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Abstract. We describe a polynomial-time algorithm for learning axis-aligned rectangles in Q¢
with respect to product distributions from multiple-instance examples in the PAC model. Here,
each example consists of n elements of Q% together with a label indicating whether any of the n
points is in the rectangle to be learned. We assume that there is an unknown product distribution
D over Q¢ such that all instances are independently drawn according to D. The accuracy of a
hypothesis is measured by the probability that it would incorrectly predict whether one of n more
points drawn from D was in the rectangle to be learned. Our algorithm achieves accuracy € with
probability 1 — 4 in
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1. Introduction

Dietterich, Lathrop and Lozano-Perez [4] recently introduced the notion of learn-
ing from multiple-instance examples, where, rather than learning a function f :
X — {0,1} from examples (z, f(x)) of its behavior, the learning algorithm instead
receives examples of the form ((x1,...,Zn), f(x1) V ... V f(zy))-

They were primarily motivated by a learning problem arising from drug discov-
ery. In particular, they wanted to find algorithms to learn to predict whether a
molecule would bind to a particular site. A molecule might have a number of sta-
ble shapes. For practical purposes, one can regard a molecule as binding to a site
if any of its shapes binds to the site. Further, experiments typically yield infor-
mation only about whether any of a molecule’s shapes binds to a site. For this
problem, Dietterich et al argued that high-dimensional axis-aligned rectangles were
good models for determining whether a particular shape would bind to a site. They
presented experimental studies of different learning algorithms using both natural
and synthetic data.

In this paper, we consider the problem of learning axis-aligned rectangles from
multiple-instance examples in Valiant’s PAC model [12]. We assume that each of



the instances is drawn independently at random according to a fixed, unknown,
product distribution D on Q?. The accuracy of a hypothesis is measured by the
probability that it would incorrectly predict whether one of n additional instances
drawn according to D would be in the rectangle to be learned.

In this paper, we describe an algorithm which learns to € accuracy with probability
at least 1 — ¢ in time

d®n'?  , nd

The algorithm of this paper (let’s call it Apyug) is substantially different from those
studied by Dietterich, et al. It works by running d copies of an algorithm Apcon
for learning p-concepts [7, 13] to learn the conditional probability that any of the
instances of a multiple-instance example will be in the rectangle to be learned, given
each of the components of the first instance. Generating p-concepts in this way is
reminiscent of the “hidden variable” problems studied by Kearns and Schapire [7].

The p-concepts that arise are piecewise constant, with a constant conditional
probability in an interval, and lower conditional probability outside this interval
(see Figure 1 for a representative graph). Using the tools of Kearns and Schapire
[7], it is fairly easy to see that these p-concepts are of a simple enough form that
they can be efficiently learned. The difficulty arises from enforcing the fact that
one can reconstruct a good hypothesis for the hidden rectangle from the hypotheses
returned by Apcon- What Anyie needs is to be able to use each p-concept hypothesis
to accurately guess the endpoints of the associated interval. First, loosely speaking,
if the two conditional probabilities are too close together, then a constant p-concept
can be an accurate enough hypothesis, while yielding no information about the
location of the endpoints. Thus, for the sake of Ay we must argue that the
two conditional probabilities are sufficiently far apart. This is not necessarily the
case. However, if we exclude degenerate cases where the probability of a multiple
instance example being labelled 1 is either very large or very small (A1 can easily
dispose of these cases before calling the copies of Apcon), then we can ensure that
the gap is big enough. Still, if for some p-concept subproblem, the probability
that the associated component of the first instance falls in the interval is small
enough, then Apcon can still get an accurate enough hypothesis with a constant
p-concept by just being inaccurate on the interval. However, we can also argue, if
Ay disposes of the degenerate cases, the probability of the interval of each of the
components to be learned by copies of Apcon is large enough. The same problem
arises concerning the probability of the complement of the interval. Here, this
probability can apparently be exponentially small in the parameters of the problem
faced by Amnu. However, the conditional probability of the p-concepts on this
portion of their domains is the same for all of the p-concepts that copies of Apcon are
trying to learn. Furthermore, this conditional probability is a simple function of the
probability that a multiple-instance example from the original problem is labelled
1 (i.e., that one of the instances is in the rectangle to be learned). Therefore, by
estimating this probability, Apus can obtain estimates for use by all the subroutine
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p-concept algorithms. With a couple of additional ideas, we are able to enforce the
fact that accurate p-concepts yield accurate estimates of the associated endpoints.

