithm, is easier to analyze. We also prove that for 0 < ¢ < 1, we have

1

optyfe(F2) <2+ m

which implies that opt,(F2) is also finite exactly when p > 1.

Finally, we consider bounded length sequences of trials, showing that the sum of (unsquared) errors made
by either of the above algorithms learning F, and F5 respectively on trial sequences of length m is at most
e(1+(logy, m)/2). We prove a lower bound of Q(+y/logm) on the worst-case sum of unsquared errors necessary
for learning F» on sequences of m trials.

Our analyses can be extended to classes of functions defined on an arbitrary interval, and to classes
formed through arbitrary bounds on the various norms of the derivatives. Furthermore, the algorithms
we describe do not make use of knowledge of the endpoints of the interval, or of knowledge of how steep
the target function tends to be. Therefore, we may even view our upper bounds as applying to arbitrary
well-behaved functions of the entire real line, where the maximum magnitude of an element of the domain
encountered in a sequence of trials, as well as the steepness of the target function, appears in the bound.
Our results may also be generalized to functions whose range is vector-valued, by treating each component
of the predictions and true values separately. We have stated the results in their present form to facilitate
presentation of lower bounds, as well as to cut down on unnecessary notation, as we feel that the essence of
the problems is captured in the simple cases.

20n the very first trial, it predicts arbitrarily, say with 0.

Faber and Mycielski [3] proved, using a different algorithm, that opt,(F2) < 1. This result amounts
to a special case of a beautiful theorem about learning linear functionals defined on Hilbert spaces using a
generalization of the Widrow-Hoff algorithm [6, 12], and their paper contains numerous other applications of
their Hilbert space results. Nevertheless, we feel it is interesting that even the very simple linear interpolation
algorithm is optimal for F» with respect to worst-case on-line sums of squared errors. The difference in
complexity of the algorithms is illustrated by the fact that the ¢th prediction of the linear interpolation
algorithm trivially can be made in O(logt) time, whereas the best known bound on the time required for the
algorithm of [3] is O(t) [2]. In recent work pursued subsequently to this research, Cesa-Bianchi, Long and
Warmuth [2] generalized the results of Faber and Mycielski to show that a modification of the algorithm of
[3] was optimal in the model of their paper, in which a smooth function only approximately maps a;’s to
Yi’s.

Many statisticians, and, more recently, computational learning theorists (see e.g., [4] [1] [5]) have studied
the induction of classes of functions obtained through smoothness constraints. The spirit of their work
differs from ours in several ways. First, their theorems usually concern functions of potentially many real
variables, where ours, at present, apply only to functions of a single real variable. On the other hand, the
previous work usually involves use of probabilistic assumptions on the generation of the z;’s, for instance
that they are drawn independently from a fixed distribution on whatever domain, whereas our results do
not use such assumptions. These assumptions have enabled researchers to prove bounds on the expected
“loss” on a particular trial. In worst-case models such as that considered here, such “instantaneous” bounds
are clearly impossible (see [8]). Finally, in many cases, we are able to obtain upper and lower bounds that
match, including constants, which is often not the case for the previously studied problems.

2 Some negative results

In this section, we describe several settings in which no algorithm can acheive any finite bound on the
cumulative loss.

We begin by showing that opt;(Fe) = c0. In contrast, we will show in Section 3 that opt,(Fs) = 1. In
our analysis, it will be convenient to consider classes of functions defined on [0, a] for a > 0, constrained by
the values of the functions at 0 and a.

For a,b € [0, 1], define G4 3 to be the class of well-behaved functions g defined on [0, a] for which ¢(0) =0
and g(a) = b, with the further restriction that g’(z) < 1 for all # on which ¢’ is defined.

The following lemmas may be easily verified, e.g., by using reductions between real-valued learning
problems [9] to scale, translate and reflect appropriately.

Lemma 1 For any a,c > 0,0pt;(Gea0) = ¢ 0pt1(Ga,0)-

Lemma 2 Choose a,b,c,d € R. Let H be the class of well-behaved functions f from [a,b] to R for which
f(a) =c and f(b) = d, which also have the property that f'(x) < 1 wherever f' is defined. Then

opty(H) = opty(Gjs—a,|c—d|)-
Next, we reduce the problem of proving a lower bound for G, ; to smaller subproblems.

