Reinforcement Learning
with Immediate Rewards
and Linear Hypotheses

Naoki Abe Alan W. Biermann
IBM T. J. Watson Research Center Department of Computer Science
Yorktown Heights, NY 10598 USA Duke University, P.O. Box 90129
nabe@us.ibm.com Durham, NC 27708 USA

awb@cs .duke.edu

Philip M. Long
Genome Institute of Singapore
1 Science Park Road, #05-01
Singapore 117528
Republic of Singapore
gislongp@nus.edu.sg

June 23, 2003

Abstract

We consider the design and analysis of algorithms that learn from the consequences of their actions
with the goal of maximizing their cumulative reward, when

e the consequence of a given action is felt immediately, and

e a linear function, which is unknown a priori, (approximately) relates a feature vector for each
action/state pair to the (expected) associated reward.

We focus on two cases, one in which a continuous-valued reward is (approximately) given by
applying the unknown linear function, and another in which the probability of receiving the larger
of binary-valued rewards is obtained. For these cases, we provide bounds on the per-trial regret for
our algorithms that go to zero as the number of trials approaches infinity. We also provide lower
bounds that show that the rate of convergence is nearly optimal.

Keywords: Computational learning theory, reinforcement learning, immediate rewards, online
learning, online algorithms, decision theory, dialogue systems.

1 Introduction

Many important applied problems can be accurately modeled as that of reinforcement learning from
immediate rewards, where a function (approximately) relates features associated with a state/action
pair and the expectation of the resulting reward. Furthermore, with appropriate features, it is often
the case that the reward function can be accurately approximated by a linear function. In this paper,
we propose and analyze the performance of algorithms for maximizing the cumulative reward in
such cases.

One possible application is the task of choosing internet banner advertisements. An interested user
can click on an internet banner ad and obtain more information. Since this is evidence of interest
in the ad, one goal of an internet ad server might be to display those ads that are likely to yield
clicks. (For a more detailed formulation of the ad server problem, we refer the reader to [2].) It is
reasonable to suppose that the click probability can be approximated by a linear function of logical
combinations of various attributes associated with the users, the environment, and the ads (such as
keywords searched by the user, age, sex, the domain, ad genres, etc.); of course, a number of such
logical combinations can be thought of as additional attributes [22, 24]. Whenever the server has
a slot to display a banner ad, it is to select one from among a number of alternative ads each of
which is associated with an attribute vector. Importantly, these attribute values for the candidate
ads can change over time depending on the user and environment attributes. Furthermore, the
assumption of immediate reward is justified by the fact that most often the ad placed during a
given visit to a web page will have little effect on the consequences of future ad placements, since
future ads will often be presented to different users who were unaware of the earlier choice.

A second application is multimodal message generation. Here, a module of a dialogue system
takes as input an abstract representation of an idea to convey to the user and must output a
way to express that idea. A reasonable goal is to construct messages that are easy for the user
to understand. In Appendix A, we describe a grammar-based method for generating multimodal
messages that we have implemented and integrated into an existing tutoring system [13]. The
system adapts to the preferences of the user using reinforcement learning from immediate rewards
and a linear model that is motivated by a coarse user model. The features used are extracted
from the rules used to generate the message, and our model of the user implies that the time for
the user to understand the message is linear in these features. Most of what determines how easy
a statement is to understand concerns that statement and not previous statements — again, this
motivates the assumption of immediate rewards.

Our analysis considers a worst-case sequence of states; independence assumptions are often not
approximately valid for applications, including those that we focus on in this paper. The absence
of independence is especially critical in the presence of an exploration/exploitation tradeoff like that
encountered in reinforcement learning settings, since an algorithm cannot get relevant information
whenever it likes. We measure the quality of algorithms by bounding the worst-case value of regret,
which is defined by formalizing in different ways how much less cumulative reward the algorithm
obtains than it would have obtained if it did not have to learn.

We prove upper bounds on the total regret of the algorithms we propose, and nearly matching
lower bounds on the worst-case regret for any algorithm. In the case in which continuous-valued
rewards are exactly determined by an unknown linear function, our upper and lower bounds match
to within a small constant factor. In all cases, our analysis shows that the per-trial regret goes
to 0 as the number of trials approaches infinity, and we provide nearly matching upper and lower

bounds on the rate of convergence.

Each of our algorithms can be decomposed into a method for estimating the reward of different
possible actions, and a method for using these estimates to choose a probability distribution over
actions. The rewards are estimated using standard techniques: we maintain a hypothesis for the
linear function relating state information with expected reward, and update this hypothesis using
the Widrow-Hoff rule [28]. The main novelty in our algorithms is in the relationship between the
estimates of the rewards resulting from different actions and the probabilities of choosing them.

An introduction to reinforcement learning from immediate rewards can be found in Chapter 2 of
[27]. Worst-case theoretical analysis of this problem was initiated in the apple-tasting model [19], in
which an algorithm learned whether to take a specified action given an attribute vector associated
with it, and the binary-valued reward for the action was assumed to be determined by an unknown
function of those attributes. Analysis of a worst-case formulation of the bandit problem (see [12]),
in which an algorithm must repeatedly choose from a row of slot machines, was carried out in
[9, 3]. A theoretical analysis using independence assumptions of an algorithm for learning a policy
computed by a decision list is described in [17]. For other work on reinforcement learning with
immediate rewards, we refer the reader to [11, 10, 26, 29, 21, 20, 27]. Many of these algorithms
make incremental adjustments of one sort or another, including to functions for estimating reward
as ours does — again, the novelty in our algorithms is in how these estimated rewards are used to
decide the probabilities of taking different actions. However, perhaps the main contribution in this
work is in the analysis.

The most closely related previous theoretical work that we are aware of is the work on the bandit
problem mentioned above. In the bandit problem, the algorithm is faced with a row of slot machines
(“one-armed bandits”), and must repeatedly decide which slot machine to play. This problem has
been heavily studied (see [12]). Auer, Cesa-Bianchi, Freund and Schapire [7] and Allenberg [3]
studied it in a worst-case framework, where it is assumed that an adversary has fixed a sequence
of payoffs for each of the slot machines, and where the rewards of those slot machines that are
not played at a given time are never seen. They proved bounds that hold in the worst case on the
difference between the expected total reward of their algorithm, which does not know the sequences
of payoffs ahead of time, and the best total payoff that can be obtained by repeatedly playing a
single slot machine.

Reinforcement learning from immediate rewards is like the bandit problem except that the learner is
able, before each play, to observe information relevant to the payoff of each slot machine. In return
for this assumption, we are able in some cases to bound the expected sum of the differences between
the best reward available during each trial and the reward obtained by the learning algorithm.

Since the initial publication of this work in preliminary form [14, 25, 1], Auer has made further
progress in this line of research [4, 5, 6]. His work is described in Sections 2.3 and 3.4.

2 Continuous-valued rewards

In this section, we look at the case in which each alternative has a continuous-valued reward. We
begin by examining the case in which the reward for some alternative is obtained by applying a
fixed, unknown linear function to its feature vector (the “realizable” [18] case). Then, we look at
the case in which a linear function only approximately maps feature vectors to rewards.

2.1 The realizable case

We assume learning proceeds in trials. In each trial ¢, the learning algorithm must choose from
among n alternatives. Before making this choice, it is given feature vectors %1, ..., 1 p, one for
each alternative. We refer to the number of features as d. Then, possibly using randomization, it
outputs its choice, which will formally be a number between 1 and 7, and which we will refer to as
a¢. To finish the trial, the algorithm receives the reward y; ,, for its choice. Note that it does not
find out the rewards y;; for alternatives that it did not choose.

We will assume that the total number of trials m in the learning process is finite and known to
the algorithm ahead of time. This is just to simplify the analysis: as was the case in [19], if our
algorithms replace each dependence of a parameter on m with the same dependence on the trial
number ¢, nearly the same analysis yields almost the same bounds. Details are omitted from this

paper.
We will assume that there is an unknown coefficient vector & € R such that, for all trials ¢ and
alternatives 7, y;; = U - T4;.