The problem studied in this paper can be viewed as that of PAC learning a
subclass of the set of unions of n axis-aligned rectangles with respect to product
distributions on Q%". Blumer, Ehrenfeucht, Haussler and Warmuth [3] showed how
to learn unions of s rectangles in Q¢ in time polynomial in s for fixed d; Long and
Warmuth [9] described an algorithm taking time polynomial in d for fixed s.

One apparent limitation of our result is that the number n of instances is the same
for all examples the learner sees, where, for example, in the drug design application,
different molecules assume different numbers of shapes. However, it is easy to see
how to replace the assumption that each example contains n instances with the
assumption that each example contains at most n instances by running n copies
of a fixed-instance-size algorithm, then outputting the hypothesis of the copy that
received the most examples. This increases the resources required by roughly a
factor of n.

Since they first appeared [8], the results described here have been improved upon.
Auer, Long and Srinivasan [1] described an algorithm that does not require that
the distribution generating the instances is a product distribution, and that runs
in
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time. They still assumed that the instances were independent, but they showed
that learning rectangles from multiple-instance examples generated according to an
arbitrary distribution on (Q?)” is as hard as learning DNF from single-instance ex-
amples, and that a polynomial-time learning algorithm for the dependent-instance
case which outputs a rectangle as its hypothesis only exists if NP = RP.

Blum and Kalai [2] showed that, if the instances are assumed to be independent,
learning from multiple-instance examples reduces to single-instance learning with
independent misclassification noise, i.e. where the classification in each example is
“flipped” with a certain probability. Kearns [6] had introduced the notion of a sta-
tistical query, and showed that any class that can be learned from statistical queries
can be learned with independent misclassification noise. He then demonstrated that
typical learning algorithms can easily be modified to use statistical queries. A wide
variety of concept classes have been shown to have polynomial-time algorithms
that learn from statistical queries. Blum and Kalai’s results imply that each such
class is efficiently learnable in the independent-multiple-instance model. Blum and
Kalai also established a stronger reduction (to learning with “one-sided” indepen-
dent misclassification noise), allowing them to show that some classes which are
not known to have efficient statistical query learning algorithms are nevertheless
learnable from multiple-instance examples. The algorithm of this paper and that
of [1] used only the first instance of each multiple-instance example for estimating
probabilities; Blum and Kalai found an elegant way to use all n instances, resulting
in an improvement in time and sample complexity over the results of [1] by roughly
a factor of n.



Instead of measuring the accuracy of the algorithm’s hypothesis by the probability
that it misclassifies another n instances as to whether any of them is in the target
rectangle, one might instead want to measure the accuracy with the probability
that a single instance would be misclassified. However, if the probability according
to D of the region outside the rectangle to be learned is €, then the probability that
a given multiple-instance example is labelled 0 is €”. Using known techniques [3, 5],
this implies that learning from polynomially many examples when the accuracy of
the hypothesis is measured with respect to the distribution on individual instances
is impossible.! Nevertheless, for the drug discovery application, the classification of
a collection of n instances corresponds to the binding property of a given molecule,
and therefore the probability of correct m-instance classification seems the most
relevant measure of the accuracy of a learner’s hypothesis.

2. Definitions and main result

Denote the rationals by Q, the positive integers by N, and the real numbers by R.

The following is based on Valiant’s PAC model [12].

A multiple-instance learning algorithm takes as input €,6 > 0, and a finite se-
quence of elements of (Q%)" x {0,1} (n-instance examples), where d,n € N, and
outputs a hypothesis h : Q% — {0,1}. For a multiple instance learning algorithm
A, we will refer to the associated mapping from inputs to outputs also by A.

