ON-LINE LEARNING
OF LINEAR FUNCTIONS

NICHOLAS LITTLESTONE, PHILIP M. LONG
AND MANFRED K. WARMUTH

Abstract. We present an algorithm for the on-line learning of linear
functions which is optimal to within a constant factor with respect to
bounds on the sum of squared errors for a worst case sequence of trials.
The bounds are logarithmic in the number of variables. Furthermore,
the algorithm is shown to be optimally robust with respect to noise in
the data (again to within a constant factor).

Key words. Machine learning; computational learning theory; on-line
learning; linear functions; worst-case loss bounds; adaptive filter theory.
Subject classifications. 68T05.

1. Introduction

Suppose, for budget purposes, each year each member of a panel of economists
predicts the next year’s GNP and an advisor to the president wishes to combine
their predictions to obtain a single prediction. If we measure the loss for each
year as the square of the difference between the advisor’s prediction and actual
GNP, a reasonable goal for the advisor is to minimize the worst case total loss
over the years, assuming that some fixed weighted average of the economists
is always reasonably close to the actual GNP. In this paper, we present near-
optimal strategies for combining opinions in situations like this.

In more abstract terms, we study the on-line learning of linear functions.
We assume that learning proceeds in a sequence of trials. At trial number ¢ the
learning algorithm (the advisor) is presented with an instance Z; € [0, 1]" (the
estimates of the n economists, where the GNP is measured in units such that
it can never possibly be greater than 1) and is required to return a real number
A¢. After predicting, the algorithm receives a real number p; from the world,

2 Littlestone, Long & Warmuth

called a response, which can be interpreted as the truth. In the simplest case
we consider, p; = i - ¥; for each trial, where /i is a hidden coefficient vector in
[0,1]™ whose components sum to 1 and - denotes the dot product. The loss of
an algorithm over a sequence of m trials is 37, (A — pi)%.

We present a family of algorithms {A4s : § > 0}. We prove that for each
d > 0, the worst case loss of A is at most (1 + 26%)(Inn — H(i))/2, where
H(jii) = — X", pilnpy; is the entropy of the hidden coefficient vector. Thus,
by choosing a small enough §, we can make the bound arbitrarily close to
(Inn — H(f))/2. Since for all relevant fi, H(f) > 0, the upper bound on the
total loss of As approaches (Inn)/2 as § approaches 0. Also, as i approaches
(1/n,1/n,...,1/n), H(ji) approaches Inn, and our bounds approach 0. We show
that for all values of H(fi) and choices of 6, A; is optimal to within a constant
factor. Note that our bounds hold for an arbitrarily large number m of trials.

In reality, there may not be any fixed set of weights such that the corre-
sponding weighted average of economists’ estimates always equals the actual
GNP. In that case, for any finite sequence of trials and any § > 0, the loss of
Ay is still bounded by O(min{lnn— H(Z)+ >, (@ Z; — p;)*}), where the min-
imum is over all choices of ji € [0, 1]™ whose components sum to one. (There is
a subtle trade off between the two summands in the minimum. Even if there
is a fi such that p, = ji- @ for all 1 <t < m, the minimum sometimes occurs
at a I’ with higher entropy for which >, (i’ - & — p;)> > 0.) In particular,
this implies that the total loss of As is O(logn + N), where N is the total
loss obtained from the best fixed weight vector. This performance is obtained
even though the algorithm is not given any information about future exam-
ples and about the error term (the sum in the above expression). As in the
case in which all examples are consistent with some hidden function, we can
show that our algorithms are optimal to within a constant factor. We can also
give algorithms for more general linear functions defined on more general do-
mains by transforming such problems into the basic problem discussed above.
These transformations resemble those studied by Haussler (1989), Kearns et
al. (1987), Littlestone (1988), and Pitt & Warmuth (1990). For example, we
can show that if all Z;’s have ||Z;||c = max;|z;;| < M and there is a ji such
that |||, = X, |ui| < ¢, and X7 (F - & — p)*> < N, then the transformed
algorithm has a sum of squared errors that is O(c?M?logn + N).

We show a case where the worst-case total loss of the Widrow-Hoff rule
(also sometimes called the delta rule) (Widrow & Hoff 1960, Duda & Hart
1973) is Q(c?M?n + N), where, again, N is the total loss of the best fixed
weight vector, and our algorithm has a bound of O(c?M?logn + N). On the
other hand, one can also show that the Widrow-Hoff rule is within a constant

Learning linear functions 3

factor of optimal for a closely related problem, where, instead of using || - ||1
and || - || to measure the coefficient vector and the instances, respectively, one
uses the Euclidian length for both. If ¢y and M, are the corresponding bounds
for the Euclidian length, then the bound on the sum of squared errors obtained
is O(cZMZ + N) (Cesa-Bianchi et al. 1993). (Mycielski gives worst case bounds
on the total loss of the Widrow-Hoff rule. Instead of giving bounds in terms of
S (ji-F— p¢)?, he states his bounds in terms of m max;(ji- ; — p;)?(Mycielski
1988).)

When is it advantageous to use the algorithm of this paper as opposed to
the Widrow-Hoff algorithm? To attempt to gain some insight, let us consider
two simple examples. (A similar comparison, in the context of learning linear
threshold functions, was undertaken by Littlestone (1989).) For now, we will
focus on the case in which there is a ji such that each p; = ji - ¥;, and we
will refer to the algorithm presented in this paper as the E-rule. First, in the
case in which there is a constant ¢ such that the Z;’s are chosen from {c, —c}",
and /I € [—c,c]" has at most a constant k& nonzero components, we obtain the
following upper bounds on the growth of the sum of squared error bounds using
the above bounds:

o The Widrow-Hoff algorithm’s is at most O(n).
o The E-rule’s is at most O(logn).

