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Abstract

We consider the problem of learning real-valued functions from random examples when the
function values are corrupted with noise. With mild conditions on independent observation
noise, we provide characterizations of the learnability of a real-valued function class in terms of
a generalization of the Vapnik-Chervonenkis dimension, the fat-shattering function, introduced
by Kearns and Schapire. We show that, given some restrictions on the noise, a function class
is learnable in our model if and only if its fat-shattering function is finite. With different (also
quite mild) restrictions, satisfied for example by gaussian noise, we show that a function class
is learnable from polynomially many examples if and only if its fat-shattering function grows
polynomially. We prove analogous results in an agnostic setting, where there is no assumption
of an underlying function class.



1 Introduction

In many common definitions of learning, a learner sees a sequence of values of an unknown
function at random points, and must, with high probability, choose an accurate approximation
to that function. The function is assumed to be a member of some known class. Using a
popular definition of the problem of learning {0, 1}-valued functions (probably approximately
correct learning — see [12], [26]), Blumer, Ehrenfeucht, Haussler, and Warmuth have shown
[12] that the Vapnik-Chervonenkis dimension (see [27]) of a function class characterizes its
learnability, in the sense that a function class is learnable if and only if its Vapnik-Chervonenkis
dimension is finite. Natarajan [19] and Ben-David, Cesa-Bianchi, Haussler and Long [11] have
characterized the learnability of {0, ...,n}-valued functions for fixed n. Alon, Ben-David, Cesa-
Bianchi, and Haussler have proved an analogous result for the problem of learning probabilistic
concepts [1]. In this case, there is an unknown [0, 1]-valued function, but the learner does not
receive a sequence of values of the function at random points. Instead, with each random point
it sees either 0 or 1, with the probability of a 1 given by the value of the unknown function at
that point. Kearns and Schapire [16] introduced a generalization of the Vapnik-Chervonenkis
dimension, which we call the fat-shattering function, and showed that a class of probabilistic
concepts is learnable only if the class has a finite fat-shattering function. The main learning
result of [1] is that finiteness of the fat-shattering function of a class of probabilistic concepts is
also sufficient for learnability.

In this paper, we consider the learnability of [0, 1]-valued function classes. We show that a
class of [0, 1]-valued functions is learnable from a finite training sample with observation noise
satisfying some mild conditions (the distribution has bounded support and its density satisfies
a smoothness constraint) if and only if the class has a finite fat-shattering function. Here, as
elsewhere, our main contribution is in showing that the finiteness of the fat-shattering function
is necessary for learning. We also consider small-sample learnability, for which the sample size
is allowed to grow only polynomially with the required performance parameters. We show that
a real-valued function class is learnable from a small sample with observation noise satisfying
some other quite mild conditions (the distribution need not have bounded support, but it must
have light tails and be symmetric about zero; gaussian noise satisfies these conditions) if and
only if the fat-shattering function of the class has a polynomial rate of growth. We also consider
agnostic learning [15] [17], in which there is no assumption of an underlying function generating
the training examples, and the performance of the learning algorithm is measured by comparison
with some function class F'. We show that the fat-shattering function of F' characterizes finite-
sample and small-sample learnability in this case also. In fact, the proof in [1] that finiteness
of the fat-shattering function of a class of probabilistic concepts implies learnability also gives
a related sufficient condition for agnostic learnability of [0, 1]-valued functions. We show that
this condition is implied by finiteness of the fat-shattering function of F.

The proof of the lower bound on the number of examples necessary for learning is in two
steps. First, we show that the problem of learning real-valued functions in the presence of noise
is not much easier than that of learning functions in a discrete-valued function class obtained
by quantizing the real-valued function class. This formalizes the intuition that a noisy, real-
valued measurement provides little more information than a quantized measurement, if the
quantization width is sufficiently small. Existing lower bounds on the number of examples
required for learning discrete-valued function classes [11], [19] are not strong enough for our
purposes. We improve these lower bounds by relating the problem of learning the quantized



function class to that of learning {0, 1}-valued functions.

