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Abstract. We prove approximation guarantees for randomized algo-
rithms for packing and covering integer programs expressed in certain
normal forms. The bounds are in terms of the pseudo-dimension of the
matrix of the coefficients of the constraints and the value of the opti-
mal solution; they are independent of the number of constraints and the
number of variables. The algorithms take time polynomial in the length
of the representation of the integer program and the value of the optimal
solution. We establish a related result for a class we call the mixed cover-
ing integer programs, which contains the covering integer programs. We
describe applications of these techniques and results to a generalization
of Dominating Set motivated by distributed file sharing applications, to
an optimization problem motivated by an analysis of boosting, and to a
generalization of matching in hypergraphs.

1 Introduction

Raghavan and Thompson [RT87] introduced randomized rounding. Roughly,
their idea was to construct algorithms for integer programming problems as
follows:

— solve a similar problem without the integrality constraint, and
— round each variable up or down, using its fractional part as the probability
of rounding up.

This technique provides strong approximation guarantees for polynomial-time
algorithms for a class of problems called covering and packing integer programs
[Rag88,Sri99]. In a covering integer program, for an m X n matrix A and column
vectors ¢ and b, all with only nonnegative entries, the goal is to find z € Z7
to minimize ¢’z subject to Az > b. In a packing integer program, it is also
assumed that A, ¢ and b have only nonnegative entries, but the goal is to choose
z € Z7 to maximize ¢’z subject to Az < b. Raghavan [Rag88] asked whether
one could exploit algebraic properties of A such as its rank to obtain stronger
approximation guarantees.



In this paper, we report on work along these lines. One can assume with-
out loss of generality that covering and packing integer programs satisfy A €
[0,1]™*" ¢ € [1,00)" and b = (1,1,...,1)T (see [Sri99] and Sections 3 and 5
of this paper). For covering and packing integer programs that are expressed
this way, we prove approximation guarantees for efficient algorithms that are
independent of the number of variables and constraints, and are in terms of
the pseudo-dimension [Pol84,Hau92] of A. We also establish a similar result for
mixed covering integer programs, which are like covering integer programs but
without the requirement that the components of A are nonnegative.

The pseudo-dimension can be defined as follows [Hau92]. Say that an m x k
matrix is full if the origin in R* can be translated so that the rows of the matrix
occupy all 2% orthants. The pseudo-dimension of A is the size of the largest set
of columns of A such that the matrix obtained by deleting all other columns is
full. A more formulaic definition is given in Section 2.

Since the pseudo-dimension of A is at most its rank [Dud78,Pol84], our anal-
ysis implies results like those envisaged by Raghavan. Sometimes, however, the
pseudo-dimension of a matrix is much smaller than its rank. For example, the
pseudo-dimension of any identity matrix is 1.

Our general results are as follows. All of our algorithms are randomized and,
with probability 1/2, achieve the claimed approximations in time polynomial
in the number of bits needed to write A and ¢ and the value of the optimal
solution. (For many commonly studied combinatorial optimization problems,
the value of the optimal solution is bounded by a polynomial in the size of
the input [KT94,CK].) The algorithm for covering integer programs outputs a
solution whose value is O(opt(1+dr log(ropt))), where d is the pseudo-dimension
of A and r is the value of the largest entry in A; since r» < 1, the value of the
algorithm’s solution is also O(dopt logopt). For mixed covering integer programs,
the bound is O(opt(1+ dr?opt)); here we cannot assume that r < 1. For packing

integer programs, our algorithm obtains a solution whose value is (2 (W) )

for a constant k > 0 (here once again r < 1).

We illustrate the application of our general result about covering integer
programs using the B-domination problem [NR95,Sri99], a generalization of
Dominating Set motivated by distributed file sharing applications. In the B-
domination problem, the goal is to locate as few facilities as possible at the
nodes of a network so that each node of the network has at least B facilities
within one hop. We give a randomized algorithm that, for graphs of constant
genus, with probability 1/2, outputs a solution of size O (opt (1 + ln%pt)) in
polynomial time.

