Text Compression Via Alphabet

Re-Representation ! 2 3

PaiLip M. LoNG
Department of Information Systems and Computer Science

National University of Singapore, Singapore 119260, Republic of Singapore.

ApostoL I. NATSEV, JEFFREY S. VITTER

Department of Computer Science, Duke University, Durham, NC 27708.

! An extended abstract of this work appears in Proceedings of IEEE Data Compression Conference

(DCC ’97), March 1997.
2 Acknowledgments: The authors would like to thank J. Schmidhuber and S. Heil for providing

the newspaper training data, and the reviewers for their helpful comments and suggestions about
the paper. P. Long is supported by National University of Singapore Academic Research Fund
Grant RP960625. Some of the work reported in this paper was done while this author was at
Duke University supported by ONR grant N00014-94-1-0938 and AFOSR grant F49620-92-J0515.
A. Natsev and J. Vitter are supported in part by Air Force Office of Scientific Research, Air Force
Material Command, USAF, under grants F49620-92-J-0515 and F49620-94-1-0217, and by an

associate membership of J. Vitter in CESDIS.
3Requests for reprints should be sent to Jeffrey S. Vitter, Department of Computer Science, Duke

University, Durham, NC 27708. Email: jsv@cs.duke.edu, tel.: (919) 660-6548, fax: (919) 660-6502.

Text Compression via Alphabet Re-representation

Text Compression Via Alphabet
Re-Representation

Abstract—This paper introduces the notion of alphabet re-representation in
the context of text compression. We consider re-representing the alphabet so that
a representation of a character reflects its properties as a predictor of future text.
This enables us to use an estimator from a restricted class to map contexts to
predictions of upcoming characters. We describe an algorithm that uses this idea
in conjunction with neural networks. The performance of our implementation is
compared to other compression methods, such as UNIX compress, gzip, PPMC,

and an alternative neural network approach.

Keywords—Text compression, alphabet re-representation, neural networks,

machine learning, over-fitting.

Text Compression via Alphabet Re-representation 2

1 Introduction

Data compression is an important field of Computer Science mainly because of the reduced
data communication and storage costs it achieves. Given the continued increase in the
amount of data that needs to be transferred and/or archived nowadays, the importance
of data compression is unlikely to diminish in the foreseeable future. On the contrary,
the great variety of data that allows for compression leads to the discovery of many new
techniques specifically tailored to one type of data or another. The goal of this paper is
to concentrate on text compression, in particular, by pursuing an innovative and promising
avenue for improving the compressibility of text. The main idea is that the standard
ASCII representation is not necessarily the optimal way to order characters, and changing
the representation of the alphabet may prove beneficial to various text processing tasks,
including compression.

Current methods do not consider geometric information for prediction purposes. For
instance, both letters p and s tend to predict the letter h (there are many words containing
the sequences ph and sh). The letter ¢, however, tends to precede the letter u rather than h,
and yet in the English alphabet (and in the ASCII code tables) p is closer to ¢ than it is to s.
Intuitively, any given character is endowed with a number of “features” that affect what
might be coming next. Examples of features include whether the character is alphabetic,
small or capital, and whether it is a consonant. This leads us to build a (multidimensional)
re-representation of the ASCII characters. One property that is intuitively desirable of
such a re-representation is that characters that tend to precede the same characters are
close under the new representation. That property would ensure that small changes in
the contexts lead to small changes in the probability distributions, and we can restrict
ourselves to considering only the class of such smooth transitions. Since neural networks
are known to be good at learning and generalization of smooth data, they may be able to
make predictions with higher confidence than the traditional methods. The algorithm that
we propose, named Prediction by Smooth Mapping or simply PSM, is briefly summarized

as follows: we first build the above-mentioned alphabet re-representation and use it in

Text Compression via Alphabet Re-representation 3

conjunction with a particular neural network model. At each step, the input context is re-
represented and passed to the neural network which outputs the probability distribution of
the next character given the particular context. The next character is then arithmetic-coded
using the predicted probability distribution.

The rest of the paper is organized as follows: we begin by providing some minimal
background information on text compression methods, and in Section 3 we describe the
motivation behind this project, and interpret it as a pattern recognition problem. In Sec-
tion 4 we combine the notion of re-representation with neural networks, and outline our
proposed algorithm, while Section 5 contains the implementation details of the algorithm.
We then proceed by examining the particular neural network update rule that we use, and
form the theoretical basis of the investigated text compression scheme. In Sections 7-9 we
go on to discuss parameter estimation issues, alternatives, some possible applications, and
experimental results. We finally conclude with a summary and suggestions for future work

and further improvements.

2 Compression background

The majority of text compression techniques fall into two main categories: Lempel-Ziv
(LZ) methods (Ziv & Lempel, 1977, 1978; Welch, 1984) and Prediction by Partial Matching
(PPM) methods (Bell, Cleary, & Witten, 1990; Cleary & Witten, 1984). The PPM methods
are the more successful methods in terms of compression efficiency. They generally gather
(perhaps dynamically) some statistical information about the probability distribution source
(the file to be encoded). This information is then used to estimate the probability distri-
bution of the next character given what the previous n characters were, and finally the
probability estimate is used in conjunction with an entropy coder, usually arithmetic cod-
ing (Moffat, Neal, & Witten, 1995), to encode the next character. Typically, the probability
of each character is approximated by the fraction of times this character occured after the
particular context of length n (the theoretical basis for this is given in Section 3). The PPM

methods are also called context methods and character prediction methods because they

Text Compression via Alphabet Re-representation 4

basically predict the probability distribution of the next character in any given context. For
a detailed description of PPM methods consult (Bell et al., 1990; Cleary & Witten, 1984).