In addition to the aforementioned papers, other general results about learning real-valued
functions have been obtained. Haussler [15] gives sufficient conditions for agnostic learnability.
Anthony, Bartlett, Ishai, and Shawe-Taylor [4] give necessary and sufficient conditions that a
function that approximately interpolates the target function is a good approximation to it (see
also [5] and [3]). Natarajan [20] considers the problem of learning a class of real-valued functions
in the presence of bounded observation noise, and presents sufficient conditions for learnability.
(Theorem 2 in [4] shows that these conditions are not necessary in our setting.) Merhav and
Feder [18], and Auer, Long, Maass, and Woeginger [6] study function learning in a worst-case
setting.

In the next section, we define admissible noise distribution classes and the learning problems,
and present the characterizations of learnability. Sections 3 and 4 give lower and upper bounds
on the number of examples necessary for learning real-valued functions. Section 5 presents the
characterization of agnostic learnability. Section 6 discusses our results. An earlier version of
this paper appeared in [10].

2 Definitions and main result

Denote the integers by Z, the positive integers by N, the reals by R and the nonnegative reals
by R*. We use log to denote logarithm to base two, and In to denote the natural logarithm. Fix
an arbitrary set X. Throughout the paper, X denotes the input space on which the real-valued
functions are defined. We refer to probability distributions on X without explicitly defining a
o-algebra §. For countable X, let & be the set of all subsets of X. If X is a metric space, let §
be the Borel sets of X. All functions and sets we consider are assumed to be measurable.

Classes of noise distributions

The noise distributions we consider are absolutely continuous, and their densities have bounded
variation. A function f : R — R is said to have bounded variation if there is a constant
C' > 0 such that for every ordered sequence zo < -+ < z, in R (n € N) we have

Z f(en) = Floe)] < C.

In that case, the total variation of f on R is
V(f) = sup {Z |f(zr) = flzg—1)|:n € Njzg < -+ < xn}
k=1

Definition 1 An admissible noise distribution class D is a class of distributions on R that
satisfies

1. Fach distribution in D has mean 0 and finite variance.

2. FEach distribution in D s absolutely continuous and its probability density
function (pdf) has bounded variation. Furthermore, there is a function v : Rt — R*
such that, if f is the pdf of any distribution in D with variance o, then V(f) < v(o).
The function v is called the total variation function of the class D.

4



If D also satisfies the following condition, we say it is a bounded admissible noise distri-
bution class.

3. There is a function s : Rt — Rt such that, if D is a distribution in D with
variance o?, then the support of D is contained in a closed interval of length s(o).
The function s is called the support function of D.

If D satisfies Conditions 1, 2, and the following condition', we say it is an almost-bounded
admissible noise distribution class.

3. Each distribution D in D has an even pdf (f(z) = f(—=x)) and light tails:
there are constants sy and cy in RY such that, for all distributions D in D with
variance o2, and all s > syo,

D{n:|n| >s/2} < coe_s/a.

Example (Uniform noise) Let 4 = {U, : ¢ > 0}, where U, is uniform on (—v/30,/30).
Then this noise has mean 0, standard deviation o, total variation function v(¢) = 1/(v/3¢), and
support function s(o) = 2v/3¢, so U is a bounded admissible noise distribution class. O

Example (Gaussian noise) Let G = {G, : ¢ > 0}, where GG, is the zero mean gaussian
distribution with variance o?. Since the density f, of G, has f,(0) = (v/27o)™", and f,(z) is
monotonic decreasing for z > 0, the total variation function is v(c) = 2(v/27a)~'. Obviously,
f» is an even function. Standard bounds on the area under the tails of the gaussian density (see

[21], p.64, Fact 3.7.3) give

32
ol R il > 512} < (— ). )

and if s > 8o, exp(—s%/(80?)) < exp(—s/c), so the constants ¢g = 1 and sy = 8 will satisfy
Condition 3'. So the class G of gaussian distributions is almost-bounded admissible. O

The learning problem

Choose a set F' of functions from X to [0,1]. For m é N, f € F,xz € X™ and n € R™, let

sam (2,7, f) = (21, F(21) + 1) coos (T, f(2) + 7)) € (X x R)™

(We often dispense with the parentheses in tuples of this form, to avoid cluttering the notation.)
Informally, a learning algorithm takes a sample of the above form, and outputs a hypothesis