Our study of mixed covering integer programs was inspired by a learning
problem, which can be abstracted as the minimum magjority problem as follows:
given an m x n matrix A with entries in {—1,1}, choose z € Z% to minimize
>, z; subject to Az > 0. Our algorithm for mixed covering integer programs
yields a bound of O(dopt?) for this problem. We derive our motivation for this
problem from an analysis of the generalization ability of hypotheses output by
boosting algorithms [SFBL98]; details are given in Section 6.2.



Our general results about packing integer programs can be applied to simple
B-matching [Lov75]. Here, given a family S of subsets of a finite set X, the
goal is to output as many of the sets in S as possible while ensuring that each
element of X is included in at most B of the chosen sets. We give a random-
ized polynomial-time algorithm for this problem that outputs a solution of size
2((opt/B)'~*4/B)  where d is the VC-dimension of the dual of the input and
k > 0 is an absolute constant.

Our work builds on that of Bronnimann and Goodrich [BG95] and Pach and
Agarwal [PA95], who established approximation guarantees for polynomial-time
algorithms for Set Cover in terms of the VC-dimension of the dual of the input
set system. Our analysis of covering integer programs is a generalization of the
analysis of Pach and Agarwal. Set Cover can be formulated as a covering integer
program, and the pseudo-dimension of the resulting coefficient matrix is the
same as the VC-dimension of the dual of the input set system.

Srinivasan [Sri99] showed that if a fractional solution is rounded as originally
proposed by Raghavan and Thompson, then the events that the constraints are
violated are positively correlated, and used this to improve the analysis of ran-
domized rounding for packing and covering integer programs. Recently, he pro-
vided RNC and NC algorithms with the same approximation guarantees [Sri01].
However, his approximation bounds still depend on m.

Baker [Bak94] described a polynomial-time approximation scheme for Dom-
inating Set when the input is restricted to be planar.

It is not hard to see how to use boosting [Sch90,Fre95], together with Lemma 3.3
of [HMP*193], to design an algorithm for the minimum majority problem that
outputs a solution with value O(opt?logm). Since d < logm, our bound is
never more than a constant factor worse than this, but when d << logm, it is
significantly better.

For simple B-matching, the only bounds we know are in terms of opt and

|X|; the best is 2 <W) [Sri99]. When d << B << opt << |X|

and d << log|X| (note again that d < log|X|), our bound improves on this
significantly.

2 Preliminaries

Denote the nonnegative rationals by Q, and the nonnegative integers by Z .

For a countable set X, a probability distribution D over X, and a predicate
¢ over X, denote by Prycp(¢(x)) the probability that ¢(x) is true when z is
chosen according to D. Define E, ¢ p similarly. Denote by D¢ the distribution on
X* obtained by sampling £ times independently according to D.

For a domain X, and a subset S of X, define x5 to be the indicator function
for S, i.e. function from X to {0,1} for which xs(z) =1z € S.

For a domain X, say that a set F of real-valued functions defined on X
shatters a sequence zq, ..., x4 of elements of X if there is a sequence rq,...,74 of
real thresholds such that for any b, ...,bg € {above, below}, there is an f € F
such that for all ¢ € {1,...,d}, f(z;) > 7 & b; = above. Define the pseudo-
dimension [Pol84] of F, denoted by Pdim(F), to be the length of the longest



sequence shattered by F. The VC-dimension [VCT71] of a set F of functions from
X to {0,1}, denoted by VCdim(F), is its pseudo-dimension. The VC-dimension
of a family S of subsets of X is the VC-dimension of {xs : S € S}.

For a real matrix A, define the pseudo-dimension of A, denoted by Pdim(A),
by thinking of the rows of A as functions and taking the pseudo-dimension of
the resulting class of functions. Specifically, if A is an m X n matrix, for each
1 € {1,...,m} define fA,i : {].,...,’I’L} — R by fA,z(J) = Ai’j and let Pdlm(A) =
Pdim({fa;:9 € {1,...,m}}).