Lemma 3 If0 < b < a/2, then

b
opty(Gap) > 2 + opty(Gay2,0) + 0pty(Gay2,s)-

Proof: Choose an algorithm A for learning G,; and € > 0. Let gy; be A’s first prediction, given that
z1 = af2.

Assume as a first case that g; > b/2. By Lemma 2 and the definition of opt;, there exist mj,ms €
N, za, ..., Zm4+1 € [0,a/2], Zm 42, Em+mat+1 € [a/2,b], and well-behaved functions fi : [0,a/2] — R,
f2 1 [a/2,b] — R whose derivatives are never more than one where they are defined such that fi(a/2) =

fa(a/2) =0, and

(Z |9e41 — f1($t+1)|) + (E [Yt4ma+1 — f2($t+m2+1)|) > (opt1(Gas2,0) — €) + (opt1(Gayap) —).

t=1 t=1

Hence, if f is taken to be the union of fi; and fo, then f € Ga 3, and if ¢ = () Fmatl then

Li(A, f,0) 2 (opt1(Gasz,0) = €) + (0Pt (Gay2,0) =€)

The case in which ;3 < b/2 is handled similarly, and the fact that ¢ > 0 was chosen arbitrarily completes
the proof. [|
Using essentially the same proof, one can establish the following.

Lemma 4 If0 < b<1/2, then
opty(G1,0) > b+ 20pt;(Gi/2,8)-

In the next lemma, opt; (G,) is bounded below by a suitable function of opt,(Gi o).
Lemma 5 For j € N and b =27/q,

0pt1(Gas) > & + (a — bopty (G1,0)- (1)

Proof: By iterating Lemma 3, concentrating on the second part, we get

Jb
2

. j

Jb

opty(Gap) > 5 +;0Pt1 Gaj2:i0)

Applying Lemma 1, we get

. j

opty(Gas) > % + (Z) opt1(G1,0)
jb
= 7 + (a — b)opty(G1 o).

This completes the proof. [|
We put these together to prove the main result of this section.

Theorem 6 opt,(F) = co.

Proof: We will show that even for G1 ¢ C Foo, 0pt,(G10) = 0
Choose b = 20U+ for some j € N. Then

opt1(Gio) > b+ 20pt1(g%yb) (Lemma 4)
> b+ 2[]% + (% — b)opt,(G1,0)] (Lemma 5)

b + _]b + (1 — Qb)Optl(glyo).
We can now solve this for opt; (Gi10) to get
opty(G1,0) > (J +1)/2. (2)
Since opt; (Feo) > 0pt1(Gi1,0) and j was chosen arbitrarily, opt;(Fs) = 0. |
As discussed earlier, since Foo C F,, ¢ > 1, this theorem has the following corollary.
Corollary 7 opt,(F,;) = oo for all ¢ > 1.

We may fairly easily see that the assumption that the average value of the (absolute) slope is at most
one is not strong enough for practically any positive results in our model.

Theorem 8 Ifpe R,p> 1, opt,(F1) = o0

Proof: The class F; includes all continuous twice differentiable increasing functions with f(0) = 0 and
f(1) = 1, since for such functions,

/0 ()] de = / F'(x) de = £(1) = £(0) = L.

The adversary picks z; = 1/2 and then chooses f(z1) = 0 or f(z1) = 1, whichever gives greater error.
Suppose f(x1) = 1. Then the adversary picks z2 = 1/4, and continues the same scheme. If f(z1) = 0, the
adversary picks 2 = 3/4 and repeats, et cetera. At each trial the loss is at least 1/2P. Using longer and
longer sequences of trials of this type, the total loss can be made arbitrarily large. [|

3 Some positive results

In this section we prove that a very simple algorithm performs optimally with respect to sums of squared
errors when the hidden function is in F3, establishing an alternative proof that opt,(F2) = 1. Loosely
speaking, this result implies that the assumption that the average value of the square of the target function’s
derivative is at most 1 is strong enough for an algorithm to obtain finite worst case bounds on its cumulative
squared error. We showed in Section 2 that opt,(F1) = occ.