In fact, Condition 3/ is stronger than we need. It suffices that the distributions be “close to” symmetric and
have light tails in the following sense: there are constants sq and c¢o in R¥ such that, for all distributions D in
D with variance o2, and all s > sqo, if I € R satisfies le's zd(z)dz = 0, then

I+s
(x)de>1- coe™*7,

where ¢ is the pdf of D.



for f. More formally, a deterministic learning algorithm? is defined to be a mapping from
Un(X x R)™ to [0,1]*. A randomized learning algorithm L is a pair (A, Pz), where Py is
a distribution on a set Z, and A is a mapping from U,, (X x R)™ x Z™ to [0, 1]¥. That is, given
a sample of length m, the randomized algorithm chooses a sequence z € Z™ at random from
P, and passes it to the (deterministic) mapping A as a parameter.

For a probability distribution P on X, f € F and h : X — [0, 1], define
exps(h) = [ 1h(z) ~ f()ldP(z).

The following definition of learning is based on those of [12], [19], [26].

Definition 2 Let D be a class of distributions on R. Choose 0 < ¢,6 <1, ¢ >0, and m € N.
We say a learning algorithm L = (A, Pz) (¢, 6,0)-learns F' from m examples with noise D
if for all distributions P on X, all functions f in F, and all distributions D € D with variance

o?,

(P™ x D™ x P ){(z,n,z) € X" x R™ x Z™ : erps(A(sam(x,n, [),2)) > €} < 6.

Similarly, L (e,6)-learns F from m examples without noise if, for all distributions P on
X and all functions f in F,

(P™ x P7){(z,z) € X" x Z™ : erps(A(sam(z,0, f),z)) > €} < 6.

We say F' is learnable with noise D if there is a learning algorithm L and a function mg :
(0,1) x (0,1) x RT — N such that for all 0 < ¢,6 < 1, for all ¢ > 0, algorithm L (¢,6,0) learns
F' from mq(e, 6,0) examples with noise D. We say F' is small-sample learnable with noise
D if, in addition, the function mg is bounded by a polynomial in 1/¢, 1/, and o.

The following definition comes from [16]. Choose z1,...,24 € X. We say z1,..., 24 are -
shattered by F if there exists r € [0,1]? such that for each b € {0,1}?, there is an f € F such
that for each 2
Flai) = { flz)) <ri—~ ifb;=0.

For each ~, let
fatp(y) = max{d € N: Jaq, ..., x4, F y-shatters zy,..., x4}

if such a maximum exists, and oo otherwise. If fatz(v) is finite for all v, we say F has a finite
fat-shattering function.
The following is our main result.

Theorem 3 Suppose F is a permissible® class of [0, 1]-valued functions defined on X.

If D s a bounded admissible noise distribution class, then F is learnable with observation
noise D if and only if F' has a finite fat-shattering function.

If D is an almost-bounded admissible noise distribution class, then F' is small-sample learn-
able with observation noise D if and only if there is a polynomial p such that fatp(vy) < p(1/7)
for all v > 0.

2Despite the name “algorithm,” there is no requirement that this mapping be computable. Throughout the
paper, we ignore issues of computability.
3This is a benign measurability constraint defined in Section 4.
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3 Lower bound

In this section, we give a lower bound on the number of examples necessary to learn a real-
valued function class in the presence of observation noise. Lemma 5 in Section 3.1 shows that
an algorithm that can learn a real-valued function class with observation noise can be used
to construct an algorithm that can learn a quantized version of the function class to slightly
worse accuracy and confidence with the same number of examples, provided the quantization
width is sufficiently small. Lemma 10 in Section 3.2 gives a lower bound on the number of
examples necessary for learning a quantized function class in terms of its fat-shattering function.

In Section 3.3, we combine these results to give the lower bound for real-valued functions,
Theorem 11.

3.1 Learnability with noise implies quantized learnability

In this subsection, we relate the problem of learning a real-valued function class with observation
noise to the problem of learning a quantized version of that class, without noise.

Definition 4 For a € R*, define the quantization function

Quly) = a {M-‘ _
a
For a set S C R, let Q.(S) = {Qu.(y) : y € S}. For a function class F C [0,1]%, let Q.(F) be
the set {Qo 0 f: f € F} of Qa([0,1])-valued functions defined on X .