For a family S of sets define the dual of S, denoted by dual(S) as follows.
For each z € UgesS, let Qs = {S € S : x € S}. Let dual(S) = {Qu,s : x €
UsesS}-

Lemma 1 ([Vap82,Pol84]). There is a constant k > 0 such that for anyr > 0,

any finite set X, any set F of functions from X to [0,7], any € > 0, and any
probability distribution D over X, if £ > M InZ, then

£
Pr(.,,..z0ept <3f € F,Eoen(f(2)) 2 € but Y _ f(2i) < 6ﬂ/2> < 1/4.

i=1
Lemma 2 ([Tal94]). There is a constant k > 0 such that for any real a and b
with a < b (let r = b—a), any finite set X, any set F of functions from X to

[a,b], any € > 0, and any probability distribution D over X, if £ > M,
then

£
Eacn(f(@) - 7 3 (20

Pr(z1,...,zg)ED£ <3f e F, > 6) < 1/4,

Lemma 3. There is a constant k > 0 such that for any r > 0, any finite set
X, any set F of functions from X to [0,r], any € > 0, and any probability

distribution D over X, and for any a > 1, if £ > %ng InZ, then

14
Pr(z1,...,zz)€D£ <3f € -7_-; EwED(f(:E)) S € but Zf(zz) > (]- + Oé)€£> S 1/4

i=1

We are not aware of a reference for Lemma 3. Tts proof, whose rough outline
follows those of related results (see [Pol84,Hau92,SAB93,AB99]), is omitted due
to space contraints.

3 Covering Integer Programs

In a covering integer program, for natural numbers n and m, column vectors
c€ Q% and b € QF, and a matrix A € QT'*", the goal is to choose = € Z" to
minimize ¢’ 2 subject to Az > b.

Srinivasan [Sri99] showed that one can assume without loss of generality that
A €[0,1]™*™and b € [1,00)™. By dividing each row i of A by b;, one can further



assume w.l.o.g. that each component of b is 1. Furthermore, one can assume that
each component of ¢ is positive, since if some ¢; = 0, one can eliminate the jth
variable by deleting all constraints that can be satisfied by making it arbitrarily
large. Finally, we can scale ¢ so that its least component is 1. This is summarized
in the following.

Definition 1. A covering integer program in normal form is given by a matriz
A = [0,1]™*" and a column vector ¢ € [1,00)". The goal is to find a column
vector x € Z"™ such that = > (0,0,...,0)7 and Az > (1,1,...,1)T in order to
minimize ¢’ x.

Theorem 1. There is a polynomial q¢ and a randomized algorithm R with the
following property. For any covering integer program (A,c) in normal form, if
r =max; ; A; ; and L is the number of bits required to write A and c, then with
probability 1/2, Algorithm R outputs a feasible solution x in q(L,opt(A,c)) time
whose solution has cost that is O(opt(A4,c)(1 + rPdim(A) log(ropt(4,c)))).

Proof Sketch: For the sake of brevity, we will consider an algorithm (let’s call
it R') that makes use of the knowledge of Pdim(A). It is not hard to see how to
remove the need for this knowledge. Algorithm R’ is as follows.

— Solve the linear program obtained by relaxing the integrality constraint. Call
the solution wu.

— Set Z =3, u;, and p = u/Z. Note that p can be interpreted as a proba-
bility distribution on {1,...,n}. Note also that Z > 1/r, since otherwise all
constraints would be violated.

— Let k be as in Lemma 1 and £ = max{[2kPdim(4)rZ In(rZ)], [2Z]}. Sample
£ times at random independently according to p, and, for each j, let ; be
the number of times that j occurs.

— OQutput £ = (z1, ..., Tp)-

Choose an input (A,c) and let r = max;; A; j, opt = opt(4,c), and d =
Pdim(A). Let a1, ...,a,, be the rows of A. Since Au > (1,1,...,1)T, we have
Ap > (1/2)(1,1,...,1)T. Thus, for each i, we have E;c,(4; ;) = Ejep(fa,:(j)) >
1/Z.