For each d,n € N, iy, ..., i, € Q% and f: Q? — {0, 1}, define

ORf(T1,..., Un) = f(@1) V ... V f(Un).
For

0= ((Z115 s T10)s s (Fm1s s Tmm)) € ((QH™™
define

samf( ) (((il,'l 1,- (,f" ) ORf(-fUI 1,- fl,n));

Ly s Emn)s ORf(ﬂ_;’m’l, s Bmon)))-

A probability distribution over Q% for which the components of a random point
are mutually independent is called a product distribution.

For d,n € N, if F is a set of functions from Q? to {0,1}, we say a multiple-
instance learning algorithm A (e, §)-learns F' with respect to product distributions
from m random n-examples if for all product distributions D over Q¢, for all f € F

(D™)™{o : D™{i : ORg(c,5,5am, (o)) (&) # ORy (@)} > €} < 6.

Here D™ denotes the probability distribution obtained by sampling n times inde-
pendently according to D, and (D™)™ is defined similarly.

We use the unit cost RAM model of computation.

Finally, for each d € N, for each @,b € Q¢ let Taf = H;i:l[ai, bi]. Define

BOXES, = {r,;:d,b€ Q%}.

The following is the main result of the paper.
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THEOREM 1 There is a multiple-instance learning algorithm A such that, for all
€0 > 0,d,n € N, A (¢,6)-learns BOXES,; with respect to product distributions
from

?n®_ nd
(0] (—610 log 5)

n-examples in

5,12
(0] (d n log® n_d)
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time.

The theorem will be proved by reducing the problem to an associated p-concept
problem (Section 3), and then solving this p-concept problem (Section 4). In par-
ticular, putting together Lemmas 4 and 8 and simplifying will yield Theorem 1.

3. Reducing to a p-concept problem

In this section, we show how the problem of learning rectangles with respect to prod-
uct distributions from multiple-instance examples reduces to a p-concept learning
problem. We will first need to establish some definitions.

3.1. Definitions

This is the subset of Kearns and Schapire’s [7] p-concept model that we need for
this paper. (A similar model was independently introduced by Yamanishi [13].)

For each distribution D over Q and each f : Q — [0,1], define the probability
distribution Pp ; over Q x {0,1} to be the distribution obtained by first choosing
the first component z € Q according to D and then choosing the second component
so that the probability that it is 1 is f(z).

A p-concept learning algorithm A takes as input a finite sequence of elements of
Q x {0,1}, and outputs a hypothesis h : Q — [0,1]. For €,v,d > 0, we say that A
(€,7,0)-learns a set F' functions from Q to [0, 1] from m examples if and only if for
all f € F, for all distributions D over Q,

(Pp.s)™{o : D{z : |[(A(0))(@) - f(z)| > 7} > &} <.

If the three parameters are small, this says that it is highly likely that A’s hypothesis
is very accurate over almost all of the domain. If, in addition, A only outputs
hypotheses in F, following Pitt and Valiant [10], we say that A properly (e, ~,9)-
learns F.

Finally, for each a,b € Q,a, 8 € [0,1], define

B if z € [a,b]
«a otherwise.

ﬂwmﬂﬂ={
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Figure 1. The graph of a typical pg p,a,3-

A graph of one such p, p,q,3 is shown in Figure 1. For each A\ > 0,pu,7n € [0,1], let
PINT) ., (PINT stands for “Probabilistic INTervals”) consist of all those p, 4,43
for which

e (3> a+ A (ie., 3 is significantly bigger than «), and

o a€p—n,p+n] (ie., ais close to u).

3.2. Reduction

We start with the following straightforward lemma, which describes the p-concepts
that the algorithm will learn.