However, suppose the &;’s are in [—c, ¢|* and have at most a constant & nonzero
components, and i € {—c,c}”. In this case, we obtain the following upper
bounds by applying the above:

o The Widrow-Hoff algorithm’s is (again) at most O(n).
o The E-rule’s is at most O(n?logn).

So there are cases where use of each algorithm is advantageous.

One might argue that min; N(i) will tend to be much larger than the
number n of variables in practice, and that, rather than haggling over the
growth of the error bounds with n, we should instead concentrate on reducing
the constant on N(ji) in our bounds. To an extent, we agree. However, the
property of the E-rule that its loss bound grows only logarithmically with the
number of irrelevant variables appears to make it more attractive to throw
in any variable which might possibly be relevant. In particular, one might
consider throwing in simple functions of the original variables as new “super-
variables” as in Littlestone (1988), Kearns et al. (1987), and Haussler (1989)

4 Littlestone, Long & Warmuth

in the case of boolean functions. Such additions have the effect of increasing n
and decreasing N(ji) at the same time. In the past, the conventional wisdom
dictated that one should be careful to include only relevant variables, possibly
due to the lack of algorithms whose performance degraded adequately slowly
with the number of irrelevant variables. With the E-rule, one gains the freedom
to use more “fringe” variables, whose relevance is questionable, but possible.

Our algorithms are motivated by the algorithms of Littlestone (1988, 1989)
for learning simple boolean functions, such as clauses with a small number of
literals. In that case, the predictions and responses are boolean. A mistake
occurs when the prediction and response disagree, and the loss is taken to be
the total number of mistakes in all trials. Algorithms are given in those papers
for learning k-literal clauses whose worst case mistake bounds are at most a
constant factor from optimal. We generalize the techniques developed there
to the learning of linear functions defined on R"™. Algorithms for a simple
continuous case which are within a constant factor of optimal have already
been given in Littlestone & Warmuth (1994). In our notation, this is the case
when exactly one of the hidden p;’s is 1 and the rest are 0. (These results are
with respect to the loss function |A; — pyl.)

As in the algorithms of Littlestone (1988, 1989), Littlestone & Warmuth
(1994) and the Widrow-Hoff rule (Widrow & Hoff 1960, Duda & Hart 1973),
our algorithms maintain a vector of n weights that is updated each trial after
the response is received. Let v} represent this weight vector before trial £. Our
algorithms always predict with the current weight vector: i.e., they predict
A¢ = U;-Z;. Note that in the noise-free case it is easy to always find a coefficient
vector v consistent with the previously observed examples, i.e., such that for all
J less than ¢, 7-Z; = p;. However, consistency is neither necessary nor sufficient
to obtain the performance we describe. We can show that an algorithm that
predicts using an arbitrary consistent linear function can have loss of 2(n). Our
algorithms do not necessarily maintain consistency with previously observed
examples. Instead, they are designed so that they “learn a lot” from a large
loss, so that the cumulative loss is only logarithmic in n instead of linear.

To get some intuition about updates of the weights that might achieve
the above loss bounds, let us go back to our initial example of predicting the
GNP. An obvious strategy for the advisor would be to predict with the average
estimate of the economists. Suppose, however, the advisor notices that some
economists are better at predicting the GNP. A good method for the advisor
would be to initially weigh all opinions equally, and adjust the weight assigned
to each economist based on her performance.

When using a weighted average for prediction, a natural interpretation of

Learning linear functions)

the weights is as the relative “credibilities” of the economists. Given this in-
terpretation, a natural reweighting strategy is to reduce the weights of each
economist according to some monotone function of how far off her estimate
was (e.g., the Weighted Majority algorithm in Littlestone & Warmuth 1994),
and then normalize so that the weights sum to one. In the discrete case,
this approach can lead to logarithmic total mistake bounds (Littlestone 1988,
1989, Littlestone & Warmuth 1994). Furthermore, it was shown in Littlestone
& Warmuth (1994) that in the continuous case the loss of the advisor is at
most O(logn) plus a constant times the least individual loss of any of the n
economists. (Again, these results are with respect to the loss function |A\; — p|.)

However, if one wishes to learn a linear combination without assuming that
any one economist does well individually, then this strategy does not work.
Suppose that there were three economists: one who always wildly overestimated
the GNP, one who wildly underestimated the GNP, and one who always gave
an estimate slightly greater than the correct GNP. Suppose further that the
average of the estimates of the two wild economists was always exactly correct,
so that there was a weighting with zero total loss. It is easy to see that in
this example the loss of the above strategy is unbounded: the wild people’s
contribution will be steadily decreased and in the limit the prediction of the
economist who is always slightly off will dominate.

It turns out that the following intuition can be translated into an essentially
optimal learning algorithm. If the aggregate opinion was greater than the true
GNP, then those whose predictions were too small were “pulling” the aggregate
in the right direction, and the marginal effect of increasing their weights is to
improve the aggregate prediction, even if their predictions were very inaccurate.
Thus one would want to increase the weights of those whose predictions were
too small, and decrease the weights of those whose predictions were too large.
Of course, these changes are reversed when the aggregate prediction is too
small.

Our algorithms use the above philosophy of updating the weights with the
additional crucial feature that the smaller the aggregate error, the “gentler”
the updates. In particular, if the aggregate prediction is correct, the weights
are not changed.

As is done in Littlestone (1989) for linear threshold functions, we use the
relative entropy between our weights and a target set of weights as a measure
of progress. The relative entropy is an information theoretic notion normally
used to measure the distance between probability distributions. (Though the
formulas for relative entropy and entropy are both important in our work, we
do not know of a natural way of interpreting the weights used in our algorithm

6 Littlestone, Long & Warmuth

and those of the hidden function as probabilities. They formally resemble
probability distributions in that they form vectors of non-negative numbers
that sum to 1.)