Since, for each ¢, incrementing x; has the effect of increasing a; -« by A; ; =
fa.i(4), applying Lemma 1 with e = 1/Z, with probability at least 3/4, for all i,
a; -z >{€[/(2Z) > 1. Thus,

Pr(z is not feasible ) < 1/4. (1)
We have

max{[2kdrZIn(rZ)], [2Z] }opt

E(c'z) = tc"p < topt)Z < 7

Thus, Markov’s inequality implies that

Pr (ch S 4 max{ f2nd(rZ)1Zn(rZ)], [2Z]}opt) <1/4.

(2)

Since each ¢; > 1, we have Z = 37" | u; < > 1 | ¢;u; < opt. Combining with
(1) and (2) completes the proof. O



4 Mixed Covering Integer Programs

In a mized covering integer program, for natural numbers m and n, column
vectors ¢ € Q7 and b € QF', and a matrix A € Q™*", the goal is to choose
z € Z" to minimize cTx subject to Az > b. Note that to be a mixed covering
integer program, the entries of A need not be nonnegative. If b = (1,1,...,1)T
and ¢ € [1,00)", then we say that the mixed covering integer program is in
normal form. (This can be seen to be without loss of generality as with covering
integer programs.) Note however, that here we cannot assume without loss of
generality that the entries of A are at most 1.

Theorem 2. There is a polynomial q and a randomized algorithm R with the fol-
lowing property. For any mized covering integer program (A, c) in normal form,
if r = max; ; |A; ;| and L is the number of bits required to write A and c, then
with probability 1/2, Algorithm R outputs a feasible solution x in q(L,opt(4,c))
time whose solution has cost that is O(Pdim(A)r2opt(4,c)? + opt(4,c)).

Proof Sketch: As in the proof of Theorem 1, we will consider an algorithm R’
that “knows” Pdim(A); the algorithm is the same as in that proof, except kg
is defined as in Lemma 2, £ = max{[4xkPdim(A)r?Z?],[2Z]}. We will borrow
notation from that proof.

As before, since Au > (1,1,...,1)T and p = u/Z, for each i € {1,...,m},

Ejep(fa,i(j)) > 1/Z. Thus

¢
Pr(z is not feasible) < Pri;, .iyep (EIi,E(fA,i) >1/Z but ZfA,,-(jt) < 1)
t=1

‘
. . 4
S Prg, . joept <3%E(fA,i) > 1/Z but ZfA,z’(Jt) < ﬁ)
t=1

>1
27

4
) 1 .
< Pr(jly“wjl)epl <E|’L, E(fA,i) ] ZfA,z'(Jt)
t=1

which is at most 1/4 by Lemma 2. But

max{[4xPdim(A4)r*Z?], [2Z] }opt

E(c'z) < topt)Z < 7

Applying Markov’s inequality and the fact that Z < opt as in the proof of
Theorem 1 completes the proof. O

5 Packing Integer Programs

In a packing integer program, for natural numbers n and m, column vectors
c€ Q% and b € Q7, and a matrix A € QT'*", the goal is to choose z € Z to
maximize ¢’z subject to Az < b.



Arguing as for covering, one can assume without loss of generality that entries
of A arein [0,1] and b = (1,1,...,1)T. Furthermore, one can also assume in this
case that each component of ¢ is positive; here if some ¢; = 0, you might as well
set z; = 0, and thus, the jth variable can be eliminated. Since again we can
scale ¢ so that its least component is 1, we arrive at the following.

Definition 2. A packing integer program in normal form is given by a matriz
A = [0,1]™*" and a column vector ¢ € [1,00)™. The goal is to find a column
vector x € Z"™ such that x > (0,0,...,0)7 and Az < (1,1,...,1)T in order to

mazimize ¢ z.