In general, it is an information-theoretical result that the minimum number of bits re-
quired to encode a character ¢ with a probability p of occuring next, is equal to log 1/p (Gal-
lagher, 1968). It is also known that arithmetic coding is asymptotically optimal in this
respect so the main reason for PPM methods not to achieve maximum compression is the
prediction error in the modeling of the probability distribution. In light of that, we focus our

attention on the issue of modeling the distribution so that the prediction error is minimal.

3 Motivation and problem statement

The compression problem of coding a character «; in a context p can be expressed as a
Pattern Recognition (PR) problem, where the contexts are treated as patterns that form
classes relative to the letters of a given alphabet. This affinity between Pattern Recognition
and text compression suggests that native PR approaches can be used for text compression
purposes. For example, similarity to syntactic (or grammar) PR approaches can be found
in Lempel-Ziv methods and language tag-based compression methods that try to exploit
lexicographic redundancies due to the underlying higher-order grammatical structure in
natural languages. The PPM methods, on the other hand, are a clear example of statis-
tical PR techniques and use the well-known Bayesian estimate for the relevant character
probabilities:

Pr(ai,p) _ Pr(p|ai)Pr(e;) _ Np"
Pr(p) Pr(p) Ny’

Pr(ai | p)

where N is the number of times the context p was followed by the letter a; in the string,
and N, is the total number of occurrences of pattern p.

Alternative, and not-so-conventional, PR approaches (such as neural networks and fuzzy
logic) have already been applied to image compression (Cottrell, Munro, & Zipser, 1989),
and recently to text compression as well (Schmidhuber & Heil, 1996). The ability of neural

networks, in particular, to learn smooth data suggests that they may be able to do a better

Text Compression via Alphabet Re-representation 5

job in modeling the character probabilities by employing some form of “intelligent” learning.
One of the main challenges of neural network applications, however, is the problem of over-
fitting, or the use of too many degrees of freedom in the underlying model. If the model
size is unnecessarily large, it eventually leads to memorizing all of the details in the training
data, while being unable to extract common patterns from it and generalize well outside
of the sample set. In terms of text compression, this relates to the smoothness of the
mapping from contexts to their character probability distributions for coding purposes. If
this mapping is smooth, it would be easy to model with a few model parameters, and a
neural network would be able to make good character predictions for compression purposes.
We therefore propose to compute an alphabet re-representation as described previously, that
would ensure smooth mapping between contexts and probability distributions. Thus, by
imposing structure through re-representation, the problem of over-fitting could be greatly
reduced or eliminated, even if contexts of longer length are used. For more information on
modern Pattern Recognition approaches, the reader is referred to (Schalcoff, 1992), and for
further discussion on its relation to text compression, see (Natsev, 1997). The problem of
over-fitting is briefly addressed in Section 6, and also in (Natsev, 1997; Weigend, Rumelhart,
& Huberman, 1991; Hochreiter & Schmidhuber, 1997).

4 Algorithm PSM

The proposed algorithm, which we have named PSM (Prediction by Smooth Mapping), is

summarized below:

1. Compute an alphabet re-representation (a pre-processing step done off-line). This step
doesn’t have a match in PPM-like methods, and the purpose of its introduction here

is to facilitate Step 2.

2. Model the probability distribution of the next character given a certain context. This
step is similar to the probability modeling step of PPM methods, the only difference

being that it is done by a neural network in an attempt to efficiently capture the

Text Compression via Alphabet Re-representation 6

smoothness promised by the previous step.

3. Use a statistical (arithmetic) coder to get the final output stream. This step is exactly
the same as in PPM. Special care is taken when the neural network’s prediction is very
poor and the probability of the next character is practically zero. If that happens, a
special escape symbol is transmitted and the next character is encoded with a uniform

distribution.

We propose to construct the re-representation while taking into account its effect on
the resulting compression algorithm. We achieve this by viewing the re-representation as
a neural network layer (closest to the inputs) from contexts to probability distributions.
By specifying the right error-criteria to the neural network we can make sure that we have
optimized everything with respect to our primary goal—minimizing the number of output
bits required to encode a file. In Section 6, we derive a training update rule that performs
gradient ascent on the log-likelihood.

The first two steps are therefore combined into a single feed-forward multi-layer back-
propagation neural network of a particular architecture (see Section 5 for the specifics).
The first layer of weights corresponds to the re-representation, while the rest of the network
corresponds to the probability modeling part. The network is trained off-line over a large
set of training data, and then the weights that correspond to the new re-representation
are fixed. After training, we operate on the assumption that a good re-representation is
already computed and we thus have a smooth mapping from the context domain to the
probability distribution domain. In this sense, we can treat the first layer of the network as
a re-representation layer that pre-processes the input (essentially via a table look-up) before
it passes it on to the rest of the network. Once this is done, though, we can predict the
probability distributions more accurately. Since Step 1 is done only once—during training—

we only need to perform Steps 2 and 3 when we actually process a file on-line.

Text Compression via Alphabet Re-representation 8

5 Algorithm implementation

Our network takes as an input the current context, and outputs a number between 0 and 1
for each letter in the alphabet. These numbers are normalized so that they add up to 1,
and so the result is the probability distribution of the next character given the particular
context. Then, a statistical coder, such as arithmetic coding, uses all the probabilities to
encode the actual character that appears next, and the error of the network is propagated
back to the lower levels (the output corresponding to the actual encoded character gets 1
as a target value to be propagated, and all other outputs receive a target of 0). Since
the decoder has access to the same information the encoder uses for encoding (the context
has already been decoded), it can decode the next character successfully, and update the
weights of its equivalent neural net. Therefore, the network need not be transmitted.