Suppose S = {(uj,v;) : 1 < i < m} is a finite subset of [0,1] x R such that

U < uUg < -+ < Uy -

Define fs :[0,1] — R as follows: for all z, fy(x) = 0, and

vy if 2 <uy
fs(z) = vi + (x_zli)-ffl—ttll_vl) if @ € (ug, uiy1]
U, if 2 > u,,

if |S] > 1.
For f:]0,1] — R, define the action of f, denoted by J[f], to be

Il = / f()?dz. (3)

Note that ||f||2 < 1 exactly when J[f] < 1, and therefore that F; can also be thought of as the set
of functions whose action is at most 1. The following lemma concerning the function of minimum action
subject to certain constraints is well known, and can be proved fairly easily, for instance, through application
of an elementary result from the Calculus of Variations (see [7, Theorem 2.2]3).

Lemma 9 Choose m € N. Let (u1,v1), ..., (Um, vm) be a sample. Let S = {(us,v;) : 1 <i<m}. If fisa
well-behaved function consistent with (uy,v1), ..., (Um, V), then

Jf1 = J[fs].

The following lemma concerns the change in the action of fg when we add an example to S.

Lemma 10 Choose m € N. Let (u1,v1), ..., (Um, vm) be a sample with 0 < up < us < -+ < Uy < 1. Let
S = {(ui,vs) : 1 <i<m}. Choose an example (z,y) € [0,1] x R. Then

v b

> Jlfs]+(y— fs(x))*.
If there exists 1 < j < m such that |¢ — uj| = |2 — uj41| = min; |z — u;|, then

2(y — fs(x))°

min; |z — u;|

v

Jfsui(ey)]

Jfsuieyy] = I[fs]+ (4)
Proof: The lemma is trivial if £ < u; or & > uy,, and if there is a j for which = u;. Assume that there is
a j such that u; < z < uj41.

fa=ujt1—uj,b=f(ujs1)— f(u;),c = 2¢ —u;, and e = (fs(x4) — f(24)) = (9 — f(2¢)) (see Figure 1),

we can easily see that

(L2 4e)?2 (b— (% +e))? b? ae’
J . —J _ a a - _
[fSU{(:ct,f(:ct))}] [fS] (c + a—c a c(a — C) (5)
yielding (4) in the case ¢ = a — ¢. In general, (5) implies
ae? e’

J[fsuf(en @) — I1fs] =

>
min{c¢,a — ¢} max{c,a — ¢} = min{c,a — ¢}’

Figure 1: Change in J

completing the proof. O
Now we are ready for the learning result. Consider the learning algorithm LININT defined by

LININT(0, z1) = 0

and

gt = LININT((('rl;yl)a cey (xt—la yt—l)); xt) = f{(:cl,yl),...,(:ct_l,yt_l)}(It)

for ¢ > 1. That is, LININT linearly interpolates between previously seen points, and extrapolates using the
value of the hidden function at the nearest previously seen element of the domain. Note that before each
trial ¢, LININT can be thought of as formulating the hypothesis f{(z, y,),....(z1_1,9¢-1)}-

Theorem 11
Lo(LININT, F3) < 1.

Proof: Choose a target function f € Fs and a sequence 1, 2, ... of elements of [0, 1]. Assume without loss
of generality that the z4’s are distinct.

By Lemma 10, we have that the action of the algorithm’s hypothesis increases by at least (g; — f(z:))?
on each trial ¢ > 1.

Since the function hypothesized after trial 1 is constant, and therefore has action 0, and since, by Lemma 9,
the action of LININT’s hypothesis is always at most that of the target function, which in turn is at most 1,
we may conclude that), (9 — flz)?2 < 1. |

We may apply this result to obtain an alternative proof of a result of Faber and Mycielski [3], who
analyzed another, more complicated, algorithm for their upper bounds.

Theorem 12 ([3])
opty(F2) = 1.

Proof: The previous theorem implies that opt,(F2) < 1. To see that opty(F2) > 1, consider an adversary
which gives a first example of (0,0), and a second example of (1,+1), depending on whether an algorithm’s
prediction is positive or negative. This completes the proof. O

As discussed in the introduction, the fact that Fo, C Fs, together with the same adversary argument as
above, trivially yields the following.

Corollary 13 opt,(Fo) = 1.