2. Preliminaries

Let R represent the real numbers and N represent the positive integers. Let
“log” represent the base 2 logarithm, and “In” represent the natural logarithm.
For & = (x4, ...,xz,) € R", define ||z||; as follows:

n

el =D lzil-

i=1

Also, we will find it necessary to discuss sequences Z1, T, ... of vectors. In such
cases, we will refer to the ¢th component of 7; € R" as z:;.

Suppose i, ¥ € [0, 1]" are such that ||i||; = ||¥]|; = 1. We define the entropy
of /i to be 37" —p; In p1;, where 01n 0 is taken to be 0, and denote this quantity
by H(f). The relative entropy between ¢ and fi, denoted by I(ji||7), is given
by the following equation:

R - i
I(7||7) = > piln o
i=1 i

For any two such fi and 7, it is well known that I(f||¥) > 0 and that I(ji||7) =0
iff f=17.

Let X be a set and Y C R. An ezample for (X,Y") is an element of X x Y.
If (z,p) is an example, we view p as the correct response to the instance z.
If f is a function from X to Y, we say that f is consistent with an example
(z,y) if f(z) =y, and that f is consistent with a sequence S of examples if it
is consistent with each example of S.

Each prediction of an on-line learning algorithm (for (X, Y")) is determined
by the previous examples and the current instance. Associated with an on-line
learning algorithm A we define a mapping of the same name from (X xY)* x X
to Y. Let A(X,Y) be the set of such mappings corresponding to learning
algorithms for (X,Y).

Fix X and Y and a learning algorithm A. For a finite sequence of ex-
amples S = ((x, pt))1<t<m let A; be the prediction of A on the t-th example,
ie.,

)‘t = A(((xla pl)a 3] (xt—la pt—l))’ xt)'

Learning linear functions 7

Then the quadratic loss of A on S is defined as follows:

La(8) = Y00 — p)?.

t=1

The loss of A on a particular trial ¢ is (A\; — p;)?. Finally, if F is a class of

functions from X to Y, let La(F, N) be the supremum of L4(S) over all finite
sequences S = ((x, pt))1<t<m of examples for which there exists f € F with

Sy (f (@) — p:)?> < N.
We will need the following simple lemmas.

LEMMA 2.1. (KULLBACK 1967) For A, p € [0,1],

I((p, 1= pII(X, 1=) = 2(A = p)*.

LEMMA 2.2. (LITTLESTONE 1989) For all 3 > 0,z € [0,1],
<1+ (B -1z
The inequality is an equality iff t =0 or x = 1.

The following series of lemmas also give approximations for quantities aris-
ing in our analysis. The first can be easily verified.

LEmMmA 2.3. Forall xz,y € R,

vz —9) > 5~ 1)

LeEMMA 2.4. For all z,6, and x such that § > 0,0< 2<1,and0 <z <1-z%,

(x+2z4+0)(1—x+9) (z4+6)(1+9)
n(m+5)(1—x—z+5) = 6(1—z419)

ProoFr. Fix 2,0 > 0. Define f:[0,1 — 2] - R by

(x+2+0)(1—2490)
et -z—z210)

flz) =

8 Littlestone, Long & Warmuth

Note that it is sufficient to prove that f is convex over its domain, since the
right hand side of the claimed inequality is f(0) = f(1 — 2).
Define g : [0,1 — z] = R by

T+z+0

g(@) =In—-—-

Then, the following equality holds:

flx)=g(z) +9((1-2) -).

Hence, the result follows from the convexity of g, which is easily verified. O

LEMMA 2.5. For all 6 > 0, and z such that 0 < z < 1,

(z46)(1+9) < (26 +1)z
8((1+6)—2) = §(1+96)

ProoF. Fix § > 0. Define f:[0,1] — R by

In

(20 +1)z (z+96)(1+49)

1@ =505 P saz0-2

We have 2% 41 9% 41
!
— — > 0.
FE =509 Groaso-n 2"

Thus, f is monotonically increasing and is minimized when z = 0. The fact
that f(0) = 0 then completes the proof. O

3. The basic learning algorithm

The basic learning algorithm A; is designed to perform well on the set of linear
functions defined on [0, 1| whose coefficients are nonnegative and sum to 1.
These functions can be viewed as computing weighted averages. Intuitively, the
larger § is, the more robust the algorithm is against noise, and, correspondingly,
the more slowly the algorithm learns.

The algorithm Ay, where 6 > 0 is a parameter, may be stated formally as
follows. We maintain a vector of normalized weights which is updated at the
end of each trial. For each ¢, let 7, € [0, 1]" be the algorithm’s weights before

Learning linear functions 9

trial t. When given the instance #; = (x41,...,2,) € [0,1]" at trial ¢, the
algorithm predicts with \; = 7, - Z;. Let p; € [0, 1] be the response at trial .

We initialize the weight vector to #;; = 1/n for all i. At the end of each
trial each weight is multiplied by a factor that depends on §:

vy fact (B, z4)
» o vgifact (B, ;)

Vi1 =

z4,i+6

where fact(8;, zi;) € 8,7 , 1+ (6 — 1)5"1:;5‘5] (any value in this range may be

chosen by an ir?plementor of the algorithm) and §;, = (f\ii‘;) G:ﬁ:ig). Note
Tg,it

that since 255~ € (0,1), Lemma 2.2 assures us that the interval in which
fact(f;, z+;) must lie has positive length.