-

LEMMA 1 Choose d,n € N, a product distribution D over Q%, @,b € Q¢, k €
{1,...,d}, and z € Q. If z € [ay, b],

Pr OR,_ (U1, .0, Un) =1 urp =2
(ﬁl,---,ﬁn)eD"( “’( ! ) e )

=1-(1- Efe)lb(/\g;gk’lu € [ag, be]))(1 — D(Ta.,l-;))nfl. (1)

IfZ ¢ [ak, bk],
Pr (OR.

(11'1,...,11‘n)€D" a

(@1, s @p) = 1w =2) =1=(1=D(rzp)" ™" (2)

5

Proof: To prove (1), observe that in that case, in order for OR,__(d1, ..., 4n) = 0,
each of the n instances must fail to be in r, ;. These events are independent.

Since D is a product distribution, if uq € [ak’, bi], the probability that the other
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components imply @ ¢ rapis 1— Praep(Aezrue € [ag,be]), independent of the
particular value of uy . For @, ..., @y, this probability is 1 — D(Ta,z?)'
The proof of (2) is similar, except that the first instance has already failed by
virtue of the fact that z ¢ [ag, bk). O
Next, we establish a simple lemma that relates approximating each of the intervals
of a rectangle Ta with respect to the projections of a product distribution D over

Q? to approximating OR,_ . with respect to D™.
LEMMA 2 Choose d,n € N, € > 0. Choose a distribution D over Q%. Choose

a@,b,a,b e Q.
If, for each k € {1, ...,d},

N €
P € [ag, bp]Alag, b)) < —,
Do (uk € [ak, be]Alar, be]) < -
where A denotes the symmetric difference, then

D"(OR,, ;AOR, ) <e.

Proof: Obviously,

D"(OR,, ,AOR,_.)

(@ ___lgr)eDn(ijl Vit_y ujk € [ak, br)Alax, be])

IA

< Pr w; g, € [ag, br]Alag, bg))-
- z]: zk: (al,...,an)epn( sk € [ak; bl Alar, bi])
This completes the proof. 0
We need the following technical lemma. The idea is that if x is a good estimate
of y, then z'~'/™ must be a good estimate of y'~1/.

LEMMA 3 Choose € >0,0<v <¢€/2,z andy. Choosen € N, n > 2. If

T > €,

|$ _y| S v,
then

|x1—1/n _ yl—l/n| < U\/z
€

Proof: Define f: R — R by f(u) = ul~1/", Then fllu) =(1- l/n)u’l/". So
ifu>e—v,

fl('u,) S (]_ — 1/”)(6 _ V)—l/n‘



Since n > 2 and v < €/2, this implies that for u > e — v, f'(u) < \/2_/6 Applying

the mean value theorem together with the fact that z and y are both at least € — v

completes the proof. O
Now we are ready for the lemma giving the reduction.

LEMMA 4 Assume that there are functions p1,92 : R X R x R — N such that for
each X\, p,m € [0,1], there is an algorithm A such that for each €,7v,6 > 0, A prop-
erly (e,7,0)-learns PINT), ,, , with respect to product distributions from ¢1(e,~,9)
examples in pa(€,7,0) time.

Then there is a multiple-instance learning algorithm B such that, for all 1/2 >
€,0>0,d,n € N, n>2 B (e0)-learns BOXES, from

e € § n? 4
Y1 (@, 32m ﬁ) + [327686—5 log E-‘

n-examples in
e € 4§ n? 1
£ £ 2 2 InZ
© (d‘” (nd’ 321’ 2d> T nd)

Proof: Consider the algorithm B that performs the following steps in order:

time.

e Algorithm B sets p to be the fraction of the first [327682‘—:log %-I examples

whose label is 1. If p < 3e/4, it outputs @ and halts, and if p > 1 — 3¢/4, it
outputs Q? and halts. (This step is to test for degenerate cases and eliminate
them with high probability. The estimate p of the probability that a multiple-
instance example is labelled 1 needs to be especially accurate, though, due to
way it is used by the subroutine p-concept learning algorithms.)