Theorem 3. There is a constant k > 0, a randomized polynomial-time algo-
rithm R and a polynomial q with the following property. For any packing integer
program (A, c) in normal form, if B is the least integer such that max; ; A;; <
1/B, L is the number of bits in the representation of A and ¢, and d = Pdim(A),
with probability 1/2, Algorithm R outputs a feasible solution z in q(L, opt(A, c))

time whose solution has value that is 2 <%).
Proof Sketch: The fact that the entries of A are at most 1/B implies that any
x with }°._, x; < B is feasible. This, together with the fact that each component
of ¢ is at least 1, implies that it is trivial to find a solution of value B. Hence, we
can assume without loss of generality that W > B and therefore, since
opt > B, that kd/B < 1.

Again, we will consider an algorithm R’ that “knows” Pdim(A):

— Solve the linear program obtained by relaxing the integrality constraint. Call
the solution w.

— Set Z = > u;, and p = u/Z. (Note that Z > B; otherwise, since the
entries of A are at most 1/B, no constraints would be binding, and u could
be improved.)

— Let k beasin Lemma 3, d = Pdim(A), a = (Z/B)*4/B ¢ = [%].

Sample £ times at random independently according to p, and, for each j, let
z; be the number of times that j occurs.
— Output z = (21, ..., Ty)-

Choose an input (A4, c¢) and let ay, ..., an, be the rows of A. Let B, d, a and
£ be as in the description of Algorithm R', and let opt = opt(A4, ¢).

Suppose £ = 1. Again, since the entries in A are at most 1, and the constraints
are of the form a; - < 1, then since in this case Y. z; = 1, z is certainly
feasible.

Suppose £ > 1. Since Au < (1,1,...,1)T, for each i, we have E(a; - ) < £/Z.
Applying part (¢) of Lemma 3 (note that since Z > B, a > 1), with probability
at least 3/4, for all i,

;- < (1+a)l/Z = 1+a [/sd(Z/B)ln(Z/B)" < 4kd(Z/B)In(Z/B) -

Z aln(l+ a) ZIn(l+a) -



Thus, whatever the value of ¢, we have
Pr(z is not feasible ) < 1/4. (3)

Applying Chebyshev’s inequality yields

T T
Pr (cTa: e ECZ“) <1/4. (4)

Z

Substituting the value of £ and simplifying, we have

ety cTu cTu opt

> 2 2 )
Z (% E:LZI ’U,i)kd/B (CTU/B)kd/B (Opt/B)kd/B

since ¢T'u > opt and kd/B < 1. Putting this together with (4) and (3) completes
the proof. O

6 Applications

In this section, we give examples of the application of our general results.

6.1 Dominating set and extensions

The B-domination problem [NR95,5ri99] is defined as follows: given a graph
G = (V, E), place as few facilities as possible on the vertices of G in such a way
that each vertex has at least B facilities in its neighborhood. The neighborhood
of a vertex is defined to consist of the vertex and all vertices sharing an edge
with it.

Define N (G) to be the set system consisting of all the neighborhoods in G,
ie.

N(@G) = {{w: {v,w} € EYU{v}:veV}.

Theorem 4. For each natural number B, there is a polynomial-time algorithm
A for the B-domination problem such that for any graph G with optimal solution
opt(G, B), algorithm A outputs a solution of size

B

0 <opt(G,B) (1 + VCdiméN (@) 1 228G, B ))) .

Proof: If z, is the number of facilities located at vertex v, the problem is to
minimize )y =, subject to the constraints, one for each vertex v, that

Z Ty | +2, | /B>1
w:{v,w}EE



(and that the z,’s are nonnegative integers). Since N (G) = dual(N(G)), and
scaling all members of a set of functions by a common constant factor does not
change its pseudo-dimension, applying Theorem 1 completes the proof. O

The following is an example of how this can be applied. Recall that the genus
of a graph is, informally, the number of “handles” that need to be added to the
plane before the graph can be embedded without any edge crossings.

Theorem 5. Choose a fized nonnegative integer k.