If one designs algorithms and analyzes them using the assumption that the algorithm knows a
priori that the length of the feature vectors and the length of the coefficient vector are at most 1,
one can apply known techniques to modify the algorithms and their analysis to cope with the case
in which these lengths are greater than 1 and they are unknown. Briefly, if these parameters are
known, the analysis goes through with a few small and straightforward modifications; as expected,
scaling either up by a constant factor results in an an increase in the optimal regret by the same
constant. One can get around knowledge of these parameters using the usual doubling technique
(see, e.g. [16, 15]): the idea is to behave as if guesses at upper bounds on the parameters hold
until those guesses are proved incorrect, and increase those guesses by constant factors when that
happens. To avoid uninteresting clutter in our analysis, we will assume that the algorithms know
a priori that the length of these are at most 1.

We say that (Z;;):; (i.e. the collection of all feature vectors encountered during some run of a
learning algorithm) and o' are admissible if all of their lengths are at most 1. For some algorithm
A, we will refer to (Z;;):; and ¥ collectively as a run of A.

Our first algorithm is distinguished by the property that each alternative not estimated to be the
best by the current hypothesis is picked with probability roughly inversely proportional to how
much worse it is predicted to be as compared to the alternative that appears to be best. We
call this algorithm CRW, since it is for optimizing continuous-valued rewards in the realizable case
using how much worse alternatives appear to be. Algorithm CRW maintains a hypothesis for the
coefficients of the linear function mapping feature vectors to rewards; we refer to the hypothesis on
the tth trial by ;.

Algorithm CRW sets k = /mn/2, and w; = (0,...,0). On the tth trial,

e for each alternative 4, it uses its current weight vector w; to calculate its estimate §; ; = Wy - T,
of the reward for alternative i on this trial,

e it sets g; = argmax;¥;; to be some alternative that its current hypothesis suggests yields the
greatest reward,

e for each alternative ¢ other than the alternative g; that appears to be the best, it sets the

probability p;; of choosing alternative 7 to be

1
n 4 46(G,g, — Ut3)’

Pt =

e it gives the rest of the probability to g, i.e., it sets prg, =1 — 3 ;20 Ptsis
e it chooses a; randomly according to p; 1, ..., Pt.n,
e it receives y; 4, € [—1,1] from the environment (where for all 4, y;; = ¥+ Z1;), and

o it sets Wy11 = Wi + (Y0 — Wt * Troa;) Tta;-

Following [15], our analysis will proceed by using the squared distance between the hypothesis
coefficient vector w; and the target coefficient vector ¥ as a “measure of progress”.

Our first progress lemma is known; it follows for example directly from the analysis in [15].

Lemma 1 ([15]) For any ¥, Woq,Z € R"™, for which ||Z|| < 1, if Wnew = Wola + (V- & — Woig - T)Z,
then
|| @new — 711> — || @ota — T < —(Woia - & — 7~ &)

The following theorem is our main result about algorithm CRW.

Theorem 2 On any admissible run of algorithm CRW, if E(-) represents the expectation with
respect to all the randomization in the learning process,

m m
Z Max Yt,i — E(Z Ytar) < V2mn.
t=1 t=1

Note that this provides a bound on the rate at which the average regret per trial goes to 0 as the
number of trials goes to infinity, since it implies

2n

1 & 1 &
(— > max yt,z’) ~-E (— Zyt,at> <4/ =
miz ! miz m
All of the bounds of this paper have similar consequences.

The proof of Theorem 2 makes use of the following lemma.

Lemma 3 On any admissible run of algorithm CRW, on any trial t, if E(-) represents the expec-
tation with respect to the randomization of the algorithm,

I - . n
max yy; — B(yra,) < 6B([0; —9° = [[@1 = 9°) + 5.

Proof: Choose an admissible run of algorithm CRW, and fix some trial ¢. Let
progress = E(||@; — 4[| — || @1 —]/%)

and best = max; y;; and drop the subscript ¢ from all notation. Choose b so that y, = max; y;.

Expanding the definition of progress, and applying Lemma 1 to each term, we get
n
progress > > pi(§i — yi)*-
i=1

Thus

n n
best — E(y,) — progress <y, — (me) — K (Zm(:&i — yi)2)>
=1 =1

= (i:pi(yb - yi)) —K (ipi(?)i - yi)2)> :

Using calculus, one can see that, for each i # b, 37 | p;(yp — vi — K(9; — v;)?) is maximized, as a
function of y;, when y; = ¢; — i Substituting and simplifying, we get

. 1—ps .

best — E(y,) — « progress < (Zpi(yb - yi)) t por (o — yb) .
i#b

Again using calculus, one can see that the bound above, as a function of ¥, is maximized when

Yp = Gp + 12;52’ Once again substituting and simplifying, we get

e 1—py (1—ps)°
best — E(y,) — progress < | > _pi(is — 9i) | + = T2 . (1)
i£b "6 Dol

For alli € {1,...,n}, let u; = g, — 9;. From here we divide our analysis into cases, based on whether
the greedy alternative is in fact the best alternative. We dispose with the easier case first.

Case 1 (g = b). Rewriting (1), we get

1- 1 —py)?
best — E(y,) — K progress < (szuz) + 4Kpg + (4pp,§) .
i#£g I

Since for all i # g, p; < 1/n, we have p, > 1/n, which implies

-1
best — E(y,) — k progress < (2%%) n ”4K]
i#g

Substituting in the definitions of the other p;’s, we get

: ~1
best — E(y,) — k progress < (E i) + n4
K

#gn—i—élﬁui
1 n—1
< I
- (Z 4/4;) + 4K
i#g
<
- 2K

completing the proof in this case.
Case 2 (g # b). Here (1) implies
1-pp , (1-p)?

best — E(z,) — K progress < sz —up) —Gi) | + +
P 4K 4dppk

~ N 1 _ 1 _ 2
= S pildy—9) | — (1 —pp)uy + — 22 + (1 —m)
i#b 4k dppk

— 1 —p)2
= Z pzuz) 1 _pb)ub + P + (pb)

i#{bg} on Apurs
1— 1 — pp)?
= szuz> —up + 4Kpb + (1 T)
i#g Po
1 1
< Ui — .
- szuz> up + 4k + 4dppk
i#g
Substituting into the p; in the denominator, we get
1 n + 4ruy
best — E(z,) — progress < (szuz) — up + P + i
i#g
n+1
= | Dopiui |+ i
i#g
Substituting into the remaining p;’s as in Case 1 completes the proof. 0

Proof of Theorem 2: For each ¢, let best; = max; y; ;. Applying Lemma 3, on each trial ¢,
oL . . n
best; — E(yr,a,) < #E(||@ — 7° — || @41 — 31]*) + 2

and therefore

m m

o - . nm
> (besty — E(yra,) < SEQ ([l —]| = |l = 7)) + -~
t=1

t=1
- - - - nm
= KB(|[d = 0l* — [l —9*) + 5
K
nm
< -
< K+ o
Substituting the value of x and simplifying completes the proof. 0

Our next algorithm is optimistic when it is ignorant. We call it CRO (since it is for optimizing
continuous-valued rewards in the realizable case by being optimistic). On each trial ¢, CRO behaves
as follows:

o If all of Z4 1, ..., &4, are in the span of previously seen feature vectors (i.e. Z14,,-.s Tt—1,0,_1);
then since each reward is linear in the corresponding feature vector, each y; ; can be calculated
exactly. CRO does this and chooses the action yielding the largest reward.

e If one of Z; 1, ..., &1y is not in the span of previously seen feature vectors, then CRO chooses
an arbitrary action corresponding to some such feature vector.

Theorem 4 On any admissible run of algorithm CRO,

m m
> maxyi — Y Ye < 2d.
t=1 " t=1

Proof: On any trial in which all the feature vectors are in the span of previously seen feature
vectors, algorithm CRO chooses the best alternative. On all other trials, the regret is at most 2,
and the dimension of the space spanned by the chosen feature vectors increases by 1. Since it can
only increase d times, this completes the proof. []

At present, Algorithm CRO seems to be only of theoretical interest, as we have not successfully
analyzed a noise-tolerant variant of it.

The following lower bound shows that the O(min{m, v/mn, d}) upper bound obtained by combining
Theorems 2 and 4 and observing that the total regret of any algorithm is at most 2m is within a
constant factor of the best possible. The proof uses ideas from [19].

Theorem 5 There is a constant ¢ > 0 such that for any algorithm A, any n,d, m > 2, there is an
admissible ((Z1;)) and T such that if a1, ...,am are the (possibly random) actions taken by A,

m m
Z MAX Yp,i — E(Z Yt,ay) > cmin{m,/mn,d}.
t=1 t=1

The key lemma in proving Theorem 5 is the following. We have optimized for a simple proof at
the expense of a slightly weaker bound.