Figure 1 illustrates the particular architecture of our neural network. The input layer
consists of n groups of 256 input nodes each (the alphabet size can actually vary), where n
is the context size. Each group of 256 nodes encodes exactly one character—the one that
appears some k places back from the current point in the input string. For example, suppose
we have the string testing as input, and we have just read the second ¢. If the context size
of our model is three, the context will be est, and each of the characters e, s, and ¢ will be
encoded by a separate group of 256 input nodes. In the case of the letter e for example,
all but the 101st node will be zero, the 101st node being 1 because the ASCII code of the
character e is 101. The input consists of 256n nodes, all but n of which are 0.

Similarly to the input layer, the first hidden layer consists of n groups as well but each
one has d nodes, where the parameter d denotes the dimensionality of the feature space. The
weights between the first two layers correspond to the re-representation that we mentioned
in previous sections. Note that only a single node will be non-zero in each group of 256
input nodes (namely the one corresponding to the ASCII code of the character encoded by
that group). Therefore, the activation values in the kth group of nodes in the first hidden
layer actually corresponds to the d-dimensional embedding of the character that appears

k places in the text before the character that we are trying to predict. Every character in

Text Compression via Alphabet Re-representation 9

the context is thus mapped to a d-dimensional vector, where each coefficient reflects the
extent to which that character has a certain hidden feature. Note also that the characters
have different representations according to how far away they are from the character to be
predicted. Thus, this architecture allows us to capture the different statistical properties
of characters as predictors of characters different distances further in the file. After the
network is trained, all weights (i.e., character embeddings) between the first two layers are
fixed so that retrieving a character’s re-representation is essentially done via a look-up table.

The rest of the network is similar to traditional 3-layer networks. The presence of
an additional hidden layer is warranted by the necessity to be able to learn non-linearly-
separable functions, and the lack of further layers is motivated by our desire to restrict the
network size so that it can generalize better. The second hidden layer, then, consists again
of n groups, each containing h nodes and corresponding to a letter in the context. This
time, however, the separate groups are not mutually independent but are rather combined
in a blending fashion so that the ith group is fully interconnected with all but the first 1 — 1
groups in the previous layer. This architecture is motivated by the ability to separate the
predictions that are generated by a higher order context model from those generated by a
lower order context model. This way, the nodes in the ith group of nodes in the second
hidden layer have the full information of an order-i model that uses contexts of size up to 1.
The final probabilities are combined in the output layer so as to allow the network to weigh
the different models in a different way. The parameter h simply reflects the complexity
required to capture the important characteristics of an order-£ model. This “blending”
architecture resembles other statistical approaches such as PPM with blending, where the
different models give separate estimates, which are then combined for the final prediction
in a weighted blending fashion. Finally, the output layer, as we mentioned before, consists
of 256 nodes, each corresponding to the probability that its character will be the next one
in the string. The size of the output layer is fixed to 256 nodes.

The weight partitioning in the first layer and blending in the second layer reduces the

time and space complexity of the network significantly and allows for better generalization.

Text Compression via Alphabet Re-representation 10

Although the assumption of complete or partial independence within the initial weight layers
restricts the network’s architecture and thus may hinder the learning process, it generally
does not hurt, and in some cases even helps, the generalization capabilities of the network

at a greatly reduced computational cost in terms of both space and time requirements.

6 Neural network update

In this section we consider the design of our network and the derivation of the neural
network update rule for our application. We use a 4-layer feed-forward back-propagation
neural network with a sigmoidal activation function for all hidden nodes, and a normalized
exponential activation function for the outputs. The cost function is selected to maximize
the log-likelihood of the data given the network, and we argue that our specific choice of a
cost function is optimal for compression purposes.

The classic references for back-propagation neural networks are (Werbos, 1974; Rumel-
hart, Hinton, & Williams, 1986), but for a more thorough treatment of design issues and
factors for model selection consult (Chauvin & Rumelhart, 1995). Let D = (&;,%;) denote
the observed data where Z; is the ith input vector (i.e., the context), and t; is the target
vector (i.e., the character which appeared next). Let A be the neural network that is

designed to learn D. The usual Bayesian motivation leads us to maximize

InP(D|N) = In (H P((Z;, 1) | N)) =Y WP | & AN)+> InP(&). (1)
Each P(Z;) does not depend on the network choice and can therefore be disregarded for
our purposes. At this point, in order to get an expression for an optimal cost function we
need to make some assumption about the type of the probability distribution P(Z; | Z; AN).

In (Chauvin & Rumelhart, 1995) Rumelhart, Durbin, Golden, and Chauvin consider the

general family of distributions

P({t| ZAN) =exp (Z (0 - Bﬁf()qz)jL C(t¢)>) (2)

where 0 is related to the mean of the distribution, ¢ is the overall variance, and the functions

i

A(), B(), and C() are specified individually for each member of the family of distributions.

Text Compression via Alphabet Re-representation 11

As it turns out, for any such distribution, we can derive a cost function £ that maximizes the

log-likelihood term given by equation (1) so that its gradient with respect to the net input

at output node j is given by al‘?ftj x %ﬂ%ﬁ We can further choose an activation function for
the output nodes that cancels the variance term in the above expression so that the gradient
is always proportional only to the difference between the target values and the actual output
values of the network. The multinomial distribution is a special case of the above family
that is a generalization of the binomial distribution. The corresponding energy function
is given by Enuitinomiar = 22 2_j tij Inai;, where index ¢ ranges over the observations, and
index j ranges over the output nodes. The appropriate activation function that cancels the
variance term in the gradient is then the normalized exponential function. In (Chauvin &
Rumelhart, 1995), the authors argued that the multinomial case is most suitable when the
network is supposed to make 1-out-of-n classification. In that case the output is treated as
a probability distribution, and the ith output node corresponds to the probability that the
pattern goes to the ith class. Since this is exactly the case in data compression applications
(we are trying to predict one letter from an alphabet of fixed size), for our purposes we use
the energy function given by & ,uitinomiar a3long with the normalized exponential activation
function for the output nodes: a; = ™"/ 2 e"®i, where the index j ranges over the
output nodes.