For each natural number B, there is a polynomial-time algorithm A for the
B-domination problem such that for any graph G of genus at most k with optimal
solution opt(G, B), algorithm A outputs a solution of size

0] (Opt(G,B) (1 + W)) .

Proof Sketch: We bound the VC-dimension of V' (G) in terms of the genus of
G and apply Theorem 4. Details are omitted from this abstract. O

6.2 Sparse majorities of weak hypotheses

The minimum majority problem is to, given an m X n matrix A with entries in
{—1,1}, choose z € Z7 to minimize )., , z; subject to Az > 0. In other words,
choose as short a sequence j, ..., jr of columns as possible such that for each row
i, a majority of A;j,, ..., A; ;. are 1. The following is an immediate consequence
of Theorem 2.

Theorem 6. There is a randomized polynomial time algorithm for the min-
imum majority problem that, with probability 1/2, outputs a solution of cost
O(opt?*Pdim(A)).

The minimum majority problem is a restatement of an optimization problem
motivated by learning applications. Many learning problems can be modeled as
that of approximating a {0,1}-valued function using examples of its behavior
when applied to randomly drawn elements of its domain [Val84,Hau92]; the ap-
proximation is sometimes called a hypothesis. Boosting [Sch90,Fre95,FS97] is a
method for combining “weak hypotheses”, which are correct on only a slight
majority of the input examples, into a “strong hypothesis”, which outputs a
weighted majority vote of the weak hypotheses. The key idea of the most in-
fluential analysis of the ability of the strong hypothesis to generalize to unseen
domain elements [SFBL98] is to use the fact that it can be approximated by a
majority of a few of the weak hypotheses. This suggests an alternative approach
to the design of a learning algorithm: try directly to find hypotheses that ex-
plain the data well using majorities of as few as possible of a collection of weak
hypotheses. This is captured by the minimum majority problem: the columns
correspond to examples, the rows to weak hypotheses, and an entry indicates
whether a given weak hypothesis is correct on a given example. The goal is to
find a small multiset of weak hypotheses whose majority is correct on all of a
collection of examples. This direct optimization might provide improved gener-
alization, but even if not, its output should be easier to interpret, which is an
important goal for some applications [Qui99].



6.3 Simple B-matching

The problem of simple B-matching [Lov75] is to, given a family S of subsets of
a finite set X, find a large 7 C S such that each element of X is contained in
at most B of the sets in 7.

Theorem 7. There is a constant k such that for all integers B> 1 and d > 2,
there is a polynomial time algorithm for the simple B matching problem that,
for any input S such that VCdim(dual(S)) < d, outputs a solution of size
2((opt(S)/B)*+4/5).

Proof: Consider the variant of the simple B matching problem in which multiple
copies of sets in S can be included in the output. This problem can be expressed
as a packing integer program in normal form as follows. For each S € S, include
a variable zg indicating the number of copies of S in the output. Then the goal
is to maximize ) g.g2s subject to the constraints, one for each z € X, that
(Xseswes®s) /B <1

Suppose opt(S) is the optimal value of the objective function for the original
simple B-matching problem. Since the optimal value of the objective function
for the multiple-copy variant is at least opt(S), and since, once again, scaling
elements of a set of functions by a common constant factor does not affect its
pseudo-dimension, Theorem 3 implies that the value of the solution output by

the algorithm described above is 2 (%

copies of any set are included, so if we output one copy of all sets for which
zs > 0 we get a solution of size (2 ((opt(S)/B)lfkd/B). O

). Certainly no more than B

7 Concluding remark

Other generalizations of the VC-dimension to real and integer-valued functions
have been proposed, and results similar to Lemmas 1 and 2 proved for them
(see [Dud78,Nat89,Vap89,KS94, BCHL92,ABCH97,BLW96,BL98]). It is easy to
see how to prove analogues of Theorems 1, 2 and 3 for any of these. In some
cases, these may provide easier analyses or stronger guarantees.
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