Lemma 6 For any algorithm A, for any n,d, m > 2 such that 2n < d < mmn, there is an admissible
((#1i)) and ¥ such that if a, ..., am are the (possibly random) actions taken by A,

U Ui 1 mn d
> maxy; —E) yra) > —= min{—, —} .
t=1 " R V] d "8

Proof: For each j € {1,...,d}, let & be the element of {0,1}¢ with a 1 in the jth component, and
0’s everywhere else.

Let £ = [mn/d]. Let us divide the first £|m/£] trials into |[m/£] stages of £ trials each. We won’t
use the remaining m — £|m/£] trials, if any.

For all t, let the feature vector for the first action on each trial be €;. Set the remaining feature
vectors as follows: during each trial of the kth stage, the feature vectors for actions 2 through n
are repeatedly €(_1)n42, - €kn- (Since k < [m/£], we have kn < [m/[mn/d]||n < d.)

Set the reward for the first action on each trial to be \/1/5. Set the remaining rewards as follows.
For each 7 # 1, and each stage k, let g; ; be the probability, if the reward for the first action on
each trial is /1/5 and all other rewards on all other trials are 0, that Algorithm A ever tries action
i during stage k. If there is an action ¢ and a stage k for which g; ;; < 1/2, then for the least such
k, choose such an i, and set the reward for action i to be 2,/1/5 throughout stage k, and set all

other rewards to be 0 (let us refer to this as “Case 17). If ¢; , > 1/2 for all actions i and stages &,
then set all rewards for actions other than the first to be 0 (this is “Case 27).

In Case 1, since until algorithm A takes an action other than the first with nonzero reward, its
behavior is the same as if there is no such action, with probability at least 1/2, the action with
reward 2,/1/5 is never taken during the stage in which it has that reward. Thus, the total regret
during that stage is at least \/1/5¢.

In Case 2, since for all stages, all actions other than the first have probability at least 1/2 to be
taken at some time during the stage, the expected total number of times in which actions other
than the first are taken is at least |m/£|(n — 1)/2, and each of those times the regret is 1/1/5. We
have

Lm/e}(n — 1)

Lm/[mn/d]](n —1)

> |d/(2n)|(n —1) (since d < mn)
> d(n—1)/(4n) (since d > 2n)
> d/8,
since n > 2. This completes the proof. [

Proof of Theorem 5: We divide our analysis into cases.
Case 1 (min{m,+/mn,d} = d and d > 2n). Since d < y/mn, we have mn/d > d. Applying
Lemma 6 completes the proof in this case.

Case 2 (min{m, /mn,d} = /mn). Since y/mn < d, an adversary can set all but [/mn]| compo-
nents of all feature vectors to 0, effectively setting d = [{/mn]. In that case,

> /mn/2,

mn mn

d [Vmn
since m,n > 2. Since in this case d > v/mn, we can apply Lemma 6 to complete the proof.

Case 3 (min{m,/mn,d} = m). In this case m < y/mn implies m < n. Also m < d. The idea is
to effectively reduce both n and d to m, and to apply the argument from Lemma 6. Suppose that
for all actions 4 < m and for all trials ¢, Z;; = €}, and for all + > m and for all trials ¢, Z;; = €p,.
For each 1 < i < m, let ¢; be the probability that Algorithm A ever chooses action 4 if v; = 1/1/5
and v; = 0 for all j # 1; let ¢, be the probability that any action i > m is ever chosen.

e Case 3a (min;¢; < 1/2). Choose some j with 1 < j < m for which ¢; < 1/2 and suppose
v; = 24/1/5, v; = /1/5, and all other components of 7 are 0. Since with probability at least
1/2, no action with reward 21/1/5 is ever chosen, and at least on such action is available on
each trial, the expected total regret in this case is at least (m/2)(2/1/5—+/1/5) = m/(2V/5).

e Case 3b (min; g > 1/2). Suppose that vy = 1/1/5, and for all j > 1, v; = 0. In this case,
the expected number of times that actions are than the first are chosen is at least (n—1)/2 >
(m — 1)/2, and therefore the expected total regret is at least (m — 1)/(2v/5) > m/(4V/5).

Case 4 (d < 2n). We handle this case in a similar manner as we did Case 3. Here we will effectively
reduce n to |d/2] by setting the feature vectors for alternatives [d/2] through n to €| 4/9. Nearly
an identical proof to that for Case 3 yields a min{m, |d/2]}/(4v/5) > min{m,d}/(16v/5) lower
bound for this case, completing the proof. []

2.2 The agnostic case

While examination of the case in which feature vectors and rewards are exactly linearly related
can be a useful starting point, a practical algorithm must be able to cope with data in which the
relationship is not perfectly linear, either due to the fact that a linear model is only an approxi-
mation, or due to noise in the data. In this subsection, we theoretically examine algorithms that
tolerate nonlinearity. The model of this subsection is the same as the model of Section 2.1, except
that instead of assuming that there is a coeflicient vector ¥ such that v - Z;; = vy, for all trials ¢
and actions %, we will instead assume that the algorithm is given a parameter n such that there is
a coefficient vector ¢’ of length at most 1 for which

m

>

t=11¢

[T Z1i — yrs| < 1. (2)

n
=1

We will then bound the expected regret of the algorithm in terms of 1 as well as m and n. Recall
from Section 2.1 that we are assuming that the length of each feature vector Z;; is at most 1. We
will also assume in this section that each reward y;; is between —1 and 1 (this followed from the
other assumptions in Section 2.1). When an algorithm is run on a sequence of feature vectors and
rewards satisfying these assumptions, let us call it an n-admissible run of the algorithm. Following
[23], we will refer to this as the agnostic case.

We will examine two algorithms for the agnostic case. The first is a modification of the algorithm
CRW studied in the realizable case. For obvious reasons, we call the modified algorithm CAW.

It sets k = y/2mn/(3 + 2n) and @y = (0, ...,0). On the tth trial, the algorithm
e for each alternative 4, sets ; ; = W - Ty,
e sets g; € {1,...,n} to be some alternative that maximizes g 4,

e for each alternative ¢ other than g;, sets
_ 1
n+ 36(Jt,g. — Gt,i) /2

Dt

o sets prg, =1 — > 544, Pty
e chooses a; randomly according to py 1, ..., Ptn,
e receives y;q, € {0,1} from the environment, and

o sets W1 = Wy + (Yt,0, — Wt - Lt,0;) Ttoa0/2-

The following refinement of Lemma, 1 follows directly® from the analysis in [15]. For future reference,
we state it in more generality than we need for the present analysis.

Lemma 7 ([15]) For any ¥,Waq,Z € R™ z,a € R for which ||Z]] < 1, and 0 < o < 1/2, if
Yy =1 %, and Whew = Wold + a(z — §)T, then

[new — 11> = ||Gora — 8l < —(— 0?/2)(Tora - & — 2)* + (@ + /2 +a°[3)(y — 2)°. (3)

'To get Lemma 7 from [15], first apply Lemma IV.3 from that paper with ¢ = 1/2, X =1, 8 = a, w1 = Wold,
W2 = Wnew, (W,X) =y, y = 2z, and § = §. Then simplify and exploit the fact that liw =142z +z>.. for all
O0<z <l

The following theorem is our main result about algorithm CAW.

Theorem 8 On any n-admissible run of algorithm CAW, if E(-) represents the expectation with
respect to the randomization of CAW, then

m m
> maxy; —E() yra,) <
t=1 ' t=1

[SUN

mn(3 + 27).

The proof of Theorem 8 makes use of the following lemma.

Lemma 9 On any n-admissible run of algorithm CAW, on any trial t, if E(-) represents the
expectation with respect to the randomization of the algorithm,

n

o - . 4dn
max yy; — B(ysa,) < wE([0 = " = |[dh = %) + o + (2/3)s Z " Tt = Yl

Proof: Choose an n-admissible run of algorithm CAW, and fix some trial ¢. As in the proof of
Lemma 3, let progress = E(||@; — 9]|? — ||@Wi+1 — 7]|?) and best = max; y;; and drop the subscript
t from all notation. Choose b so that y, = max; y;.