If we interpret the desired and the actual outputs as probability distributions over the
fixed alphabet, then the multinomial energy term is negatively proportional to the number
of bits we would spend to encode the input string. In other words, if character o; has a
probability #;; of occurring at the ith position in the text, and the neural network’s estimate
of that true probability is a;;, then the expected number of bits that need to be transmitted
to uniquely encode the ith character is equal to >, t;;log é = —>_;tijloga;j. When we
sum over the position 7 in the text, we obtain the total number of bits needed to encode the
input string. As we can see, the expression for the energy function we selected describes

1

exactly that quantity, up to a constant factor of — 5. Therefore, by maximizing the chosen

energy function, we are not only maximizing the log-likelihood of the data given the network

Text Compression via Alphabet Re-representation 12

but we are also directly minimizing the total number of bits required to encode the data.
Having chosen the architecture, the cost function, and the activation functions we move
on to the particular formulas used for updating the weights of the network during training.

We use gradient descent, setting

— s 5 3
wij w;j + na;oj, ()

where w;; is the weight between nodes ¢ and j, n is the learning rate, and ¢; denotes
the gradient with respect to the net input at node j. When j is an output node, we
use §; = t;—a;, and when j is a hidden node, we set 6; = a;(1—a;) 3_; dxwji, where k ranges
over nodes in the next layer, and ¢; and a; denote the target and the actual output values
at node j. For space considerations, we have omitted the derivation of the above formulas
because it resembles the derivation of standard backpropagation update rules (Rumelhart

et al., 1986), and can be found in its entirety in (Natsev, 1997).

7 Setting parameters

Next we shall discuss some of the issues involving parameter estimation and the techniques
we have employed to automate that process as much as possible. The proposed method has
an increased number of parameters compared to the conventional neural network approaches
because we have tried to improve learning and generalization by imposing a particular struc-
ture in the model. As a result, the task of estimating the optimal values of the parameters
becomes increasingly important. First of all, the learning rate used in the gradient descent
weight-update is crucial during the training phase. Furthermore, since in data compression
applications the amount of training data for the network is relatively large, the main factor
in determining the learning rate was not the optimal rate of convergence. This decision
is motivated by the fact that, even with a small learning rate, the network will eventually
learn its function provided that it is trained sufficiently long. Our main concern then was
to make sure that the learning rate is not too big so as to result in oscillation on the gra-

dient curve after extensive training. We have therefore used a decaying learning rate which

Text Compression via Alphabet Re-representation 13

was inversely proportional to the square root of the iteration number. This is a somewhat
standard practice that semi-automates the process of learning rate adjustment, and we have
adopted it for our application as well.

The other crucial parameters that affect the performance of the network are the ones
that control its size, namely the context length, n, the feature space dimensionality, d,
and the “hidden chunk factor”, h. For the context size we have used the values 5 and 10
because studies have shown that contexts of size between those numbers are the ones most
heavily used for prediction purposes. The other two parameters, d and h, were estimated
adaptively by monitoring the performance of the network on the training set and increasing
the values of the two parameters whenever it seemed that the network converged to some
local minimum (i.e., the improvement over the past several iterations was not significant).
On the one hand, too small values will result in a network that is not big enough to
learn the function we are modeling. On the other hand, too large values will prompt too
many degrees of freedom which will probably improve the learning step during training but
will certainly harm the generalization capabilities of the network (i.e., there will be over-
fitting). Therefore, estimating the right network size is of paramount importance for such
applications. The neural net community has proposed several strategies for dealing with

the over-fitting problem, and they are mainly of two types:

e learn conservatively, and expand the model only if you have to.

e expand freely until you get the best fit on the training data, and then prune the

network to improve generalization.

We have adopted the first approach for dealing with over-fitting: first, by imposing a
priori structure on the network through blending and partitioning; and second, by doing
adaptive size adjustments through manipulating the d and h parameters during training.
Variations of the second approach include monitoring the usage of hidden nodes (i.e., how
many times a hidden node has had a high activation vs. a low activation), and adding or

deleting nodes based on the load of each hidden node (i.e., split when heavy load, prune

Text Compression via Alphabet Re-representation 14

when light load) (Thodberg, 1991). Other techniques in the same class include weight de-
cay/elimination (Weigend et al., 1991), and the more general Flat Minimum Search (Hochre-

iter & Schmidhuber, 1997).

8 Alternatives and applications

One alternative to our implementation is to have a separate pre-processing step for training
the network on the file to be encoded. Instead of having an adaptive neural net training
and coding at the same time, we would have an additional pass (or maybe several passes)
over the input file, and then the network would be transmitted to the decoder before any
encoding is begun. Both encoder and decoder will use the fully trained network without
modifying the weights after coding has begun. This semi-adaptive approach can perhaps
significantly improve the prediction performance but will also impose some compression
overhead because of the need to transmit the final weights. This variant will be feasible
only for very large files so that the network size is relatively small compared to the rest
of the output. Also, the fully-adaptive version will exhibit better flexibility in terms of
capturing local statistical properties of the file.

A slightly modified, fully-static, approach would be to use the same network for all
files without re-training it for each file either off- or on-line. This will probably decrease
performance slightly but will greatly reduce both the computational overhead of updating
all weights during compression/decompression (in the fully-adaptive version), and the com-
pression overhead of transmitting the network for each file (in the semi-adaptive version).