As in Littlestone (1989) in the case of linear threshold algorithms, we use
the relative entropy between the coefficient vector ji of a target function and
the coeflicient vector v of the algorithm’s hypothesis as a measure of progress.
Our key lemma relates the change in this measure of progress on a particular
trial to the loss of the algorithm on that trial. Loosely speaking, it says that
the algorithm learns a lot when it makes large errors.

LEMMA 3.1. Choose § > 0 and n € N. Choose ji € [0,1]" such that ||ji||; = 1.
Let {(Z4, pt))ten be a sequence of examples from [0,1]" x [0,1]. Let {¥;)ien
be the sequence of coefficient vectors hypothesized by As and {\)ien be the
sequence of Ay’s predictions. Let Ay = I(fi||tyy1) — I(fi||0;) and for z € R, let

2" denote fjg‘zs. Then, for all t, the following inequalities hold:

N
Ay < = I(p1 =PI 1= A + B Ty g,

1426

2 o — - Ty [pe — i
< - (p=N)? .
S “arar? Nt T Sa1g)

PROOF. Choose t. From the definition of A; and fact(f:, z;;) and from
Lemma 2.2, it follows that

Ay = Z.U/z
" 1
= In v ifact , Xri)) + i]ni
(Zzl t, (ﬂt t,)) Zglj’ fact(ﬂt,xt Z)

Zvnl-l— (B = D)y ;) Z,uzxtzlnﬂt (3.2)

Ut—l—l %

IN

10 Littlestone, Long & Warmuth

0
= W1+ (5 -)N) - %’f;

= (14 (B -)X) - p}In B +

ln ﬂt

1 N 25 Tt 10 g, (3.3)

Note that (3.2) becomes an equality when the components of Z; are binary and

. . ,\’
0 goes to 0. Since ; can be written as §§ , , we can rewrite expression (3.3)

as follows:

! / ! ! P _ﬁf
(11 =) 1= X) + 2B,

This leads to the first inequality of the lemma.
Next, we upper bound the last expression by using Lemma 2.1 and replacing
the second term with its absolute value, obtaining:

— -7 |In B
A, < —9(g — N2 4 1o Tl [In] A
t S (Pt t)+ 1+25 (3)

Now, we wish to bound |Inf|. First, let us assume that A\, < p;. Let
z = pt — M. Then,
A+2z4+60)(1—-X+90)
A+ —-A—2+4)

InG =1In

Applying Lemmas 2.4 and 2.5, we get that

(20 +1)z _ (26 +1)(pe — Ae)
M SaTe = s+9)

By symmetry, when p; < A, if we let z = Ay — p;, we obtain the following
inequalities:

L1+ @26+ —p)

3= 5(1+0) s(L+0)

|1 ﬂ| (2(5+1) — (25+1)|pt_)‘t‘
§(1+96) d(1+9)

Substituting into (3.4) yields the desired result. O

We can apply the previous lemma to obtain the following loss bounds.

THEOREM 3.2. Choose n,m € N. Let S = ((Z4, pt))1<t<m be any sequence of
m examples for ([0,1]",[0,1]). Then, for each § > 0,

L, < min ((1 426 (lnn — H(i) + %Mﬁ)) |

Learning linear functions 11

where the minimum is over all fi € [0,1]" with |||, = 1 and for each such i,
N(jii) =¥ (@ & — py)*. In particular,

La, (S) < 5.83(Inn + min(N () ~ H (7).

Further, for any sequence S = {(Z4, pt))1<t<m of m examples for ([0,1]™, 0, 1])
for which there exists ji € [0, 1] such that ||ji||; =1 and for all t,1 < t < m,
i - T = py, we have the following bound:

2
_ (1+29)

Ly, (5) < (Inn — H(f)).

ProoOF. Since I(ji||th) =Inn — H (i) and and I(j||vme1) > 0,

> A= I(fil|vmer) — I(fH][6) > —Inn + H(f).

t=1

Thus, using the last bound on A; given in the previous lemma, we get:

- 2 oy — i T4 [pr — i
— (M= p)*+ > —Inn+ H(f).
; (1+25)2(e p) 5(1+0) = ()
In the case when fi - 7, = p;, the above inequalities simplify and it is easy to
get the loss bound stated at the end of the lemma.

To get the remaining bounds, we rewrite the second inequality as follows:

f: - (Lﬁ‘)‘t — pt‘>2+ (@i;;‘ﬂ) <(1 +jgzs\(ﬂlt;(/;;' Ty

> —Inn+ H(i
T) =i

t=1
and apply Lemma 2.3, obtaining

m 1 o (1426)?

2 arap 3(pe—fi-2)" > —Inn+ H(f).

TP+ 0)
Solving for 31", (A\; — p¢)? yields the first loss bound of the theorem:

(1+26)*
o7+ oy)

For the second bound, observe that when § = 1/+/2,

o (1+20)*
= —"— <)H.83.
1021 4oy =08

La, < (1+ 25)2(11171 — H(j)) +

(1+29)

This completes the proof. O

12 Littlestone, Long & Warmuth

3.1. Choosing an initial weight vector. If we choose ¢} to be something
other than (1/n,...,1/n), reflecting some prior bias on which weighted combi-
nation of the experts predicts well, then the bounds in the previous theorem
hold if we replace “Inn — H({)” by “I(f||71)”. Thus, our algorithm can take
advantage of increasingly accurate prior beliefs. However, for fixed z, the quan-
tity

pmax I(jil[o)
is minimized by choosing @, = (1/n,...,1/n). This partially confirms the in-
tuition that when one knows nothing about the experts, one should begin by
simply taking the average of their predictions.

3.2. Trading between fit and entropy. There is a curious trade off between
N(ji) and H(ji) in the upper bound

LAl/ﬂ(S) < 5.83(Inn + min(N (i) — H({))).
I
For example, assume the algorithm receives a single example ((1,0,---,0),1).