Applying Lemma 7 with o = 1/2,

best — E(y,) — x progress < 1y, — (ipz?/z) - (sz i)2/8 = 2(V - & — i) /3)>
= (Zn:pi(yb —) — K (21% i)?/8 —2(7 - & — yi)2/3)>

n

(ipi(yb_)—H(sz - Y;) /8) (2“/3)z|"7'fi_yi|

=1

IA

From here, applying an argument almost identical to that for Lemma 3 to bound the first two terms
completes the proof. []

Proof of Theorem 8: For each t, let best; = max; y;; and let n, = Y7, |0 Z+; — yri|- Applying
Lemma 9, on each trial ¢,

oo o . dn 2K
best, — B(ye,) < kB[, — 31| = [- 7°) + 5 + ",
and therefore
- . dnm 2kKn
3 (besty ~ Blya)) < AB(Y (i — a1l s — 3]%) + 5 + 2o
t=1 —1 3K 3
dnm 2kKn
= KE(||w — 3|]> = ||Bmss — T — + =
W1 — A1~ ([— 3+ o+ 2
4'n,m
< 14+2n/3)+ ——
< w1+ 20/3) + o
Substituting the value of k¥ and simplifying completes the proof. [

10

Next, we describe another algorithm for which we can prove better bounds when the “nonlinearity”
71 of the data is relatively large. We call this algorithm CAU, since it is for optimizing continuous-
valued rewards in the agnostic case while doing its exploration by sampling uniformly. Other
differences are that the stepsize of the algorithm’s update to its hypothesis doesn’t depend on the
magnitude of its error, but does depend on whether the alternative chosen was the greedy one (a
larger stepsize is taken in the less likely case of exploration). This algorithm will make use of the

following three parameters:
_ n2/3
p = min SSYEN G

B = n\/ﬁm’ and
o - (-1BA-p)
p

It sets @) = 0. On trial ¢, algorithm CAU

e after getting &1, ..., ¥, from the environment, chooses g; from among {1, ...,n} to maximize
we * .’L't’gt,

e flips a coin with probability p of coming up heads, and

— if the coin comes up heads, Algorithm CAU picks a; uniformly at random from among
{1,...,n} —{gt}, gets yi,q; from the environment, and sets

Wiy = Wy + a sign(Yea, — Wi - Tt 0,) Ttya5

— if the coin comes up tails, Algorithm CAU sets a; to be g, gets y; 4, from the environment,
and sets

Wir1 = Wy + B 8ign(Ye,a, — Wt - T1a,) T,
The proof the following lemma, is similar to that of Lemma, 7.

Lemma 10 Choose d € N, T woq € Ry > 0,y € R. Assume ||Z]| < 1. Let § = Wyq - Z
Wnew = Wold + ¥ sign(y — §)Z. Then, for any v € RY,

7

|| Toew — T3 — || Tota — B3 < =291 —y| + 29|17 - 2 — y[+~*.
Proof: We have
|| Boew — 315 — [[dora — 713
= || + v sign(y — §)& — 75 — ||@owa — 7J5
= ((Woa — V) + v sign(y — §)Z) - (Wora — ¥) + v sign(y — 9)%) — |[Woa — 7|[3
= (Wold — ¥) - (Wold — ¥) + 2(Worq — ¥) - (v sign(y — 9)7)
+(y sign(y — §)2) - (v sigu(y — §)&) — |[doa — 713
= 2y(9 — ¥ - D)sign(y — 9) + 7*|I1213
=2y(§ —y+y — 7 F)sign(y —) +7°||7][3
= —29|j — y| + 2v sign(y — §)(y — 7 - ©) + +*||Z(13-

Overestimating each of the last two terms completes the proof. 0

11

Theorem 11 On any n-admissible run of algorithm CAU, if E(-) represents the expectation with
respect to the randomization of CAU, then

Zmaxytz_E Zytat) <+ 3(nm)*3.
t=1 t=1

Proof: For each t, let ny = >0 1 |V Zpi — yr4l-

For each ¢t € {1,...,m}, let by = argmax;y; ;, recall that g; = argmax;y;;, and let a; be the choice
made by algorithm CAU on trial t. Then

m
Zyt be = Yta) = D (E((l =)Wt = Yege)) + ——7 (D0 v —)
t=1

Z#gt
m
- D) (Z E(yt,bt - yt,gt)) + 2pm.
t=1

Since, by the definition of g;, it is always the case that §; 4, > 9:s,, we have

IA

m
Z Yo — Yta) < (1=p) D Eyp, — G, + g — Yt,g.) + 20pm

m
< (L =p)EQ lyrs, — G| + G0 — Yr.gil) +2pm. (4)

Fix ¢, and fix the values of the randomization from trials before the ¢tth. By Lemma 10,
E(|| @1 — 713 — ||, — 41[3)
(1 -)(—2,8|@t,gt - yt,gt| + 2,3|17- "ft,gt - yt,gt| + /82)

+ Z (=2t — yeal + 2a|7 - Fri — yral +)
Z#gt

= (1 - p)(_2:8|?3t,gt - yt,gt| + Q/BW' *'Et,gt - yt,gt| + /32)

2a 2a
P (Zlytz yt,i') P (Zh} Tt — yt,i|) + pa’.

1#£gt i#gt

Substituting the definition of «, we have

E(||[@y41 — 7[5 — || — ¥]13)

<Q —P)(—2ﬁ|??t,gt - yt,gt| + 2ﬁ|"7' 'fil't,gt - yt,gt‘ + ﬁ) —2(1 - (Z |ytz yt,i')
i#gt

B (i |0 Ty — yt,z’|> +(n—1)*8*(1 —p)*/p.

179t

Collecting terms, we get

E(||[@y41 — 3|5 — |0 — ¥]]3)
n

< -2B(1 - Z |9t — yeal + 281 —p)m + (1 — p)B° + (n —1)*82(1 — p)*/p
< -28(1 —P)(|yt,gt = Ytgel + |Gter — Yeee]) +28(1 —p)me + (1 = p)B° + (n — 1)*B*(1 — p)*/p.

12

Averaging over all of the algorithm’s randomization, we get

E(|[d41 — 713 — ||@; — 713)
< =26(1 = P)E(|9t,6. — Yt,g: + [0 — Yo00]) + 261 = p)me + (1 = p) B + (n — 1)*B(1 —p)*/p.

Summing over ¢ and telescoping, we get

m
> =281 = P)E(lf1g, — Yt + [Gep, = yen]) + (1 = p)2Bne + (1 = p)B* + B2(n = 1)*(1 = p)*/p
> E(|[@m1 = 0]l2 = [[dh = 7][3)-

Applying the facts that ||7]| < 1 and @; = 0, we get

> =281 - p)E(It,9, — Ytrge| + 1965, — yep.l) + (1 —p)2Bn + (1 —p)B® + B*(n —1)*(1 - p)*/p > —1.

Solving, we get

= 1+ (1—p)2 1—p)B2+ B%(n—1)%(1 —p)?
B} (99 = rael + lip, — veo) < + (1 = p)26n + m((wﬁ)ﬁ_;ﬂ (n—1)°(1 —p)°/p)
t=1
This means, by (4), that
_ _ 2 200 1N2(1 _ ;)2
ZM o) < L= 0 = DL =0) g,

Simplifying and overapproximating, we get

1 Bmn?
Zytbt ytat _%‘I"r]‘i‘ 2p +2pm

Substituting the definition of 8 yields
m
Zytbt Yta;) myfo +2pmet .
If m > n?, then substituting n%/3/m'/3 for p we get
Z Yae — Yee) < 3(nm)?/® + 1.
If m < n? then, since trivially (37 Y10, — Ytp,) < 2m, we have
Zyt at — Yt bt < 2m1/3 2/3 < 2(nm)2/3

This completes the proof. []

Note that there is a trivial lower bound of 7 on the best regret guarantee possible for an n-admissible
run of any algorithm. Putting this together with Theorem 5, we get a lower bound of Q(y/mn +)
which implies that the O(y/mn(1 + 7)) bound of Theorem 8§ and the O((mn)%/® + 1) bound of
Theorem 11 cannot be improved much.

13

2.3 Improvements

Putting Theorems 8 and 11 together results in a bound of

min {%g/mn@ +2n)/3,n+ 3(nm)2/3} .

Since the publication of preliminary versions of this work, Auer [4] has improved on this bound,
obtaining a bound of

min {4\/mn, n+ 3(377nm)1/3})

for an algorithm that takes O(dn) time per trial, as ours do. By reducing to a problem studied in

[8], he established a bound of
N+ ¢y/dmn ln(dm)

for an algorithm that uses O(m?) time.