e If it didn’t halt in the previous step, Algorithm B sets p = 1 — (1 — p)!~1/".
(This is our estimate for the conditional probability that a multiple-instance
example is labelled 1, given that a particular instance is not in the rectangle to
be learned. This will be passed to the subroutine p-concept learning algorithms,
which will then constrain their guesses at a (see Figure 1) to be near u.) Next,

— for each k € {1,...,d}, Algorithm B constructs a sample for an Algorithm
A for properly learning

PINTe/(8n),u,e2/(64n)

by pairing the kth component of the first instance of each of the remaining
examples with the example’s label. That is, if

((51,17 Y] fl,n)7 yl): ERET] ((fﬂ’hl: XY -fm,n); ym)
are the remaining examples, it feeds

('/L.Ll,kh y1)7 sy (mm,l,lh ym)
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to Algorithm A. (Recall that PINT 2 /(gp),,¢2/(64n) is the set of “probabilis-
tic intervals” like that in Figure 1 where the two conditional probabilities
are at least €2/(8n) apart and the lesser of the two is €2/(64n)-close to p.)

e Algorithm B now outputs T(a,onsia)s(btsensb
the intervals returned by the p-concept learning algorithm).

) (i.e. the rectangle formed through

Choose d,n € N, a product distribution D over Q? and @,b € Q¢.

By the standard Hoeffding bound (see [11, Appendix B]), the probability that
|p— D" (OR,, ;)| > % is at most §/2. (Here and elsewhere in this proof, we will
refer to ORra,s and the set on which it evaluates to 1 interchangeably.) Therefore,
it is sufficient to prove that, if

2.5

€
p— D" I <
5= D"(ORy, )| < =,

3)
then
Pr(D™(OR,. gAOR’"a g) >e€) <4d/2.

Assume (3) holds. If Algorithm B halts during the first bullet, obviously its error
is suitably small. If B does not halt during the first bullet, (3) implies

€/2< D"(OR,_.) <1—¢/2. 4)
Define
a=1-(1- D(rd,,;))”*l.

Applying Lemma 1, for each k, for each z ¢ [ag, by],

o= Pr (ORp (. iin) =1 | urp =2). (5)

In other words, the p-concept describing the relationship between the kth compo-
nent of the first instance of a multiple-instance example and the label evaluates to
a outside of [ag, bg]. We claim that Lemma 3 implies that p is a good estimate of
a, i.e. that

2
—al < —. 6
h-al < o (©
To see this, note that (3) implies that
2.5

128n°

(1 - ) - D"(-OR, )| <

Plugging in the fact that D"(-OR,_;) = (1 — D(r;3))", we get
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62.5

128n°
and by (4) (1 — D(r; ;)" > €/2. Applying Lemma 3, this implies

|(1=p) = (1 =D(rz3)"| <

which in turn implies
(1—(1=p)' ") = (1= (1=Drzp)" ) < —

Substituting the definitions of p and « yields (6).
Choose k € {1, ...,d}. Define

= Pr (A b
Vg ae%( e£kue € [ag, be])

and
Br=1— (1 - I/k)(l — D(T’a’i;))n_l.

By Lemma 1, together with (5), in its kth call, if Dy, is the distribution on the kth
component of a vector drawn according to D, algorithm A receives examples drawn
according t0 Ppy,p,, 4, .« -

In order to show that

Parbr,a,8e € PINT 2 /(8n) 1e2/(64n)
we’d like to lower bound
Br—a=vp(1=D(ryp)" " (7)
We begin by working on vg. By (4),
€/2 < D”(ORTE’E)
= Dn{(ﬁl, ;ﬁn) : \/Jn-'zl’lfj € ra.j;}
n
< ZD"{(UI, ey lln) 1 U € rw—;}
=1
= "D(Ta‘,l}')'

But directly from the definition, vy > D(ra,,;). Thus,

€
> —. 8
— ®)

Now we want to lower bound (1 — D(ra’g))"’l. Recall that the second inequality

from (4) is D"(=OR,, ;) > €/2. But D"(=OR,_;) = (1 — D(r;3))". Thus
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(1= Dlrgp)™™ > (1= D(ry))" > e/2.