Lemma 5 Suppose F is a set of functions from X to [0, 1], D is an admissible noise distribution
class with total variation function v, A is a learning algorithm, 0 < ¢,6 < 1, c € RT, and m € N.
If the quantization width o € RY satisfies

agmin(

5 ) 26) )
v(o)m

and A (€,6,0)-learns F' from m examples with noise D, then there is a randomized learning
algorithm (C, Pz) that (2¢,26)-learns Q,(F') from m examples.

Figure 1 illustrates our approach. Suppose an algorithm A can (e, 6,0)-learn from m noisy
examples (z;, f(x;) + n:). If we quantize the observations to accuracy a and add noise that is
uniform on (—a/2, a/2), Lemma 6(a) shows that the distribution of the observations is approx-
imately unchanged (in the notation of Figure 1, the distributions P; and P, are close), so A
learns almost as well as it did previously. If we define Algorithm B as this operation of adding
uniform noise and then invoking Algorithm A, B solves a quantized learning problem in which
the examples are given as (z;, Qo(f(z;) + n:)). Lemma 6(b) shows that this problem is similar
to the problem of learning the quantized function class when the observations are contaminated
with independent noise whose distribution is a quantized version of the original observation
noise (that is, the examples are given as (z;, Q.(f(2;)) + Qa(vi))). In the notation of Figure 1,
Lemma 6(b) shows that the distributions Ps; and Py are close. It follows that Algorithm C,
which adds this quantized noise to the observations and passes them to Algorithm B, learns
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Figure 1: Lemma 5 shows that a learning algorithm for real-valued functions (Algorithm A) can
be used to construct a randomized learning algorithm for quantized functions (Algorithm C).



the quantized function class without observation noise (that is, when the examples are given as

(zi, Qa(f(24)))).

For distributions P and () on R, define the total variation distance between P and () as
arv(P,Q) = 25up | P(E) - Q(B)
where the supremum is over all Borel sets. If P and () are discrete, it is easy to show that

drv(P,Q) =) |P(z) — Q(z)],

where the sum is over all x in union of the supports of P and (). Similarly, if P and () are
continuous with probability density functions p and ¢ respectively,

o0

drv(P,Q) = [ Ipla) — gla)| da.
Lemma 6 Let D be an admissible noise distribution class with total variation function v. Let
o >0and 0 < o < 1. Let D be a distribution in D with variance o*. Let n, {, and v be
random variables, and suppose that n and v are distributed according to D, and ( is distributed
uniformly on (—a/2,a/2).

(a) For any y € [0,1], if Py is the distribution of y+n and P, is the distribution of Q. (y+n)+(,
we have

drv(Pr, Py) < av(o).

(b) For any y € [0,1], iof Ps is the distribution of Qu(y + n) and Py is the distribution of
Qaly) + Qu(v), we have
drv(Ps, Py) < av(o).

Proof Let p be the pdf of D.

(a) The random variable y + n has density pi(a) = p(a — y), and Q.(y + 1) + ¢ has density p»
given by

1 ;Qala)te/2
pa(a) = — p(z —y)dx
= " ple =)
for a € R. So
0o 1 Qalz)+a/2
drv (P, P2) = / ple —y) — —/ p(0 —y)db| dx
—00 o alz)—a/2

0 04/2 1 01/2

= > [V e —ytna)—— [ p(0—y +na)do|dr
n=—0o —af2 o J—af2
01/2 o0 1 01/2

= / Z P(x—y+noz)——/ p(0 —y + na)db| dz.
—af2 2" o J—af2

By the mean value theorem, there are z; and 2, in [—a/2, a/2] such that

1 ra/2
P —ytna) < = [ (0 =yt na)dd < plzs =y + o),



so for all z € [—a/2, /2],

o0

1 rof2
Ejp@—y+MQ—;ﬁ/ﬁw—y+mﬂM

o0

IN

sup  |p(z —y + na) — p(z — y + na)
n=—oo 2€(—a/2,0/2)

< (o),
and therefore
drv (P, P2) < av(o).
(b) The distribution Ps of Qu.(y + 7) is discrete, and is given by

ffﬁfﬁ/ﬁ p(z —y)dz if a = na for some n € Z

Py(a) = {

0 otherwise.