3 Random binary-valued rewards

Now we turn to the latter of the two cases studied in this paper: the case in which the probability
of obtaining the larger of two rewards is given by an unknown linear function, rather than the
continuous-valued rewards themselves.

As in Section 2, we assume that learning proceeds in trials, where in each trial ¢, the learning
algorithm must choose from among n alternatives. Also, the algorithm is given feature vectors
Tt 1y -y T € R¢, one for each alternative, before making its choice, which we will refer to as a;.
At the end of the trial, the algorithm receives z; 4,, a {0, 1}-valued quantity indicating whether this
choice resulted in failure (0) or a success (1).

We will assume that there is an unknown coefficient vector ¥ € R¢ such that, for all trials ¢ and
alternatives i, Pr(z;; = 1) = ¥-Z;;. We will make the benign assumption that all Z; ;’s encountered
during the learning process have the property that v-Z; ; € [0,1]. This assumption would be satisfied
for example if there was a default probability of success (which can be represented in our framework
using a feature that always has the same value) that was adjusted somewhat by the specifics of the
feature vectors.

As in Section 2, we will assume that m and n are known ahead of time, and that the lengths of the
coefficient vector and feature vectors are at most 1. We say that (Z;;):; (i.e. the collection of all
feature vectors encountered during some run of a learning algorithm) and ¥ are admissible if all of
their lengths are at most 1 and ¥'- Z4; is always in [0, 1]. In this case, we also say that any run of
an algorithm with these is admissible.

3.1 Algorithms

Define the clipping function « by letting 7(z) be the element of [0, 1] that is closest to z.

3.1.1 Algorithm BW

As did Algorithms CRW and CAW, Algorithm BW chooses each alternative not estimated to be the
best by the current hypothesis with probability roughly inversely proportional to how much worse

14

it is predicted to be as compared to the alternative that appears to be best. It sets k = m3/ 1y/n/2,
a = 1/4/m, and w; = (0, ...,0). On the ¢th trial, the algorithm

e for each alternative i, set g;; = (s - Z1;),
e sets g; € {1,...,n} to be some alternative that maximizes 9 g,,

e for each alternative 7 other than g, sets

1
D i = ~ ~
EL 4k(a — a?)(Gt,g, — Ut,i)

e sets Dtge = 1- Zi#gt Diyis

e chooses a; randomly according to py 1, ..., Ptn,

—

e receives z;,, € {0,1} from the environment (where for all ¢, Pr(z;; = 1) = ¥'- Z;;; let us refer

to ¥ - Zy; as yr;)

o sets W1 = Wy + (2,0, — Wt - Tt,a,) Tt a,-

3.1.2 Algorithm BU

As did CAU, Algorithm BU picks the not-apparently-best alternatives with equal probability and
it takes a bigger step when a not-apparently-best alternative is chosen. In particular, it sets
K =m*5n?5 p=/n/(36)1/4, a = (1/2)n'/3/(pr)?/3, B = 1/(2k*/3), and @ = (0, ...,0). On the
tth trial, Algorithm BU

e for each alternative 7, calculates its estimate §;; = (W, - £1;) of the probability of success for
alternative ¢ on this trial,

e sets g; € {1,...,n} to be some alternative that maximizes 9 g,,
e flips a biased coin, and

— with probability p,
% chooses a; uniformly at random from {1,...,n},
* receives z;q, € {0,1} from the environment, and
* sets W1 = Wy + al2y,q, — Wt - Tt,0,)Tt,a,, a0d

— with probability 1 — p,
* sets a; = g¢,
* receives 24, € {0,1} from the environment, and

* sets W1 = Wy + B(2t,a, — Wt * Troa;)Tt,as-

3.2 Upper bounds

In this section, we analyze the algorithms presented in Section 3.1.

15

3.2.1 Preliminaries

Straightforward application of calculus leads to the following variant of Lemma 7.
Lemma 12 For any ¥,Weq, % € R", z,a € R for which ||Z]| <1, 0 < @ < 1/2, and z € [0,1], if
y=1"-Z, and Whew = Wold + a(y — 9)Z, then

|[Wnew — F]|* — ||Wora — 7> < —(a — &?/2)(7(Wq - &) — 2)? + (e + a?/2+ > /3)(y — 2)%. (5)

Proof: In Appendix B. 0

In our next lemma, we assume that z is generated randomly according to ¥'- &, and the progress is
given in terms of how well W4 - ¥ approximates this probability.

Lemma 13 For any v, Woq,Z € R™, a € R for which ||Z]| < 1,0 < a < 1/2 ify
7 (Wora - %), and if z € {0,1} is chosen randomly so that Pr(z = 1) = y and Whew =
then

=7
S
Wy,

E(|[dew — T|* — [[@ola — 8]|%) < —(a — a?/2)(§ —y)* + ” + & /3.
Proof: Applying Lemma 12,

E(|[Wnew — 71> — ||Wola — 71[%)
<y(—(a—a/2)1—§)* + (e +?/2+ */3)(1 — y)?)
+(1 —y)(—(a — ?/2)i* + (a + /2 + o3 /3)?).

Let r =9 —y. Then

E(|[@ew — 71* — [[tdoa — 7I°)

<y(—(a—a?/2)1 = (y+71)° + (a+a’/2+/3)(1 — y)?)
+(1 = y)(—(a—a?/2)(y +1)* + (e + ?/2+ * [3)y?).

Simplifying yields
E(||dnew — T||* — [[dola — 91%) < —(a — a?/2)r® + (o + &’ [3)y(1 — y),

which, since y € [0, 1], completes the proof. 0

3.2.2 Analysis of Algorithm BW

The following theorem is our main result about algorithm BW.

Theorem 14 On any admissible run of algorithm BW, if E(-) represents the expectation with
respect to all the randomization in the learning process,

m
ZmaXE zi) — > B(z10,) < 2+ o(1))n'/?m?/*,
t=1 t=1

where o(1) denotes a quantity whose limit as m goes to infinity is 0.

16

The proof of Theorem 14 makes use of the following lemma.

Lemma 15 On any admissible run of algorithm BW, on any trial t, if E(-) represents the expec-
tation with respect to all the randomization in the learning process,
Max Ypi — E(2t,0,)

n

< RE(||d — 71|* = || @1 — T]%) + (e — a?)

+ k(a? + a3/3).

Proof: Choose an admissible run of algorithm BW, and fix some trial ¢. Let progress = E(||w; —
#|? — ||wWi+1 — ¥]|%) and best = max; y;; and drop the subscript ¢ from all notation. Choose b so
that yp = max; y;.

Applying Lemma 13,

best — E(z,) — k progress < yp — (émw) — K (im((a —o?/2) (i — yi)* — &® — a3/3)>
- (iilpxyb - yi)) e (épi«a — 0 2) (s —) — o a3/3))
_ (Zﬁlpi(yb — i — wla - a2/2) (i - W)) + 50 + 0/3).

Using calculus to find the worst-case values of the y;’s as in the proof of Lemma 3, we have

. N 1—m (1 — pp)? 2.3
best—E(z,) —k progress (i;bpz(yb yz)) +4K(2/9) +4 o5 2/2) +r(a”+a’/3). (6)
For alli € {1,...,n}, let u; = 94 — ;-

Case 1 (g = b). In this case as in Lemma 3, the lemma is a direct consequence of the fact that
pg > 1/n.
Case 2 (g # b). In this case, (6) implies

best — E(z,) — K progress

— _ 2
(#pri((@g —up) — @i)) + 4%(; —21)2/2) + 4pb/($1(a 3’22/2) + r(a? + 0?/3)

IA

-)2
- (#pri(gg - QZ)> — (L =poup + 4,%((1 —1;[)2/2) + 4pb/($1(a f)bc)yzm) + k(a® + a®/3)

n 1 - ,
= (;pﬂh) —up + (o —ZI;/2) + 4pb’i(a fb(zz?/z) + r(a® + a®/3)

1 1
< Ui | — 2 3
S (;pzuz) up + dr(a — a2/2) +4pbn(a—a2/2) + k(a” + a’/3),

as ug = 0 and py > 0.