2For those familiar with the Calculus of Variations, the Euler-Lagrange equation in this case is f(z) =o0.

This corollary tells us that, with respect to worst-case cumulative squared error, the assumption that
the derivative of a hidden function is never more than 1 doesn’t give the learner any more power than the

assumption that the average value of the square of the derivative is at most one.*

4 More general loss functions

Recall that in Section 3, we proved that opt,(Fs) = opty(F2) = 1, and in Section 2, we proved that
opty(Foo) = opty(Fa) = co. This brings up a natural question: For which p are opt,(Fs) and opt,(F2)
finite? This question is resolved in this section: we show that opt,(Fw) and opt,(F2) are finite whenever
p> 1

The following lemma will be useful in both analyses.

Lemma 14 Choose a sequence x1, s, ... of elements of [0,1]. For each t > 1, let
dy = min |z — z;].
1<t

Ifp>1,
Sl <141/(2F -2).
t=1

Proof: Choose a sequence 1, zs, ... of elements of [0, 1]. Assume without loss of generality that the ;’s are
distinct. For each ¢t € N, let
Sy =Az; 1<t} ={u 1 <t}

where u1 ; < Uy < ---uyy (the u;4’s are {21, ..., 24} in sorted order). For each t, let s; = uy s — u3
First, we claim that

1-

)

3 < 1. (6)

t>1wi Uy, e—1,Ui—1,2—1]

Choose a trial t for which z; < uy y—1. In such a case, we have
Sp —sp_1 =dy > d

since d; < 1 and p > 1. Similarly, if ; > us_1 ¢—1, then s; — s;_1 > d. Since, trivially, s; never decreases,
and 0 < s; < 1, we have (6).
Next, we claim that
S @<ye-2) (7)
txi €Ut 1—1,Ut—1,1—1]

For each t, let
-1

H; = 'Ull)yt + (1= u)’ + E(UH—I,t —u;)P
i=1
Choose a trial ¢ for which z; € [u14—1,us—1,4—1]. Let ¢ be such that 2y € (u;s-1,uiy14-1). Let a =
Uit1,4—1 — Ui 4—1. Assume, as a first case, that z; is closest to u; ;—1 (the other case may be handled
similarly). Then d; = &; — u; 11 < a/2. We have

Ht—Ht_lzdf—F(a—dt)p—ap. (8)

By differentiating, we may easily see that this expression, as a function of a, is decreasing when a,d; > 0.
Thus, it is maximized, subject to a > 2d;, when a = 2d;. Plugging into (8) and simplifying, we get

Hy— Hi_y < (2—2°)dt < 0.

41t would appear that the assumption that f € F. amounts to the slightly weaker assumption that the measure of
{z: f'(z) > 1} is zero. However, it is easy to see that the lower bound also applies to the smaller class of twice differentiable
functions for which f’ < 1 (indeed, to the extremely simple class consisting only of f(z) = = and g(z) = —z). Thus, the the
difficulty of learning this class in this model with the quadratic loss is the same as that of F5.

Since, trivially, 0 < H; < 1 for all ¢, and H; never increases (on any trial), we have (7). Combining (6)
and (7) yields the desired bound. |

We begin with F,. We will make use of the following simple lemma, whose proof is omitted. It establishes
the fact that functions in Fo, satisfy a Lipschitz condition.

Lemma 15 If f € Fo, then for all z,y € [0, 1], we have

[f(z) = fy)] < [z —yl.

A bound on opty (Foo) follows immediately from the previous two lemmas. Recall that opt,(Fe) = 1,
and therefore opt,(Fw) = 1 for all p > 2. For this reason, the theorem (also Theorem 17 below) is only
interesting for € < 1.

Theorem 16 Ife > 0,

1 1
14 o

optyye(Foo) <1+ 9lt+e _ 9 S (2In2)e’

Proof: Consider the algorithm A which simply predicts with the function value at the nearest previously
seen point (and arbitrarily on the first trial). Choose a sequence 1, ..., 2, of elements of [0,1] and f € F.
Let g3, ..., Ym be the predictions of this “nearest neighbor” algorithm on trials 2 through m, and let p = 1 +e.
We have

Dol = f@)lP <Y (minfai— 2|}’ (Lemma 15)
=2 t=2
1
< 1+ TR (Lemma 14)

completing the proof of the first inequality of the theorem. The second follows immediately using the fact
that for all z, 1 + = < €”. [|
Next, we prove a very similar bound on opt; . (F2).