Since we require that g € [0,1)” and ||f@||y = 1, only i1y = (1,0,---,0) is
consistent. The upper bound for ji = fi; is 5.83Inn, since N(fi;) = H(fi;) = 0.
However, for ji = (1/n,1/n,---,1/n) the bound is 5.83, which is still far away
from the actual loss on the single example. Notice that the minimum in the
loss bound is not achieved at the consistent vector ji;.

3.3. Choosing 3. How did we come up with our choice of 3; = ﬁiig i:ﬁzig
for the algorithm A;? Consider the upper bound for A; given by the inequality
(3.3) for the case when p; = fi-Z; (Note that this inequality becomes an equality
if the components of Z; are binary and § goes to 0.):

Ay <In(1+ (B — 1)A) — p, In By

Our above choice for (§; is obtained by minimizing this upper bound for A,
i.e., we maximize our bounds on the decrease of I(ji||7};) caused by the update
in trial ¢.

However, there are better choices for g; for the case when p; = ji-Z;. Assume

fact(B, x1;) = ,Btwlt'i. Then, from (3.1) we get

Ay=In(>] vt,iﬂtxt’i) — py1n ;.
i=1

Learning linear functions 13

7
i Pt

Note that exp(A;) = Y, vmﬂ: “ " and therefore that

dexp(A . 7, T
=0 iff p =41 -7, and
0% exp(Ay) Oexp(A)
0B 9B i

Thus exp(4;), and therefore A;, has exactly one minimum when 3; € [0, o¢].
Denote the §; at the minimum as 3 qy:. Now if we updated with 3, ,,+ and fed
Z, to A, after the update was made, the algorithm would predict p;. Thus,
with the optimum choice for [;, the algorithm is in some sense “corrective.”

Since we have determined the choice for §; which gives the best bound when
pt = [i - Ty, why not use it? First, we know no closed form for 3 ,,;. We can
use a number of heuristics for approximating (3 ,,: such as gradient descent,
Newton’s method or binary search. Another choice is to iterate the update of
As a number of times with the same instance ;.

However, even if the computational cost of approximating (., is not a
deterrent, there is a second reason for not choosing a ; that is too close to
Bt opt- This is illustrated with the following example. Assume there is a long se-
quence of examples consistent with 7 = (1/2,1/2) except that the first example
((1,0),1) is noisy. In this case, in order to be consistent, we must hypothesize
Uy = (1,0), effectively choosing #; = co. Now all future updates cannot correct
the second component of the weight vector of 75, leading to an unbounded loss
on future examples consistent with (1/2,1/2).

So in case of noise, it is advantageous to choose §; not too close to B oy
and instead make a less drastic update.

3.4. Tuning 6. If one has a prior idea of N(fi), one can tune d to optimize the
first bound of the preceding theorem. Nonetheless, lower bounds given later

in the paper show that tuning ¢ can only yield an improvement of a constant
factor over the choice § = 1/1/2.

3.5. Noise tolerance. Note that the smallest we can make the constant on
the “noise term” by increasing 0 (at the expense of the term depending on n
and H (7)) is 4. However, our analysis is somewhat loose, which leaves open the
possibility that our algorithm’s loss (or that of a related algorithm) is bounded
by k(Inn — H(jf)) + N(f) for some constant k.

4. Transformations and more general learning problems

14 Littlestone, Long & Warmuth

In this section, we use transformations to obtain loss bounds for more general
classes of linear functions. These transformations generalize the prediction
preserving reductions that have been used in a similar manner in the learning
of {0, 1}-valued functions (Haussler 1989, Littlestone 1988, Kearns et al. 1987,
Pitt & Warmuth 1990).

We will need the following definition. Let X and Y be sets, and let F
and G be families of real-valued functions defined on X and Y respectively.
Let > 0. We say that F a-reduces to G if and only if there is a function
¢ : X =Y, called an instance transformation, a function ¢ : F — G, called a
target transformation, and k € R such that for all x € X, f € F,

f(@) = ap(f)(o(z)) + k.

We are now ready for the following theorem, which gives loss bounds for
a class of functions in terms of those for a class to which the function can be
a-reduced.

THEOREM 4.1. Let X and Y be sets, and let F and G be families of real-
valued functions defined on X and Y respectively. Let A be an algorithm for
Y. Choose a, N > 0. Then, if F a-reduces to G, there exists an algorithm B
for X such that

Lp(F,N) < a’LA(G,N/a?).

PROOF. Define B as follows. Given an instance x, B feeds ¢(z) to A, and
if A predicts A\, B returns aA + k. Then, when B gets p as a reinforcement, it
feeds (p — k)/a to A.

Choose f € F, and let S = ((x4, pt))ten be a sequence of examples. Let
(M)ien be the sequence of predictions made by A on {((é(x¢), (pr — k) /))ien-
Let

o

N =3 (f(z) = p)"

t=1
Then, since

> wie() ~ 2t - i_";(f(xg— bk
— oY (f@) - p)

we have

Learning linear functions 15

and

[e's) o) — k
S(@h+k)—p)? = a2 (h - 20y
t=1

t=1

< onL_A(Q,N/OfQ)-

The theorem follows from the fact that S was chosen arbitrarily. O

For each n € N, M,k,c > 0 we will need the following definitions. Let
WA(n, M, k) be the set of f : [0, M]® — [0, M] such that there exists a i €
[0,1]™, ||Z||1 = 1, whose entropy is at least x and for which f(Z) = ji- Z for all
Z. Let LINEAR(n, M, ¢) be the set of linear functions defined on [0, M]™ such
that the sum of the absolute values of their coefficients is at most c¢. Since the
entropy is only defined for non-negative coefficients summing to 1, we omit the
entropy parameter from LINEAR.