17

Substituting into the p; in the denominator, we get

1 n+ dk(a — a?/2)uy 9 3
best — E(z,) — K progress < <£p1u1> —up + Inla — a?)2) + Inle — a?)2) + k(o + a”/3)

n+1
= szu, In(a— a?)2) + k(a? + ?/3).
iz 4k(a — 02 /2)
Substituting into the remaining p;’s completes the proof. []

Proof of Theorem 14: Assume without loss of generality that m > 1. For each %, let best; =
max; ¥t ;. Applying Lemma 15, on each trial ¢,

best, —B(za,) < KB, ~ 1 = [ier = F1°) + 5o s + e+ 0/3),
and therefore
o 2 o 12 2 3
> (best ~ Bi(ea)) < B 5~ s) + 5 M 4wl 4 e f3)m
= KBl = T [= 717) + g+ w0+ ¥ 3)m
< 1 2 3 L
< Kl+ (@ +a /3)m)+2m(a—a2/2)

Substituting the values of k and « and simplifying yields

; best; — E(2y4,)) < (24\/71_;_/%__16/\/'%) m3/4\/ﬁ,

completing the proof. 0

3.2.3 Analysis of Algorithm BU
The following is our main result about BU.

Theorem 16 On any admissible run of algorithm BU, if E(-) represents the ezpectation with
respect to all the randomization in the learning process,

Zmaszt, ZEZta <5n2/5 4/5,
t=1 t=1

The proof of Theorem 16 makes use of the following lemma.

Lemma 17 On any admissible run of algorithm BU, on any trial t, if E(-) represents the expec-
tation with respect to all the randomization in the learning process,

n 1
(o —a2/Drp T WB=P2/2)n

maxyy; — B(zt,,) < KB(|[0; — | — [|@ - 5]°) +p +

+(a? + o®/3)pr + (B + B3 /3)k.

18

Proof: Choose an admissible run of BU, and fix some trial ¢. Let
progress = E(|[d; — 7]|* — ||@+1 — 7]%)

and best = max; y;; and drop the subscript ¢ from all other notation. Choose b so that y, = max; y;.

Clearly,
best — E(z,) < (1 —p)(ys — yg) +p
and applying Lemma 13, we have
progress > (p(a—a”/2)/n)(ys—9b)* + (1 —p) (BB /2)(ys —99)* — (1 —p) (B> +5°/3) —p(a® +a’ /3)
SO

best — E(z,) — Kk progress

< (1=p)(yp—yg) +p— (wp(— ®/2) /) (g — Db)* — (1 — P)K(B — B*/2)(yg — 94)°
+(1 = p)a(B” + B°/3) + pr(a® + */3).

The RHS of this inequality is maximized, as a function of ¥, when y, = g+ (1—p)n/(2kp(a—a?/2)),
and so

best — E(z,) — K progress

_ 27},
s(l—p)<@b—yg)+p+%

+(1 — p)r(B? + B3/3 + pr(a® + a3/3).

— (L=p)s(B — B°/2)(yg — 14)?

The RHS of this inequality is maximized, as a function of y4, when y, = 9, — m, which
implies

best — E(z,) — k progress
(1-p)*n (1-p)
drp(a —0?/2) ~ 4r(B — £?/2)

Finally, the definition of {j, implies that §, > 7, so

<@ =p)(@—Gg) +p+ + (1= p)s(B* + B°/3) + pr(a® + o’ /3).

best — E(z,) — K progress
(1-p)°n (1-p)
drpla —a?/2) 4r(B - 5?/2)

completing the proof. 0

<p+ + (1 —p)r(B® + B°/3) + pr(a® + 0*/3),

Proof of Theorem 16: Assume without loss of generality that m > 1. For each %, let best; =
max; y¢;. Applying Lemma 17,

NE

(bost; — B(zt.,))
1

m
REQY_ (Il — ol1* — [[dis1 — 911%)) + pm +
t=1

.
Il

nm m

(o — a2y 4B - F2/2)n

IA

+(a? + & /3)pkm + (6% + 52/3)km

19

nm

:E _'—_'2_ _'m __'2 v
RE(|l1 = 81 = Il =311 +pm+ o s WG = F/2)

+(a? + o®/3)pkm + (B2 + B3/3)km

< nm m
SR a2 2)mp | (B B2k

+ (a® + o3 /3)pkm + (8% + 53 /3)km.

Substituting the values of @ and 3, and applying the fact that each is at most 1/2, we get
n2/3

m m .
tzzl(beStt - E(zt,at)) S K +pm + W + m

Substituting the value of p, we get

i 2my/n 2m
tzzl(bestt — E(Zt,at)) S K ‘l‘ W m.
Substituting the value of k¥ completes the proof. [

3.3 Lower bounds

Our lower bound will be proved using a reduction from the bandit problem (see [12]). In the instance
of the bandit problem that we need for our application, an algorithm is confronted with a row of K
slot machines. Each time a slot machine is played it either pays off or doesn’t. Each slot machine
pays off with some probability that is unknown to the algorithm, and each time the algorithm plays
some slot machine, that random outcome is independent of the other plays. The algorithm makes
a sequence of T" choices of which machine to play, and each time it plays some machine, it finds out
whether that machine pays off. Randomized algorithms are allowed. The goal is to maximize the
total number of the T plays that pay off. We will make use of the following technical lemma.

Lemma 18 ([9]) There is a constant v > 0 such that, for any algorithm B for the bandit problem,
for any T > K > 2, if a slot machine i € {1,...,K} is chosen uniformly at random, and

o the probability that slot machine 1 pays off is set to p; = % + i\/%, and
e the probability that all other slot machines pay off is set to 1/2, then

if 21, ..., 27 s the random sequence of outcomes obtained by applying B to those slot machines
T
E <piT — Zzt> >yVKT.
t=1

We apply this in our main lower bound argument, which shows that the bounds obtained by
combining Theorems 14 and 16 with the trivial upper bound of m are nearly best possible bounds
in terms of m and n.

Theorem 19 For any number m > 2 of trials and any number n > 2 of alternatives per trial
and any algorithm L, there is a number d of features, a sequence (Zy;)¢; of feature vectors and a

20

coefficient vector ¥ such that, if ai, ..., an are the (random) choices arising from L, (Zy;)tq, and U,
and 21,4, 5 -, Zm,a, 1 the corresponding random sequence of success/failure events, then, if -y is the
constant from Lemma 18, we have

3/4,1/4

m
> ma.xv Z1i) — B(2t,q,) > v min{m ,m}.
t=1

Proof: We divide our analysis into cases, depending on the relative size of m and n. We start with
the easy case.

Case 1 (m < 16n). Suppose d = n, and €1, ..., €, are the feature vectors given on each of the m
trials. Let m' = min{m, |n/2|}. For each i, let p; be the probability that action ¢ is chosen during
the first m' trials if all choices result in failure. Since only m’ actions can ever be taken during
this time, >, p; < m' < n/2, so there exists ¢ with p; < 1/2. If ¥ = €;, then with probability 1/2,
action 4 will not be chosen during the first m/ trials, and the expected regret is therefore at least
m'/2 > m/64.

Case 2 (m > 16n). Let r = [/mn/4], and divide the first 7|m/r| trials into |m/r| stages with
r trials each. In each of these stages, we simulate an instance of the bandit problem as follows.

In this case, we set the number of features d to be n|m/r| + 1. For simplicity, we number features
from 0. Feature 0 has a value of 1/1/2 for all alternatives on all trials. During the jth stage, the
value of the ((j — 1)r +i)th feature of the ith alternative is also 1/1/2, and all other features have
a value of 0. For example, the sequence of trials (alternatives with their feature values) for n = 2
is shown in Figure 1.

(.. V1/2 172 0 0 0 0
Trial 1 { 2 0 72 0 0 0

Stage 1 <
: V1/2 12 0 0 0 0

Trial r

| { Vi/2 0 12 0 0 0
(. 172 0 0 172 0 0
Trialr+1 { N 0 0 72 0

Stage 2 <
: 172 0 0 12 0 0
k Trial 2r { /2 0 0 0 /2 0

Figure 1: The feature vectors used for the sequence of trials in the proof of Theorem 19, in the
case n = 2.

Once we have fixed feature vectors as above, any algorithm A for reinforcement learning of proba-
bilistic linear functions with immediate rewards from m trials gives rise to a sequence By, ..., B|y,/r|

21

of algorithms for the bandit problem with r plays as follows. One views the state of the algorithm A
at the beginning of the jth stage as a random input (i.e. as randomization), and then the decisions
made by algorithm A during the jth stage as those of a randomized algorithm for solving the bandit
problem.