Putting this together with (8) and (7), we have

&2
—a> —.
Br—a> in 9)
Putting together (9) and (6), the p-concept pu, by,a.8, Which A is trying to learn
during its kth call is in

PINT ez /(8n) u.e2 /(64n)-

Thus, since A was given ¢, (55, %, 2‘5—d) examples on the kth call, with probability
at least 1 — d/(2d), the hypothesis p, ; 5. 5, output by A satisfies

D1 (1Pas u s, (48) ~ Pas b, (un) > €?/(32n)) < ¢/(nd). (10)

We claim that
uk € [ak, bkl Alar, bl = 194, 5, a0, (k) = Paw buosy (ur)] > €/(32n). (11)

In other words, informally, where [éy, b is wrong about [a, by], P bu.an.d, 1S @ bad
estimate of pq, b,,0,8,- First, since A is a proper learning algorithm, its hypothesis

pflk,i)k,&kﬁk is in
PINTe2/(8n),u,¢2/(64n) 5

and therefore 3y > &y, +€2/(8n) and |éy, — | < €2/(64n). Since |p—a| < €2/(64n),
|éx — a] < €2/(32n). (In other words, Algorithm A couldn’t help but to get a
approximately right, simply by virtue of the fact that it is a proper learning algo-
rithm.) From here, we break up our proof of (11) into cases:

o If uy, € [ak, be] — [ax, bi], then since |y — a| < €2/(32n),
Paribe.in B (k) = G < o+ €7/(32n), (12)
but in this case
Parbr,,Bi (Uk) = B (13)
Putting together (13), (12), and (9) implies (11) in this case.

o If uy € [ax,bi] — [ax, bk, the fact that |dx — | < €2/(32n) and |ay — Bi| >
€2/(8n) implies, using the triangle inequality, that |3 —a| > €2/(8n) —€2/(32n),
establishing (11) in this case.

Now, (11) and (10) together imply that with probability at least 1 — 6/(2d),
Pr (u € [ak, br] Alak, br]) < €/ (nd). (14)

Since k was chosen arbitrarily, with probability at least 1-d/2, for all k € {1, ..., d}
the above holds, and applying Lemma 2 completes the proof. O
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4. Solving the p-concept problem

The results of Kearns and Schapire [7] imply that each PINT), , , can be learned
in polynomial time, but for our application we need a proper learning algorithm.

4.1.  Definitions

The following definition is due to Pollard [11]. Choose a set F' of functions from Q
to [0,1]. We say that F shatters (uy,s1),--., (ug, sq) if for each qy,...,qq4 € {0,1}4,
there is an f € F such that for all ¢ € {1,...,d}, f(u;)) > s; & ¢ = 1. The
pseudo-dimension of F is the size of the longest sequence shattered by F.

A p-concept learning algorithm A minimizes quadratic loss with respect to F' iff

for all (xl;yl);---;(xm;ym) € Q X {071}7 if h = A((xl,yl);---;(wm;ym)); then h
minimizes ) ; (h(z;) — y;)? from among functions in F.

4.2.  Learning PINT) ,, ,

We begin by recording a lemma that follows directly from the work of Kearns and
Schapire [7, Lemma 2.2 and Theorem 5.1].

LEMMA 5 ([7]) Choose a set F of functions from Q to [0,1]. If d is the pseudo-
dimension of F, then any algorithm which minimizes quadratic loss with respect to
F properly (e,7,d)-learns F from

1 1 1
— | dlog — +1log =
o (627“ (d %8 oy * Og5>>

examples.

Next, we bound the pseudo-dimension of PINT} , . The proof uses ideas from
the bound on the VC-dimension of BOXES, of Blumer, Ehrenfeucht, Haussler and
Warmuth [3].

LEMMA 6 For any X\ > 0,u,n € [0,1], the pseudo-dimension of PINT, , . is at
most 4.