In either case, though, a static or a semi-adaptive decoder will not have to do any
training, and will therefore be much faster compared to the adaptive version. From a
practical point of view, this could be very useful in applications where only fast decoding
is required (i.e., data is stored once and accessed many times). There are many data bases
and information retrieval systems (such as the World Wide Web) for which compressed data
is kept in a centralized data bank, and each time the data is referenced, it is decompressed

by the system or the user. The approach we have undertaken is a compromise between

Text Compression via Alphabet Re-representation 15

these alternatives in that it combines different methods for the two main parts of the
neural network (the re-representation one and the probability modeling one). While the
re-representation part uses a fully static off-line training approach, the rest of the network is
trained adaptively during the on-line processing of each file. This is a reasonable compromise
because the re-representation part makes up the bulk of the whole network and so it makes
sense to train it only once and fix it for future use. On the other hand, the prediction
part is not that big, and it is better to train it dynamically so that we could make full
use of the local properties of the text. In general, there is a trade-off between speed and
compression performance, and the final selection of a neural network model depends greatly
on the purpose of its application.

Another factor that may influence the network architecture choice is the potential need
for specifying a priori constraints about the neural network. For example, weight decay is
a technique that forces the final weights of the network to be small and centered around a
mean of zero. Another constraint that we might want to add is to have as simple a network
as possible. This idea is the basis of weight elimination approaches, and is inspired by
the notion of Occam’s razor, which states that the complexity of the function beforehand
should be as simple as possible. A third way of imposing some kind of desirable a priori
structure on the neural network is to have weight symmetries. All these constraints might
be useful, for example, in static training applications, where knowing some of the network’s
properties may allow us to save bits when transmitting the network to the decoder. For
examples on specifying a priori constraints when designing a neural network see (Chauvin
& Rumelhart, 1995).

Neural networks can be parallelized in hardware, or even methods other than neu-
ral networks can certainly be considered, in order to speed up computation while uti-
lizing the benefits a re-representation can offer. We have previously investigated several
different algorithms for computing a re-representation, as well as its use in conjunction
with other compression methods such as block-sorting (Wheeler & Burrows, 1994). Re-

representation approaches we have considered include simulated annealing, gradient de-

Text Compression via Alphabet Re-representation 16

scent, multi-dimensional scaling, spring optimization via a force-directed approach, and
Traveling Salesman Problem approximation heuristics (such as the greedy approach and
Lin-Kernighan’s 2-OPT heuristic) (Faloutsos & Lin, ; Murtagh, 1983; Lawler, Lenstra,
Rinnooy, & Shmoys, 1985).

9 Results and discussion

We have run two sets of experiments to test our approach. The first set is identical to the
experiments reported in (Schmidhuber & Heil, 1996), where the authors propose a similar
neural network that consists of the same input/output structure but uses only one hidden
layer. As reported in (Schmidhuber & Heil, 1996), the number of hidden nodes used in their
single hidden layer is 440, the context size is 5, and the alphabet size is 80. The matching
configuration that we used had an alphabet size of 256 so that it can handle even binary
files but all characters that were predicted with essentially a zero probability were combined
together and treated as a single escape character. This way, the enlarged alphabet size does
not hurt prediction but allows generality at the cost of a somewhat higher complexity. We
used the same context size of five symbols, and the other parameters were eventually set to
d = 50, and h = 30 (they were estimated adaptively during the course of training). Thus,
the parameter choice resulted in a network with 1280 input nodes, 250 nodes in the first
hidden layer, 150 nodes in the second, and finally 256 output nodes. However, since the
weights between the first two layers correspond to the re-representation and are fixed during
on-line file processing (i.e., they are retrieved as a table look up), the network used for actual
compression was essentially a three-layer network with 250 input nodes, 150 hidden nodes,
and 256 output nodes. The training time for PSM was very slow, though the complexity
of the network is lower than that of the alternative neural network approach (Schmidhuber
& Heil, 1996). For detailed complexity analysis and comparisons with that approach, the
reader is referred to (Natsev, 1997). The learning rate used in the experiments reported
in (Schmidhuber & Heil, 1996) was fixed to 0.2 but for our approach we used a decaying

learning rate which started off at 0.2. The training set consisted of 40 articles from the

Text Compression via Alphabet Re-representation 17

German newspaper Munchner Merkur. Test set 1 consisted of additional 20 articles from
the same newspaper, and test set 2 consisted of 10 articles from a different newspaper,
Frankenpost, on which the networks were not trained in advance. All of the files in both
the training and the test sets were smaller than 20 kilobytes. The results of the experiment
are shown in Table 1. Pack is the UNIX command that implements Huffman coding only.
Compress and gzip are also UNIX commands that use Ziv-Lempel algorithms (Ziv & Lempel,
1977, 1978; Welch, 1984), and are often used in practice due in part to their computational
efficiency. PPMC is the public domain implementation of that method with fixed context
size 3. The PPMC' method is just trained PPMC that attempts to use the statistics from
the training set when compressing files from the test set. We have tried to simulate training
for the PPMC method by concatenating the whole training set and prepending it to each
test file to be compressed. The total compressed size of the training set is then subtracted
from the compressed size of the modified test file in order to obtain the true compressed size
of the test file when statistics from the training set are used by PPMC. To put it in another
way, if T is the concatenated training set, and the function size(f) returns the PPMC-
compressed size of a given file f, then the results reported for the plain PPMC method
are avgy(size(f)), while the results reported for PPMC' are avgy(size(T f) — size(T)).
As seen from the table, our approach outperforms all other competitors (including plain
PPMC(), except PPMC'. The compression improvement over the other methods ranges
anywhere from about 15% (for PPMC and the other neural network approach) to more
than 50% (for pack and compress). PPMC'" performs roughly the same as PSM on one test
set and about 6% better on the other test set. We should note, however, that the purpose
of this experiment was to compare PSM against the other neural network approach. We
have therefore used parameter settings that are as close as possible to the ones reported
in (Schmidhuber & Heil, 1996), and have tried to match the alternative neural network
configuration. To that purpose, for example, we have only used a context size 5 in this
experiment, even though a larger context size may have resulted in a better performance

(as seen in the second set of experiments).