Now we set the coefficients of the target linear function as follows. First, we set vy = 1/1/2. For
each stage j, choose i; uniformly at random from {1,...,n}. Then for each stage j, set v(;_1), +i; =

(v/2/4)\/n]r, and V(j—1)r4+i = 0 for all i # ij.
Note that, for each stage j and alternative i, the probability of success when that alternative

is chosen is constant throughout stage j. Furthermore, the results during stages before stage j
provide no information about the probabilities of success during stage j.

With this coefficient vector and the feature vectors as described above, the probability of success
for i; during the jth stage is 1/2 4+ y/n/r/4 and for all other alternatives, this probability is 1/2.

The length of the feature vectors and the coefficient vector are at most 1. Furthermore, applying
Lemma 18, there is a constant 4’ > 0 such that E(3{%, best; — 214,) > 7' |m/r]y/rn, where this
expectation is with respect to the random choice of ' as well as the randomness of the learning
process. This implies that there exists a choice for @, such that, for that fixed @, > ;" (max; 7
Zri) — B(zt,4,) > 7'|m/r]/rn. Substituting the value of 7 and simplifying completes the proof. []

3.4 Improvement

Aver [6] obtained a result that improves significantly on Theorems 14 and 16 when the number of
features d is small relative to m and n. His bound is O(v'mdlog(mn)).

4 Conclusions and future work

In this paper, we have considered the problem of reinforcement learning with immediate rewards
in a worst-case theoretical framework.

While the best known upper and lower bounds for the problems studied here are pretty close, there
is obvious room for improvement. We hope that this line of theoretical research will generate some
practically useful ideas.

Extending the analysis concerning probabilistically generated, binary-valued rewards to the agnostic
case would be nice.

Adaptively ranking the results of a web search seems to be accurately modeled with immediate
rewards, and this problem contains an exploration/exploitation tradeoff, since pages ranked low
enough are unlikely to be chosen, no matter how attractive they would have been to the user.
A worst-case analysis seems particularly relevant to this problem, since designers of web pages
have aims that are not necessarily compatible with those doing the searching, and therefore with
the ranking algorithm. Ranking search results can be viewed as an extension of the problem of
choosing a banner ad, in which the choice of a single item is replaced with the choice of a ranked
list. Therefore, hopefully ideas from this paper can be applied in a worst-case theoretical study of
the ranking problem. Such an analysis would of course be relevant to the more general information
retrieval problem. This is but one of a wide variety of problems involving short-term interactions
with users that seem to be accurately modeled by reinforcement learning with immediate rewards.

22

Acknowledgements

We thank Greg Keim and Atsu Nakamura for valuable conversations, and Wee Sun Lee and Atsu
Nakamura for their comments on earlier versions of this paper. We also thank anonymous referees
for their thoughtful reviews.

Naoki Abe was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas
(Discovery Science) 1998 of the Ministry of Education, Science, Sports and Culture, Japan. Alan
Biermann was supported by ONR grant N00014-94-1-0938 and NSF grant TRI9221842. Phil
Long was supported by ONR, grant N00014-94-1-0938, National University of Singapore Academic
Research Fund Grant RP960625.

References

[1] N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic concepts.
Proceedings of the Sizteenth International Conference on Machine Learning, pages 3—11, 1999.

[2] N. Abe and A. Nakamura. Learning to optimally schedule internet banner advertisements.
Proceedings of the 16th International Conference on Machine Learning, 1999.

[3] C. Allenberg. Individual sequence prediction — upper bounds and an application for complexity.
Proceedings of the 1999 Conference on Computational Learning Theory, pages 233—242, 1999.

[4] P. Auer. An improved algorithm for learning linear evaluation functions. Proceedings of the
2000 Conference on Computational Learning Theory, 2000.

[5] P. Auer. Using upper confidence bounds for online learning. Proceedings of the 41st Annual
Symposium on the Foundations of Computer Science, 2000.

[6] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Machine Learning
Research, 3(Nov):397-422, 2002. A preliminary version has appeared in Proc. of the 41th
Annual Symposium on Foundations of Computer Science.

[7] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. Proceedings of the 36th Annual Symposium on the
Foundations of Computer Science, 1995.

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002. A preliminary version has
appeared in Proceedings of the 36th Annual Symposium on Foundations of Computer Science.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. Gambling in a rigged casino: the
adversarial multi-armed bandit problem. Technical Report NC-TR-98-025, Neurocolt, 1998.

[10] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata. IEEE Trans.
on Systems, Man and Cybernetics, 15:360-374, 1985.

[11] A. G. Barto, R. S. Sutton, and P. S. Brouwer. Associative search network: A reinforcement
learning associative memory. Biological Cybernetics, 40:201-211, 1981.

[12] Donald A. Berry and Bert Fristedt. Bandit Problems. Chapman and Hall, New York, 1985.

23

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

A. W. Biermann, C. I. Guinn, M. Fulkerson, G. Keim, Z. Liang, D. Melamed, and K. Ra-
jagopalan. Goal-oriented multimedia dialogue with variable initiative, 1997. In Foundations
of Intelligent Systems, Z. W. Ras and A. Skowron (ed.).

A. W. Biermann and P. M. Long. The composition of messages in speech-graphics interactive
systems. Proceedings of the 1996 International Symposium on Spoken Dialogue, 1996.

N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth. Worst-case quadratic loss bounds for
prediction using linear functions and gradient descent. IEEFE Transactions on Neural Networks,
7(3):604-619, 1996.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the Association for Computing
Machinery, 44(3):427-485, May 1997.

C-N. Fiechter. Design and Analysis of Efficient Reinforcement Learning Algorithms. PhD
thesis, University of Pittsburgh, 1997.

D. Haussler, M. Kearns, H.S. Seung, and N. Tishby. Rigorous learning curve bounds from
statistical mechanics. Machine Learning, 25:195— 236, 1996.

D. P. Helmbold, N. Littlestone, and P. M. Long. Apple tasting. Information and Computation,
161(2):85-139, 2000. Preliminary version in FOCS’92.

L.P. Kaelbling. Associative reinforcement learning: A generate and test algorithm. Machine
Learning, 15(3):299-320, 1994.

L.P. Kaelbling. Associative reinforcement learning: Functions in k-dnf. Machine Learning,
15(3):279-298, 1994.

M. Kearns, M. Li, L. Pitt, and L. G. Valiant. On the learnability of Boolean formulae.
Proceedings of the 19th Annual Symposium on the Theory of Computation, pages 285-295,
1987.

M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. Machine
Learning, 17:115-141, 1994.

N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold
algorithm. Machine Learning, 2:285-318, 1988.

P. M. Long. On-line evaluation and prediction using linear functions. Proceedings of the 1997
Conference on Computational Learning Theory, 1997.

K. S. Narendra and M. A. L. Thathachar. Learning Automata: An Introduction. Prentice
Hall, Englewood Cliffs, NJ, 1989.

R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. MIT Press, 1998.

B. Widrow and M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Conv. Record,
pages 96-104, 1960.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229-256, 1992.

24

A An application — multimodal message generation

In this section we describe an application of the model of reinforcement learning with immediate
continuous-valued rewards and linear hypotheses: an adaptive grammar-based method for gener-
ating multimodal messages.

One representative context in which the problem of message generation arises is in the design of an
interactive tutoring system. One module in a typical architecture for such a system takes as input
some abstract representation of an idea to convey to the user and must output a way to express
that idea. The output module in the Pascal tutor developed by members of the Duke Voice and
Natural Language Lab (see [13]) takes as input a prolog statement, and must output a message
that is a mix of speech, text and graphics. The most interesting subproblem faced by this module
was identifying part of a program (for example, choosing between saying “there is something wrong
with the fourth word on the third line”, saying “there is something wrong with the highlighted
region” while highlighting, and so on), so we will focus on this subproblem for the remainder of
this section.

A.1 Operators

As mentioned above a key subproblem in the generation of output messages for the tutor is that
of identifying a particular substring of the user’s program. We will refer to this substring as the
target substring.

The algorithm maintains a list of substrings that is updated through the application of rules. The
list begins by consisting only of a single string: the entire program. The goal is to, through the
application of certain rules, transform the list so it consists only of the target substring.

In our preliminary system, there are two kinds of rules:

e nouns (like LINE, WORD, and SEMICOLON), which describe a set of substrings of the “current”
string, and

e selectors (like FIRST and SECOND-FROM-LAST), which choose a particular element from a list
of substrings.