Proof: Choose A >0, u,n € [0,1]. Assume for contradiction that
(u1,51), ., (U5, 85)

is shattered by PINT) ,, ,.
Assume without loss of generality that

s1 = min{sy, ..., $5}.
Choose left, right, up € {2, ...,5} such that
Ulefy = min{ug,...,us}

Uright = max{uz,...,U5}

Suyp = max{ss,..., S5}
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Choose middle from {2, ...,5} — {left, right, up}.
The definition of shattering implies that there exist a,b € Q,a,8 € [0,1],8 > a
such that

®  paba,plur) < s,

o for each ¢ € {left, right, up}, pa.p,a,8(u;) > s, and

®  pa,b,a,p (umiddle) < Smiddle-

Fix such a, b, a, B.
Since pgp,a,8(u1) < s1, it must be the case that o < s1, and since

s1 = min{sy, ..., 85},

this means that « is less than all the s;’s. Thus, for each i € {left,right,up},
Pab,a,p(ui) > s; by virtue of the fact that u; € [a,b] and s; < . But, by the
definitions, this implies that umiddle € [a,b] and smigdie < B, which in turn implies
Pab,a,3(Umiddle) = Smiddle, @ contradiction. O

Next, we describe a simple lemma analyzing a subroutine in the minimizing
quadratic loss algorithm.

LEMMA 7 There is an algorithm which, given c1,c2 € Q,& > 0,&,&3 € Q, mini-
mizes

fz,y) =2 + a1z +y* + oy
subject to

r>y+&
L <y<&

n constant time.

Proof: First, straightforward calculus implies that, absent any constraints, 22 +
c1z and y? + coy are minimized at —c; /2 and —cy /2 respectively, and further, that
as one of z or y is moved away from its optimal value while the other is held
constant, f increases monotonically.

If —c1/2 and —cq/2 satisfy the constraints, the algorithm is done. Suppose —c¢; /2
and —c2/2 do not satisfy the constraints. Suppose that in this case (z,y) is a
feasible solution that does not make any of the constraints tight. Then one can find
an improved feasible solution by fixing one of z or y, and moving the other toward
its optimal unconstrained value. Therefore, any optimal feasible solution makes
one of the three constraints tight. Making any of the constraints tight allows one to
express one variable as a linear function of the other, reducing the problem to that
of minimizing a convex quadratic in one variable subject to bounds on that variable,
trivially solvable in constant time. One can therefore solve the three such problems
arising from making the three constraints tight, and output the minimal solution.

O

Now we are ready to give the algorithm for learning PINT) ,, ,.
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LEMMA 8 Choose A, pu,n € [0,1]. There is an algorithm A such that, for any
€,7,0 >0, A properly (e,7,9)-learns PINT} , ,, from

1 1 1
— {1og = +10g =
0 (6274 (Og €y o 5))

examples in
1 1 1\’
O | ——= (log— +log =
(e‘*vs (Og o 8 5) )

Proof: From Lemmas 5 and 6, the sample complexity bound holds. What re-
mains is to show that one can minimize quadratic loss on (z1,%1), -, (Tm,Ym) €
Q x {0,1} for PINT, , , in O(m?) time.

Assume without loss of generality that z; < ... < x,,. Then, foranyi € {1,...,m—
1}, if 8 and « are fixed, the quadratic loss of p, ., does not change for b €
[2;,2i41) and for a € (z;,2;41]- Thus, it suffices to consider the values of a and
b that coincide with sample points, together with one value on either end of the
whole sample.? This implies that one only need try O(m?) pairs of values for a and
b. Finally, Lemma 7 implies that, for fixed a,b, one can minimize the quadratic
loss of p, p,0,5 as a function of § and «, subject to the constraints imposed on them
by virtue of membership in PINT} , 5, in constant time, as long as we have access
to the number of positive and negative points to the left and right of each of the
elements of the sample. By sweeping from left to right maintaining running counts,
this can be taken care of in an O(m) time preprocessing step. O

time.
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Notes
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screening out the outermost negative points.
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