Theorem 17 Ife > 0,
1
24

optyqe(F2) <2+ 9l+e _ 9 hS (2In2)e’

Proof: Choose € > 0 and let p = 1 + ¢. Choose a sequence 1, ..., Z,, of elements of [0, 1] and f € F,. Let
U2, -, Ym be the predictions of LININT on trials 2 through m, and for each ¢ > 1, let d; = min;<¢ |2; — 4],
and let e; = |9 — f(x¢)|. Applying Lemma 10, we have that the action of LININT’s hypothesis increases by
at least €?/d; on each trial. By Lemma 9, the action of LININT’s hypothesis is always at most 1. Thus,

Y e/ <L (9)
t=2
Since, by Lemma 14, we have
m
1
di <1 10
tz:; t = + 2w _ 2> ()

our analysis proceeds by breaking up the trials, and applying (9) to those trials where d; is relatively small,
and (10) to the trials where d; is relatively large.
More specifically, we have

DI
t>1:e;<dy t>1:e;<dy
1

14 —— 11

+2p_2’ ()

by (10). Also,

Z el < Z et (Since e; < 1)
t>1:e1>dy t>1:e1>d;
< Z et(et/dt)
t>1:e;1>d;
=). eld
t>1:e>d;
< 1

bl

by (9). Combining with (11) yields the first inequality. The second follows immediately using the fact that
1+ 2z <e” for all z. [|

5 Bounded-length trial sequences

In Section 2, we showed that opt,(Feo) = opt;,(F2) = co. In other words, we showed that finite bounds on
the sum of absolute differences between predictions and true values could not be obtained for any algorithm
using only the assumption that the hidden function was in F,, and therefore, for any algorithm using only
the weaker assumption that the hidden function was in F5. Our adversaries used many trials, forcing small
errors on each trial. The fact that opt, < oo for both these classes suggests that this behavior was necessary,
since, as the error on a trial approaches 1, squaring the error has no effect.

If, in fact, any adversary which forces infinite cumulative error for algorithms learning Fo, must force
small errors on each trial, this is good news for the learner, since, even if one’s total error is unbounded, if
it is accumulating slowly, nontrivial learning is taking place.

In this section, we show that, indeed, the “nearest neighbor” algorithm studied in the previous section
accumulates error slowly while learning F,. We show that on any sequence of m trials consistent with
a function in Fo, the sum of unsquared errors made by the nearest neighbor algorithm is O(logm). We
also show that the “linear interpolation” algorithm studied in Section 3 achieves the same bound on its
cumulative (unsquared) error on any sequence of m trials consistent with a function in Fs.

For a class F of functions from [0, 1] to R, define

opt,(F, m) = inf sup Li(A, f,0)
A jeF,oe0a]m

where A ranges over learning algorithms.
Both proofs make use of the following inequality, which follows immediately by the standard convexity
argument.

Lemma 18 Foranyne N,p > 1,7 € R",
1Z|] < 0 =17 &,
We begin with F.

Theorem 19 For all m > 3,

1
opty(Feo,m) < € (1 + og;m))

Proof: Choose z1,...,xm, and f € Fo,. We claim that if A is the nearest neighbor algorithm, then

log, m)

Ll(A,f,U)§e<1—|— 5

Let g1, ..., ¥m be the sequence of predictions made by A. Let ¥ € R™ be defined by

r= (lgl - f(]“l)|: S |gm - f(lm)l)

Choose € > 0. By Theorem 16, we have
1 1/(1+¢)
< |1+ —
17l < [+ (21112)6]

Applying Lemma 18, we have

1/(1+e)
7l < me/ 049 14 L
- (21n2)e
Suppose € = 1/(lnm — 1). Then
ln m—1
1 Inm-—1\ ==
< e (14—~
1l < m <+ 21112)
ln m—1

B 14 Inm-—1Y ==
- 21n2
< 14 Inm
= ¢ 21n2
This completes the proof. O

With minor modifications, the above argument, together with Theorem 17, yields the following.