As mentioned above, an example of a noun operator is the LINE operator. A precondition for the
application of the LINE operator is that the set of strings currently referred to consists of a single
string. Applying the LINE operator results in this string being broken into several strings, one for
each line in the original string.

An example of a selector operator is the THIRD operator. A precondition for the application of
the THIRD operator is that the list of strings currently referred to contains no pair of strings that
overlap. Applying the THIRD operator replaces the current list of strings with the list consisting
only of the third string in the list.

Another class of selector operators are the graphics operators, for example, the HIGHLIGHT operator.
Formally, there is a separate HIGHLIGHT operator for each substring of the original program, but
to apply a HIGHLIGHT operator, its corresponding string must be an element of the list of strings
currently referred to. Applying a HIGHLIGHT operator replaces the list of strings referred to with
the highlighted string.

25

The algorithm backtracks when the list of strings referred to does not contain any string which in
turn has the target string as a substring. The existence of an ALL operator, which replaces a string
with the list of all of its substrings, ensures that the procedure terminates.

As the algorithm proceeds, in addition to the list of strings currently referred to, it also maintains a
stack of those operators which have been applied. When the list of strings referred to consists only
of the desired string, it is then fairly straightforward to construct the message describing the string
using this stack. For example, if the string was arrived at by first applying the LINE operator,
then the THIRD operator, then the WORD operator, then a HIGHLIGHT operator, then this portion
of the message would have the computer say “... the highlighted word of the third line ...” while
highlighting the given word.

A.2 An example

Suppose the program is

program hw;
begin

writeln(’Hello, wolrd’);
end.

and the system wants to identify the misspelled word. The original list of strings consists only of
the single string “program hw;<ret>begin<ret> writeln(’Hello, wolrd’) ;<ret>end.<ret>”.
Applying the LINE operator would result in replacing this string with the following list of strings:
“program hw;”, “begin”, © writeln(’Hello, wolrd’);”, and “end.”. Next, applying the third
operator of the ORDINAL class would pick out the third item in the list, making the current list
consist only of the string “writeln(’Hello, wolrd’);”. From this point, applying the WORD
operator would result in our current list of strings consisting of “writeln”, “Hello”, and “wolrd”.
Finally, applying the appropriate HIGHLIGHT operator would select the string “wolrd”, and the
system would be done, constructing the message “... the highlighted word of the third line ...”
together with the action of highlighting the given word.

A.3 Scoring

Clearly, the above rule-based process can generate a huge variety of ways of expressing a particular
substring of the user’s program. Some of them are obviously worse than others. For example, one
would never want a program to say “there is something wrong with the thirteenth character of
the twentieth line.” Therefore, we need some mechanism for scoring proposed messages, and for
choosing low-cost messages.

One scoring mechanism is motivated by the following idealized user model: we assume that the user
works through the message from general to specific, maintaining a list of strings currently referred
to in a similar manner as was done during generation, except without the backtracking. Our goal
is to ensure that the total time taken by the user to understand the message is small.

Concretely, the cost of a message is constructed as follows. First, for each class of noun operators,
there is a particular (adjustable) constant cost for applying operators from that class. For operators
that count, for example, the operator which identifies the third item in a list and the operator which

26

identifies say the fourth from last item in a list, there is a constant ¢ such that the cost of identifying
the kth item is kc. This corresponds to a crude user model in which the user actually counts “one,
two, three...” until the desired object is reached. Finally, for each class of graphical operators (in
the basic implementation there is one for highlighting, one for blinking, and one for pointing with
an arrow), there is a constant, call it ¢/ such that, if there are £ items in the list before application
of the graphical operator, the cost of applying it is ¢’ In£. This corresponds to a user model where
the user zeroes in on the highlighted item “geometrically”, first locating the general area, then
successively refining.

In nonadaptive mode, constants are fixed for each of the operator classes, and the algorithm searches
the space of lists of strings by applying the operators, keeping track at any time of the least cost
solution found so far and the running cost of the current partial solution, and pruning as described
above.

A.4 Adapting the coefficients

Recall that our cost function (we can convert costs to rewards by negating them) was motivated
by consideration of the time it took the user the understand the message. This leads us to use (the
negation of) some measure of the time for the user to respond to the message as reinforcement for
the learning algorithm. Our initial implementation used the total time between when a message
was sent and when the user next queried the tutor as reinforcement for the learning algorithm. At
first glance, this reinforcement appears impractically crude. However, Algorithm CAU of this paper
is highly robust with respect to noise. Furthermore, the step size of the update made by CAU to
the coefficients does not depend on the size of the error, and therefore the algorithm is intuitively
even more robust with respect to flagrant outliers than is captured by our analysis. Our initial
experience using the system suggests that it indeed learns to output subjectively good messages
using such crude, however objective and passively obtained, feedback.

To illustrate how we arrive at features for the learning algorithm, let us assume that there are only
two classes of operators for selecting strings from a list: the class of ORDINAL operators, and the
class of HIGHLIGHT operators. As described above, our cost model would in this case have constants
for each of the nouns (like WORD and LINE), together with constants c,q and cpignh such that, for
example, the cost of applying the ORDINAL operator to pick the third item from the list would be
3¢ord, and the cost to use a HIGHLIGHT operator to pick any item from a list of 10 items would be
(1I1 10)Chigh-

Now, let us examine the form taken by the cost of one output considered by an algorithm using
multimedia grammars in this way. Suppose the algorithm is considering saying “The highlighted
character in the second word of the third line.” Suppose further that the second word of the third
line of the highlight paragraph has £ characters in it. Then the cost of the above method of referring
to the given character would then be, according to the model outlined above:

Cord3 + Cline + Cord2 + Cword + Chigh In£ + Cchar-
But, rearranging, we get that this is equal to

Chigh (ln E) + Cord(3 + 2) =+ Cline + Cword + Cchar-

For any proposed message, suppose we identify the following features:

27

e >, ki, where ki, ko, ... are the indices referred to by the various applications of ordinal rules,
e > .log¥;, where £, /5, ... are the size of the focus lists when highlight rules are applied,

e for each noun for which there is an operator, the number of times that noun was used (typically
either 0 or 1).

Then, by collecting terms, we can see that the cost of any proposed output is a linear function of
these features, with the coefficients given by corq, chigh and the various noun costs. This implies
that a linear function of these features is an appropriate cost model, and therefore that the analyses
of Section 2.2 are relevant to this setting. (Note that the feature vectors constructed in this way
may not be unit length, but recall that it is known how to modify algorithms that work for unit
length feature vectors to handle the general case.)

Algorithms CAU and CAW described in this paper have a nonzero probability of picking any
message. Due to the large number of possible messages, it is difficult to sample from all of them
while operating in real time. Instead, in our implementation, the output system first generates
a list of the lowest cost alternatives (according to the current cost function), and this is in turn
passed to the learning algorithm. By adjusting the threshold for membership in this list, we are
able to trade between computational efficiency, and the ability of the learning algorithm to freely
“explore”. Setting the threshold in terms of cost relative to the lowest cost alternative, rather
than to have a fixed number of lowest cost alternatives, facilitates pruning and therefore efficient
implementation. This results in a nonconstant number of alternatives being presented at each
“trial”, but the algorithms are easily modified to cope with this.

A.5 Comments

We have implemented this system, using a variant of CAU, and integrated it into an existing Pascal
tutor [13]. The tutor as a whole works in real time, interacting with the user using speech recognition
and generated speech, graphics and text as described in this paper, as well as by observing the
user’s current program. The system noticeably adapts to different user preferences, and generates
messages that subjectively appear reasonable.

B Proof of Lemma 12

Define f : R — R to be the right hand side of (3), viewed as a function of w4 - Z; i.e., for all u,
flu) = —(a=a?/2)(u—2)* + (a +a®/2 + o [3)(y - 2)*.

Then
fl(u) = —2(a — &?/2) (u — 2).

If u > 1, then since o — a?/2 > 0,
f'(u) < =2(a - a?/2)(1 - 2) <0,

since z is at most 1. Thus, f is maximized, subject to u > 1, when u = 1.

28

If u <0, then
fl(u) > (o — a2/2)z >0

since z is at least 0. Thus, f is maximized, subject to u < 0, when u = 0.

Overall, we have that f(mw(u)) > f(u), and putting this together with Lemma 7 completes the
proof.

29