Let Swa (n, M, K, N) be the set of all finite sequences S = ((Z4, p1))1<t<m
of examples in [0, M]™ x [0, M] such that there is some f € WA(n, M, k) for
which the following inequality holds:

> (f(@) —p)? < N.

Define SpingaRr(n, M, ¢, N) as the analogous set of sequences of examples in
[0, M]™ x [—cM, cM]. Let optwa (n, M, k, N) be defined to be

inf{sup{La(S):S € Swa(n,M,x,N)}: A € A([0, M]", [0, M])}
and optrNEAR (7, M, ¢, N) to be
inf{sup{L4(S) : S € Syvgar(n, M, ¢, N)} : A € A([0, M]",[~cM, cM])}.

Next, we apply Theorem 4.1 to get loss bounds for more general linear
functions.

THEOREM 4.2.
optwa (n, M, k, N) < M?optwa (n, 1, k, N/M?) € O(M?*(Inn — k) + N),

optLINEAR (7> M, ¢, N) < (2¢M)*optwa (20 +1,1,0, N/(2cM)?)
€ O((cM)?*Inn + N).

16 Littlestone, Long & Warmuth

PROOF. We will prove only the second bound. The first can be proved
analogously.

Choose n, M, and c appropriately. We present a 2cM-reduction from
LINEAR(n, M, c) to WA(2n + 1,1,0). The theorem then follows immediately
from Theorem 4.1 and Theorem 3.2.

Define the instance transformation ¢ : [0, M]" — [0, 1]>"™! by

(b(j)_(xl—i-M Tpn+ M —x1+ M — X, + M 1)
S\ oM 77 oM T o2M 0T oM 2

and define ¢ : LINEAR(n,M,c) — WA(2n + 1,1,0) as follows. If g €
LINEAR(n, M, c¢) is defined by

n
g(f) = Z i,
i=1

then let ¢(g) = f, where f is defined by

2n+1

f(f) = Z ViZs,
i=1

where
wi/c if i <n and p; > 0,
= —li—n/C if n <i<2nand y;_, <0,
T 1= | ifi=2n+1,
0 otherwise.

It is straightforward but tedious to verify that ¢ and ¢ form a 2¢M-reduction
from LINEAR(n, M, ¢) to WA(2n + 1,1,0), completing the proof. O

Using similar techniques, we can easily prove similar theorems for classes
formed by linear combinations of functions taken from some fixed finite set, e.g.,
for bounded degree polynomials. (However, it is unclear whether the resulting
bounds are optimal.) Furthermore, our algorithm can be trivially modified
to yield an optimal (to within a constant factor) loss bounded algorithm for
the learning problem in which the object hidden from the learner is an m x n
matrix, the instances are [x m matrices, and the responses are the [xn matrices
obtained by multiplying the instances with the hidden matrix, where the loss
is the sum of the squares of the differences between the entries of the predicted
matrix and the true matrix. This can be accomplished by running several
copies of our algorithm in parallel, one for each pair formed by choosing a row
from the instances and a column from the hidden matrix.

Learning linear functions 17

5. Lower bounds

We begin by proving a lower bound on optya (1,1, s, N). Our more general
lower bounds can be derived from this initial result. For the proof, we will need
the following notation. For u,v € N, v < logu+ 1, let bit(u, v) be the vth least
significant bit of the binary representation of u (e.g., bit(6,1) = 0, bit(6,2) =
1,bit(6,3) = 1).

THEOREM 5.1. The following inequality holds:

(lnn_ﬁ)—i—N—l

¢ 1.k N) > .
optwa (1, 1,5, N) > —5 2

PROOF. Let | = |logn|,k = [k/(In2)]. Consider an adversary which
adaptively constructs a sequence of examples as follows. Our adversary consists
of two stages. In the first stage, the adversary maintains consistency with some
function in WA(n,1,k) C WA(n,1,k). In the second stage, the adversary
greedily uses up its “noise budget.”

The instances 71, ..., Zj—j of the first stage are constructed as follows: z;; =1
if bit(i,t) = 1 and 4 < 2!, otherwise x;; = 0. The adversary responds with
1 if the algorithm’s prediction is no more than 1/2, otherwise the adversary
responds with 0. Thus, the loss of the algorithm on each trial of stage one is
at least 1/4.

Define ji as follows: if 7 < 2! and for each t < [— k, bit(i,t) = p;, then let
pi = 27%; otherwise, let p; = 0. Since the number of [bit vectors “satisfying”
a (I — k)-bit mask is 2%, ||fi||; = 1. Also, by construction, the linear function
induced by fi is consistent with the examples of the first phase. Trivially,
H(ji) = kIn2 > k. Since the first phase consists of [— k trials, the total loss
of the first phase is at least

%([ln n/(In2)] — [/(n2)]). (5.1)

In the second stage, which consists of |[4N| + 1 trials, each instance is
(1/2,1/2,...,1/2), and for the first [4N| trials the adversary simply responds
with whichever of 0 or 1 is further from the algorithm’s prediction. On the
last trial, if the algorithm’s prediction is no more than 1/2, the adversary

responds with 1/2 4+ (1/2),/4N — |4N|; otherwise, he responds with 1/2 —
(1/2){/AN — |4N].

Let m = l—k+|4N |41 be the total number of trials of the adversary. Since
the fact that g - (1/2,...,1/2) must equal 1/2 implies that for each t,l — k <

18 Littlestone, Long & Warmuth

t < m, we have the following equalities:

(-3 —p)? = 1/4

. AN
S(o—-ap = 2N
t<m 4
AN — |4N|
.7 2 —
(om — i - Tm) 1
dp—fi-#) = =N

Also, the loss on each trial ¢ of phase two is at least (ji- 7} — p;)?, thus the total
loss of stage two is at least V.