Text Compression via Alphabet Re-representation 18

Method’s Average Compression Ratio (Variance)
Name Munchner Merkur | Frankenpost | Jack London
pack 1.74 (.0002) 1.67 (.0003) | 1.78 (.0001)

compress 1.99 (.0014) 1.71 (.0036) | 2.45 (.0060)

gzip -9 2.30 (.0033) 2.05 (.0097) | 2.64 (.0049)

Other NN 2.72 (.0234) 2.20 (.0112) —

PPMC 2.70 (.0069) 2.27 (.0131) | 3.54 (.0984)

PPMC 3.27 (.0633) 2.60 (.0281) | 3.33 (.0075)
PSM 3.09 (.0142) 2.61 (.0047) | 3.56 (.0083)

Table 1: Compression performance of various methods on 3 test sets consisting of newspaper

articles from Munchner Merkur and Frankenpost, and of books by Jack London.

Since all the files in the previous experiment were relatively short (i.e., < 20 kilobytes),
trained methods such as PPMC", PSM, and NN (Schmidhuber & Heil, 1996) have a
natural advantage over other methods that do not use any a priori information about the
text source. That explains in part why PSM and PPMC" outperform all other methods
by a large margin. We therefore designed a second experiment that uses longer files. While
the purpose of the first experiment was to compare our approach with the alternative neural
net approach proposed in (Schmidhuber & Heil, 1996), in the second experiment we wanted
to primarily test our method against PPMC at more reasonable file sizes. The training set
consisted of three books by Jack London totaling a little over 1 megabyte (Sea Wolf, White
Fang, and Call Of The Wild), and the test set consisted of three other books (Son Of The
Wolf, Iron Heel, and People Of The Abyss) by the same same author of approximately the
same size. As we expected, the plain PPMC method performed better than before on the
longer files, apparently because it had enough data to compute more accurate statistics for
prediction. Surprisingly, though, the PPM C* method actually performed worse than the
plain one—indicating perhaps that the complexity of the PPM(C order-3 model is limited and

using more training data for gathering of statistics eventually results in worse predictions.

Text Compression via Alphabet Re-representation 19

The performance degradation can be explained in part by the fact that the static “pre-
training” of PPMC essentially prevented it from being more locally adaptive, which made
it lose its compression edge on some of the files. This can be confirmed by the fact that the
variance of the compression ratios was significantly lower for the PPMC? method, which
indicates that pre-training in general leads to more consistent and uniform results over the
test files. In any case, our experiments with a context size 5 failed to outperform PPMC on
these particular data sets, yielding compression ratios just short of 3.5. However, when we
used a context length 10 and allowed the network to grow quite large (the size was adaptively
adjusted to the final parameter estimates of d = 45 and h = 40), the performance of the
network after 100 training iterations (with an initial learning rate of 0.3) actually surpassed
that of both plain PPMC and Trained PPMC. The results from the second experiment are
also given in Table 1 and they reveal that the performance of the PSM method is fairly
consistent and very competitive in terms of compression efficiency.

In order to interpret the results in terms of the alphabet re-representation we have
provided several plots of the re-representation obtained from training on the Jack London
book set. We have used the weights in between the first two layers that correspond to the
re-representation as described in Section 5, and we have shown only the 52 lower case and
upper case characters from the English alphabet. The original dimensionality was 25 (that
is, each character was mapped to a vector with 25 features). For visualization purposes,
however, we have shown 2-dimensional and 3-dimensional embeddings which preserve the
original “distances” between pairs of characters as close as possible. The algorithm used to
compute the embeddings is a gradient descent iterative optimization technique that balances
imaginary spring forces between character nodes so that the original distances are matched
as well as possible.

Figure 2(a) shows the two-dimensional embedding of an order-1 re-representation (that
is, only one character is used as a context for predicting the next character). Similarly,
Figure 2(b) shows the three-dimensional embedding of the same re-representation. Since

the perspective view of the three-dimensional embedding does not provide sufficient detail

Text Compression via Alphabet Re-representation 20

1.0
K
08 i FEATURE 3
Ny
0.6 K J
H
w v 10 1
044 oz ML,
~ 02 w F L X 05
g ! X D Q |
00 c
[y G Y s ') 0.0
é -0.2 u f
} | ,
044 r 9 Py B 05 10
a t d
-0.6 nop b
e -1.0
Y 08A
084 0. TURE 2
08 e N s 05 p -
104 FEATURE1 05 5 10
10 08 06 04 -02 00 02 04 06 08 10
FEATURE 1
(a) 2-D embedding. (b) 3-D embedding.
1.0 1.0
I I
084 081
06 06
04 o 041 o
u U o
A
o 024 a ‘%Q EB @ 024 B a 4 e
4 iy Y X N 4 i N y
2 00 n s z M 2 00 z no STy
5 f b B v 5 pV b f
o 02 u o dp b o 02 pu i 8 d
v A z
G F F
-0.4- e m) -0.4- m e J
| 9 I c a
064 rt 7ok H 064 P H Tkt
n w "w
-0.81 x -0.81 x
c w w c
-1.04 -1.04
—_— —_—
10 -08 06 04 02 00 02 04 06 08 10 10 -08 06 04 02 00 02 04 06 08 10
FEATURE 2 FEATURE 1
(c) X-axis projection. (d) Y-axis projection.
1.0
N
038 v
06
Y
0.4 B z R J
E M
o~ o2l v " x Bk
w T
4 P L
D Q k
2 oo ? A FPo g
X
é 0.2 w YCog
9
-04- I
m h a
061 P! ty
i n ¢
-0.8 s ¢ o
S
-1.01
10 08 06 04 -02 00 02 04 06 08 10

Figure 2:

FEATURE 1

(e) Z-axis projection.