Theorem 20 For m > 3,

1
opty (Fa,m) < e <2+ %)

We also have the following lower bound.

Theorem 21 For m € N, m > 2,
[logy m|
— s
Proof: Let k = [log, m|. To ease the notation, in this proof we will number trials from 0. Let zq = 1.
Choose an algorithm A for learning F5. For i e N,j € Z,0< j < 2071 — 1, let
Toip; = % + 22']—_1

opty (Fa, m) >

For example,

X = 1/2,1‘2 = 1/4,1‘3: 3/4,.1‘4 = 1/8,1‘5 = 3/8,$6 :5/8,

We will construct a function f € Fy such that if o = (zo,...,2m-1), Li1(4, f,0) > 4 Define
fo,f1, .-y for_q and yi, ..., yss_; inductively as follows. Let fo = 0. Consider trials 2! through 2¢ — 1
to be part of stage ¢. For each trial ¢ in stage ¢ < k, define y; to be

fia(e) £ -
_1(z —
1—1(%¢ Sk
whichever is furthest from g, and let f; be the function which linearly interpolates {(0,0), (1,0)}U{(zs, ys) :
S S t} Let f = f2k_1.
First, for each trial ¢ in stage ¢ < &,

1
y; — f(: =g —u| > ——.
|yt f('rt)l |yi ytl jatl 22\/E

Hence,

3
<
|
~~
—~
&
B
=
\Y

VE

5

10

All that remains is to show that f € Fy. By (4) of Lemma 10, for all ¢ in stage ¢ < k,

2
1
(m2) 1
T = Jlfioa] =2 220 =
[ft] = J[fi-1] = Foi 1
Therefore, since J[fo] = 0,
2k 1
I = Y I = Tlfe-]
t=1
k
— ZQi—l 1
: k?z—l
=1
= 1,
completing the proof. [|

6 Acknowledgements

We’d like to thank Ethan Bernstein, Tom Cover, David Haussler, Wolfgang Maass, Erik Ordentlich, Shang-
Hua Teng and Manfred Warmuth for helpful conversations about this research, and Nicold Cesa-Bianchi,
Phil Chou, Yoav Freund, Les Niles, Madhukar Thakur and Lynn Wilcox for their comments on earlier drafts
of this work. Don Kimber was supported by NSF Grant TRI-87-19595. Phil Long was supported by a
UCSC Chancellor’s dissertation-year fellowship, a Lise Meitner Postdoctoral Fellowship from the FWF of
the Austrian Government, and by AFOSR grant F49620-92-J-0515.

References

[1] A. Barron. Approximation and estimation bounds for artificial neural networks. The 1991 Workshop
on Computational Learning Theory, 1991.

[2] N. Cesa-Bianchi, P.M. Long, and M.K. Warmuth. Worst-case quadratic loss bounds for prediction
using linear functions and gradient descent. Technical Report ucsc-crl-93-36, UC Santa Cruz, 1993. A
preliminary version of this report appeared in the 1993 Workshop on Computational Learning Theory.

[3] V. Faber and J. Mycielski. Applications of learning theorems. Pundamenta Informaticae, 15(2):145-167,
1991.

[4] W. Hardle. Smoothing Technigques. Springer Verlag, 1991.

[5] D. Haussler. Generalizing the PAC model: sample size bounds from metric dimension-based uniform
convergence results. Proceedings of the 30th Annual Symposium on the Foundations of Computer Sci-
ence, 1989.

[6] S. Kaczmarz. Angenaherte Auflésung von systemen linearer gleichungen. Bull. Acad. Polon. Sci. Leit.

A, 35:355-357, 1937.
[7] G. Leitmann. The Calculus of Variations and Optimal Control. Plenum Press, 1981.

[8] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis, UC
Santa Cruz, 1989.

[9] N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear functions. Proceedings of the
23rd ACM Symposium on the Theory of Computation, pages 465-475, 1991.

[10] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Proceedings of the 30th Annual
Symposium on the Foundations of Computer Science, 1989.

11

[11] J. Mycielski. A learning algorithm for linear operators. Proceedings of the American Mathematical
Society, 103(2):547-550, 1988.

[12] B. Widrow and M.E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Conv. Record, pages
96-104, 1960.

12