Combining this with (5.1) yields the desired result. O

Note that this argument proves a stronger result than that stated in the
theorem, since all of the instances of the sequence of examples, as well as the
entropy of the hidden coefficient vector and the amount of noise, may be given
to the algorithm before the first prediction is made and adversary can then
choose the responses of each example so that the loss is maximized.

Note also that in the case that k = 0, the adversary uses only functions
with just one nonzero coefficient. This, combined with Theorem 3.2, implies
that the inherent complexity of the problem of learning functions which simply
output a selected component is the same (at least to within a constant fac-
tor) as that of learning the class of all functions computing weighted averages,
which is quite surprising. Classes of weighted-average functions whose weights
have high entropy (which requires many non-zero weights) are easier to learn.
This is in contrast to the case of learning boolean functions, such as boolean
linear-threshold functions, where in general (for classes closed under permuta-
tion of the attributes) learning gets harder as the number of relevant variables
increases (Littlestone 1988, 1989, Littlestone & Warmuth 1994, Blum et al.
1991). (Some of the upper bounds of Littlestone (1989) depend on a product
of two factors, one of which shows the same decreasing dependence on entropy
observed here; that decrease is typically dwarfed by an increase in the other
factor as the number of relevant variables increases. Also, for certain espe-
cially simple classes, mistake bounds can again drop as the number of relevant
variables becomes a significant fraction of all of the variables.)

The following is a straightforward extension of the previous theorem. Its
proof is therefore omitted.

Learning linear functions 19

COROLLARY 5.2. The following inclusions hold:

optwa (n, M,k, N) € Q(M?*(lnn — &)+ N),
optLINEAR(M M, ¢, N) € Q((cM)*Inn+ N).

We now prove a lower bound on the worst case sum of squared errors that
holds for a whole family of algorithms. Note that in this lower bound the oo-
norm is used for scaling the instances, and the 1-norm for scaling the coefficient
vector. The lower bound is linear in the dimension n of the instances.

THEOREM 5.3. Choose M,c, N > 0,n € N. Let w be an arbitrary vector in
R"™. Let A be any algorithm whose prediction in the first trial equals the dot
product of the first instance and W, and whose prediction in each subsequent
trial equals the dot product of the current instance and a vector formed by

summing w and a linear combination of the past instances. Then, there is a
sequence S = ((Z1,p1), s (Zm, pm)) € LINEAR(n, M, ¢, N) such that

La(S) > (¢*M*)n' + N,

where n' is the largest integer less than or equal to m for which an n' x n'
Hadamard matrix exists.

PROOF. We only prove the result in the case N = 0. The proof can be
extended to the case N > 0 as in Theorem 5.1.

In this proof, we use Hadamard matrices, which are square matrices whose
entries are +£1 and whose rows are mutually orthogonal. We construct a se-
quence of n’ orthogonal instances 71, ..., s in {—M, 0, M}" by scaling each of
the rows of an n' x n’ Hadamard matrix appropriately and extending it with 0’s
if ' < n. We arrange that the first component of each instance equals M by
negating the instance if necessary. Note that since the instances are orthogonal,
the prediction of A in each trial ¢ will just equal @ - Z;. If @ = (¢,0,0,...,0),
then the total loss will be X%, (@ - & — cM)2. If i = (¢, 0,0, ...,0), then the
total loss will be Y7, (i - # + ¢M)?. From this, it is easy to see that /i can be
chosen so that the total loss is at least n'c2M?, as desired. O

Since Hadamard matrices are known to exist at least for all powers of 2, n/
can always be chosen to be at least n/2. It has been conjectured that Hadamard
matrices exist for all n divisible by 4 (see discussion in Agaian 1985).

Recall that the total loss of our algorithm was O((cM)?*logn+ N). We now
briefly discuss two algorithms that belong to the family for which the lower
bound holds.

20 Littlestone, Long & Warmuth

The Widrow-Hoff (WH) algorithm predicts using an unnormalized weight
vector which is updated after each trial, i.e., the algorithm’s prediction on trial
t is W, - ;- The initial weight vector w; can be chosen arbitrarily; subsequent
weight vectors are obtained from the examples according to the following rule:

Wipr = Wy + m(pr — Ae) Ty,

where 7 is a positive parameter called the learning rate. Clearly no matter what
learning rates are used WH always has the property that its weight vector differs
from the initial weight vector by a linear combination of the past examples, as
required for application of Theorem 5.3.

By a least squares algorithm, we mean any algorithm which predicts with
the dot product of the current instance and a weight vector, where the weight
vector w; used to predict at trial ¢ minimizes the sum of the squared errors on
the previous (t—1) examples. Note that the choice for @; might not be unique.
We consider the least squares algorithm that breaks ties in favor of shorter
weight vectors, as suggested, for example, in Strang (1988). The following
lemma applies.

LEMMA 5.4. (STRANG 1988) The linear least squares algorithm which breaks
ties in favor of shorter weight vectors (in the Euclidian norm) has the property
that its weight vector is initially zero and in later trials, is a linear combination
of the previous examples.

Applying Theorem 5.3 to these two algorithms, we immediately get the
following corollary.

COROLLARY 5.5. Choose M,c, N > 0, and n € N and let n’ be the largest
integer less than or equal to n for which an n' xn' Hadamard matrix exists. For
a WH algorithm using any initial weight vector and any choices of the learning
rates 1, there is a sequence S = ((Z1, p1), - (Zm, Pm)) € LINEAR(n, M, ¢, N)
such that

LWH(S) 2 (c2M2)n' + N.