Two- and three-dimensional embeddings of a sample 25-dimensional re-

representation, along with 3 parameter plane projections of the 3-D embedding.

Text Compression via Alphabet Re-representation 21

for interpretation purposes, we have also given the two-dimensional projections of that em-
bedding onto the three parameter planes (Figure 2(c) shows the projection in the direction
of the X-axis, Figure 2(d) represents the projection along the Y-axis, and Figure 2(e) gives
the projection onto the XY-plane). We have also considered the embeddings of higher or-
der re-representations but we found that the low-order ones are more expressive in terms of
distinguishing between different characters and being able to identify implicit character fea-
tures. For example, an order-5 re-representation looks clustered in a relatively small area,
whereas the order-1 re-representation from Figure 2(a) is somewhat uniformly distributed
in a larger region, and is thus more informative because it provides more detail about the
character clusters.

Looking at Figures 2(a) and 2(c), for instance, we can clearly observe that the capital
letters are all clustered towards the right hand side, while the small letters tend to be on the
left hand side. A similar separation between small letters and capitals, but in the horizontal
direction, occurs in Figure 2(e), and it can be seen even in the 3-dimensional graph on
Figure 2(b). All this means that the neural network is able to capture the dissimilarities
between small and capital letters due to the different statistical properties of characters
at the beginning of a word and in the middle of a word. Another intuitive feature that
the network was able to extract was the difference between vowels and consonants in their
predictive properties. All of the above graphs have most of the vowels positioned on the
outside of the clusters, while the consonants usually appear in the middle. Other features
that may not be so intuitive to humans should also be present but are harder to identify
and explain. In general, though, we can observe the formation of various clusters, which
means that groups of characters are being treated in different ways within and between
themselves. We should also note that the original re-representation has 25 features, not
just 2 or 3, and therefore it captures much more of the statistical properties than we can
see from the two-dimensional and three-dimensional visualizations.

Another way to measure the “goodness” of the computed re-representation is to compare

the probability distributions of the next character under two contexts that are mapped

Text Compression via Alphabet Re-representation 22

0.45+

0.40+

0.35

0.30

0.254

0.20

PROBABILITY

0.154

0.104

0.05+

0.00 1

ABCDEFGH | GKLMNOPQRSTUMWAXYZ abcdef ghi gk Imnopqr stuvwxyz
CHARACTER

Figure 3: Probability distribution of the next character in contexts “D” and “L”.

very close to each other by the new re-representation. To achieve that, we computed the
distances between all pairs of characters under the new re-representation, and for each
character we considered only its closest character. In other words, we picked the closest
pairs of characters, and looked at the top few such pairs that corresponded to the smallest
distances (with respect to the 25-dimensional Euclidean metric). The top two pairs turned
out to be “D” vs. “L” (with Euclidean distance of 0.8512), and “F” vs. “G” (with Euclidean
distance of 0.8793). The next-character distributions corresponding to each of those four
letters as a context are shown in Figures 3 and 4, where the pairs of distributions are
superimposed so that they can be compared more easily. When we compare the individual
distributions in contexts “D” and “L” (Figure 3), we can easily see that the two distributions
are similar in that they share the same peaks. Although some of the peaks correspond to
somewhat different probabilities, the fact that they occur at the same places means that the

two contexts tend to isolate and predict the same few characters with high probabilities.

Text Compression via Alphabet Re-representation 23

0.30

0.254

0.20+

0.154

PROBABILITY

0.104

0.05

0.004 -
ABCDEFGH | GKLMNOPQRSTUMWAXYZ abcdef ghi gk Imnopqr stuvwxyz
CHARACTER

Figure 4: Probability distribution of the next character in contexts “F” and “G”.

The same trend is even more evident in Figure 4, where the peaks are not only at the same
positions but also correspond to approximately the same probability values. Given the close
resemblance within the pairs of probability distributions corresponding to nearby contexts,
we have a good reason to believe that the re-representation has been quite successful in
accomplishing its task. This, by itself, is an achievement of independent interest that can

be used in various applications for purposes other than text compression.

10 Conclusion and future work

The main contribution of this project is the introduction of a new re-representation approach
to the probability modeling step in data compression systems. The proposed technique is
an initial attempt to gather semantic information about the geometric structure of text and

to use it intelligently through the locality principle and neural networks.

Text Compression via Alphabet Re-representation 24

The idea of imposing structure through re-representation proves advantageous in two im-
portant counts: it reduces time and space algorithm complexity (compared to the traditional
neural network approaches), and at the same time it facilitates learning and generalization,
thus providing better compression performance at a smaller cost.

Neural network algorithms are well known to be sensitive to parameters governing the
learning process. We have not gone to great lengths to optimize our neural network training
algorithm. The results obtained from our original attempts, together with the qualitative
information represented in Figures 2(a) through 4, are encouraging. Future work may in-
clude a more thorough examination of some alternatives for the network’s architecture, as
well as a further study of other settings of the parameters (including longer than order-10
contexts). Although our PSM method has lower complexity than the alternative neural
network approach, the running time is still very slow, even when compared to the “slow”
PPM methods. The problem of reducing the complexity of the algorithm even more, so that
it becomes practical, is still open. One possibility is to use a hybrid of PSM and other faster
methods that could exploit the advantages of a re-representation in a more efficient way.
For instance, techniques other than neural networks can be considered both for computing
the re-representation and for the prediction step. Examples of techniques that we have
considered for re-representation computation include Traveling Salesman Problem heuris-
tics for approximation algorithms, simulated annealing, spring-force iterative optimization,
hierarchical clustering and multi-dimensional scaling methods.