The same lower bound holds for the linear least squares algorithm that breaks
ties in favor of shorter weight vectors (in the Euclidian norm).

6. Conclusion

Linear functions are widely used. We expect that our algorithm may become
a standard submodule for learning more complicated functions or for learning
linear combinations of previously learned functions.

Learning linear functions 21

The fact that our algorithm must know a bound on the sum of the absolute
values of the coefficients of the target function might make it appear somewhat
unattractive to practitioners. However, this problem may be circumvented by
application of the Weighted Majority algorithm (Littlestone & Warmuth 1994)
to a pool consisting of algorithms that assume various upper bounds on the
size of the hidden coefficient vectors. Nevertheless, to simplify the application
of our techniques to real-world problems, it would be useful to have a variant
of our algorithm for which we can directly obtain bounds similar to our present
ones without knowing anything about the hidden coefficients.

Our lower bounds also might be improved. Is it possible that similar lower
bounds hold even when the algorithm has more information about the hidden
coefficients, or even about the upcoming sequence of examples?

We are also investigating the case in which the coefficient vector changes
gradually over time, corresponding to a case in which some linear combination
of the economists is close to the actual GNP for a certain period, and then in
later periods other linear combinations do well. The algorithm is to “track”
the best linear combination with some additional cost that grows as a function
of how much the coefficient vector changes over time. This would generalize
the methods of Littlestone & Warmuth (1994) with which one could track the
best single economist.

In addition, it would be interesting to find algorithms which are optimal
with respect to other natural loss functions, in particular, |\; — p;|. Recently,
Bernstein (1992) has proved an upper bound for this problem in the absence
of noise of v/nlogn, and a lower bound whose dependence on n is y/n.

Finally, since our algorithms have a similar flavor to the linear threshold
algorithms of Littlestone (1988, 1989), and Littlestone & Warmuth (1994),
one might ask whether a similar algorithm is optimal for learning the class
containing all linear functions composed with the standard sigmoid function
(1/(1 + e7*)). One can trivially obtain bounds from our results, but they
appear to be suboptimal.

Acknowledgements

We are especially grateful to Nicolo Cesa-Bianchi for helpful discussions relating
to Theorem 5.3. We’d also like to thank Naoki Abe, Yoav Freund, David
Haussler, David Helmbold, and Richard Snyder for valuable conversations.
The research reported here was primarily done while Nick Littlestone was
at Harvard supported by ONR grant N00014-85-K-0445 and DARPA grant
AFOSR-89-0506. Philip Long was at UC Santa Cruz supported by ONR grant

22 Littlestone, Long & Warmuth

N00014-91-J-1162. Manfred Warmuth was supported by ONR grant N00014-
91-J-1162; part of this work was done while he was employed by ITAS-SIS
Fujitsu Limited in Numazu, Japan.

References

S. S. AGAIAN, Hadamard Matrices and Their Applications. Number 1168 in Lecture
Notes in Mathematics. Springer-Verlag, 1985.

E.J. BERNSTEIN, Absolute error bounds for learning linear functions on line. Pro-
ceedings of the 1992 Workshop on Computational Learning Theory, 1992, 160-163.

A. BLuM, L. HELLERSTEIN, AND N. LITTLESTONE, Learning in the presence of
finitely many or infinitely many irrelevant attributes. The 1991 Workshop on Com-
putational Learning Theory, 1991, 157-166.

N. CesA-BiancHi, P.M. Long, AND M.K. WARMUTH, Worst-case quadratic loss
bounds for a generalization of the Widrow-Hoff rule. The 1993 Workshop on Com-
putational Learning Theory, 1993, 429-438.

R. O. DupA AND P. E. HART, Pattern Classification and Scene Analysis. Wiley,
1973.

D. HAUSSLER, Learning conjunctive concepts in structural domains. Machine Learn-
ing 4(1) (1989), 7-40.

M. KeEARNS, M. L1, L. PiTT, AND L.G. VALIANT, On the learnability of boolean

formulae. Proceedings of the 19th Annual Symposium on the Theory of Computa-
tion, 1987, 285-295.

S. KULLBACK, A lower bound for discrimination in terms of variation. IEEE trans-
actions on Information Theory 13 (1967), 126-127.

N. LITTLESTONE, Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. Machine Learning 2 (1988), 285-318.

N. LITTLESTONE, Mistake Bounds and Logarithmic Linear-threshold Learning Al-
gorithms. PhD thesis, UC Santa Cruz, 1989.

N. LITTLESTONE AND M. WARMUTH, The weighted majority algorithm. Informa-
tion and Computation (1994). To appear.

J. MYCIELSKI, A learning algorithm for linear operators. Proceedings of the Amer-
ican Mathematical Society 103(2) (1988), 547-550.

Learning linear functions 23

L. PitrT AND M.K. WARMUTH, Prediction preserving reducibility. Journal of Com-
puter and System Sciences 41(3) (1990), 430-467.

G. STRANG, Linear Algebra and its Applications. Harcourt, Brace, Jovanovich,
1988.

B. Wiprow AND M.E. HorF, Adaptive switching circuits. 1960 IRE WESCON
Convention Record (1960), 96-104.

Manuscript received May 30, 1992

NICHOLAS LITTLESTONE PuiLip M. LoNG

NEC Research Institute Computer Science Department

4 Independence Way Duke University, P.O. Box 90129
Princeton, NJ 08540 Durham, NC 27708
nickl@research.nj.nec.com plong@cs.duke.edu

MANFRED K. WARMUTH
CIS Board, UC Santa Cruz
Santa Cruz, CA 95064

manfred@mira.ucsc.edu