In addition, the proposed approach of alphabet re-representation may prove useful for
a variety of other problems. For instance, training the network on certain (known) types of
text and using it to test the compressibility of other texts of unknown origin may give some
insights about the texts’ sources. Alternatively, computing an alphabet re-representation
from two different data sets and comparing the two re-representations could provide statis-
tical information about the predictive characteristics of the two sources. The application of
the alphabet re-representation idea to other text processing domains is an interesting open

problem that can be considered in future work.

Text Compression via Alphabet Re-representation 25

References

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text Compression. Prentice Hall.

Chauvin, Y., & Rumelhart, D. E. (1995). Backpropagation: Theory, Architectures, and

Applications. Lawrence Erlbaum Associates, Inc.

Cleary, J. G., & Witten, I. H. (1984). Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communication, 32, 396-402.

Cottrell, G. W., Munro, P., & Zipser, D. (1989). Image compression by backpropagation:
an example of extensional programming. In Sharkey, N. E. (Ed.), Models of cognition:

a review of cognition science. Norwood, NJ.

Faloutsos, C., & Lin, K.-I. Fastmap: a fast algorithm for indexing, data-mining, and
visualization of traditional and multimedia datasets. Technical Report, Department

of Computer Science, University of Maryland, College Park.

Gallagher, R. (1968). Information Theory and Reliable Communication. John Wiley &

Sons.
Hochreiter, S., & Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1), 1-43.

Lawler, E. L., Lenstra, J. K., Rinnooy, A. H. G., & Shmoys, D. B. (Eds.). (1985). The
Traveling Salesman Problem. John Wiley & Sons.

Moffat, A., Neal, R., & Witten, I. (1995). Arithmetic coding revisited. Proceedings of IEEE

Data Compression Conference.

Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The

Computer Journal, 26(4), 354-359.

Natsev, A. (1997). Text compression via alphabet re-representation. Master’s thesis, Duke

University, Durham, NC. Available at http://www.cs.duke.edu/~natsev/thesis.

Text Compression via Alphabet Re-representation 26

Rumelhart, D., Hinton, D., & Williams, R. (1986). Parallel Distributed Processing, Ezplo-

rations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press.
Schalcoff, R. (1992). Pattern Recognition. John Wiley & Sons, Inc.

Schmidhuber, J., & Heil, S. (1996). Sequential neural text compression. IEEE Transactions
on Neural Networks, 7(1), 142-146.

Thodberg, H. H. (1991). Improving generalization of neural networks through pruning.
International Journal of Neural Systems, 1(4), 317-326.

Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991). Generalization by weight-
elimination with application to forecasting. Advances in Neural Information Process-

ing, 3, 875-882.
Welch, T. A. (1984). A technique for high performance data compression. Computer, 8-19.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Ph.D. thesis, Harvard University.

Wheeler, D., & Burrows, M. (1994). A block-sorting lossless data compression algorithm.
Tech. rep. SRC 124, DEC Corporation. Available by ftp at gatekeeper.dec.com:
/pub/DEC/SRC /research-reports/SRC-124.ps.Z.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23, 337-343.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding.

IEEFE Transactions on Information Theory, 24, 530-536.

Text Compression via Alphabet Re-representation 1

Figure 1: Architecture of the neural network demonstrating weight partitioning (between
1st and 2nd layers) and blending (between 2nd and 3rd layers). Parameters include:

context size n, feature space dimensionality d, and hidden chunk factor h.

Figure 2: Two- and three-dimensional embeddings of a sample 25-dimensional re-
representation, along with 3 parameter plane projections of the 3-D embedding.
(a) 2-D embedding.
(b) 3-D embedding.
(c) X-axis projection.
(d) Y-axis projection.
(e) Z-axis projection.

Figure 3: Probability distribution of the next character in contexts “D” and “L”.

Figure 4: Probability distribution of the next character in contexts “F” and “G”.

FEATURE 2

1.0

0.8+

0.6 1

0.4 1

0.2

0.0+

-0.2 1

-0.41

-0.6

-0.8 1

-1.0

-1.0

-0.8

-0.6

0.4

-0.2

0.0

0.2

FEATURE 1

0.4

0.6

0.8

1.0

FEATURE 3

1.0 ! U
B
N
A
0.5 0o
b a ’ Y "qu Qu

i ° DgL R

0.0 - _ J

-0.5

10

OIQEATU RE 2

FEATURE 3

1.0

0.8+

0.6 1

0.4 1

0.2

0.0+

-0.2 1

-0.4 1

-0.6

-0.8 1

-1.0

-1.0

-0.8

-0.6

-04

-02 00 02
FEATURE 2

0.4

0.6

0.8

1.0

FEATURE 3

1.0

0.8+

0.6 1

0.4 1

0.2

0.0+

-0.2 1

-0.41

-0.6

-0.8 1

-1.0

-1.0

-0.8

-0.6

0.4

-02 00 02
FEATURE 1

0.4

0.6

0.8

1.0

FEATURE 2

1.0

N
0.8 U
0.6
HV
0.4 B z R J
E M
0.21 v X)
K Y p L Q
0.0 A Fo q
X
024 Y C.
0.2 w Gg
0.4 |
m h a
-0.6 P ! t ¥|
n
e (4
-0.8 u 0
S
-1.0
-10 -08 -06 -04 -02 00 02 04 06 08 10

FEATURE 1

ABCDEFGH | GKLMNOPQRSTUWAXYZ abcdefghi gk Imnopgr stuvwxyz

0.45

0.40

0.35+

0.30

0.25
0.20

ALITIAVE0dd

0.154

0.10

0.05 A

0.00

CHARACTER

PROBABILITY

0.30

0.25+

0.20 1

0.15

0.10

0.05

0.00

ABCDEFGH | GKLMNOPQRSTUWAXYZ abcdefghi gk Imnopgr stuvwxyz
CHARACTER