Since v has distribution D, the distribution Py of Q,(y)+ Q4(v) is also discrete, and is given by

Py(a) = f:jj—j/; p(x)dz if a = Qu(y) + na for some n € Z
! 10 otherwise.
So
drv(PuPy) = Y. |Psna) - Py(na)
0 na+a/?2 noto/2
= > / p(m—y)d:c—/ p(z—Quly)) de
ne—oo |/na—a/2 na—a/?2
0 af2
< Y [0 =yt n0) = ple = Quly) +na)|do
a2 0
= /_ / Y Ip(z —y+na) —p(z—Quly) +na)|de
al2 _OO
< / > sup  |p(x —y +na) —p(z —y +na+ z)|dx
_Q/Q n=—oo ZG(—O&/?,Q/Z)
< av(o).
O

We will use the following lemma. The proof is by induction, and is implicit in the proof of
Lemma 12 in [8].

Lemma 7 If P, and Q; (i = 1,...,m) are distributions on a set Y, and x is a [0, 1]-valued
random variable defined on Y™, then

1 m
aP = [ xdQ| < 33 drv(P, Qo)
/me YmXQ_ZZ; v (P, Qi)
where P =]~ P; and Q =~ Q; are distributions on Y.
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Proof (of Lemma 5) We will describe a randomized algorithm (Algorithm C') that is con-
structed from Algorithm A, and show that it (2¢,26)-learns the quantized function class Q. (F).
Fix a noise distribution D in D with variance o2, a function f € F, and a distribution P on X.
Since A (¢, 6,0)-learns F', we have

P"™ x D™ {(z,n) € X" x R™ : erps(A(sam(z,n, f))) > €} < 6.

That is, the probability (over all z € X™ and n € R™) that Algorithm A chooses a bad function
is small. We will show that this implies that the probability that Algorithm C' chooses a bad
function is also small, where the probability is over all x € X™ and all values of the random
variables that Algorithm C' uses.

Let ¢ be a random variable with distribution U,, where U, is the uniform distribution
on (—a/2,a/2). For an arbitrary sequence (yi,...,Ym), let Algorithm B be the randomized
algorithm that adds noise ( to each y value it receives, and passes the sequence to Algorithm A.
That is, for any sequence of (z;,y;) pairs,

B(Jfl,’yl, fee axmaym) = A(xlayl + Cla cees Ty Ym + Cm)

First we prove that, for a given sequence = of input values, the probability that Algorithm A
outputs a bad hypothesis when it is called from Algorithm B in the scenario shown in Figure 1
(that is, when it sees examples of the form (x;, Q.(f(x;) + n:) + ¢;)) is no more than §/2
more than the probability that Algorithm A outputs a bad hypothesis after receiving examples
(24, f(z;) + n:). We prove this by considering the set of noisy function values for the input
sequence x that cause Algorithm A to output a bad hypothesis.

Now, fix a sequence x = (21,...,2,) € X", and define the events

E = {neR"™:erps(A(sam(z,n, f))) > €},
Ey = {yeR™:erpi(Alx1, 91,y Ty, Ym)) = €} .

That is, F is the set of noise sequences that make A choose a bad function, and F; is the
corresponding set of y sequences. Clearly,

o) = (T R ) ), 2)
=1
where P, is the distribution of f(z;)+7n. We will show that D™ (FE) is close to the corresponding
probability under the distribution of y values that Algorithm A sees when Algorithm B invokes
it.
Define P, as the distribution of Q.(f(z;) + n)+ (. From Lemma 6a, dry(Pijs;, Pajs,) <
av(a). Applying Lemma 7 with x = 1g,, the indicator* function for Ej, gives

(ﬁl P2|$i) (£1) — (mﬁl P1|x,') (E1) < maw(o)/2.

But by hypothesis a < §/(muw(0)), so this and (2) imply

(f[l P2|xi) (E1) < D™(E) +6/2.

4that is, 1g, (y) takes value 1if y € E7, and 0 otherwise.
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Next we observe that, for a fixed sequence z of input values, the probability that Algorithm B
outputs a bad hypothesis when given quantized noisy examples (of the form (z;, Q. (f(z;)+n:)))
is equal to the probability that Algorithm A outputs a bad hypothesis when given examples of
the form (z;, Qo (f(xi) + ni) + ¢;). More formally, we can write this as follows. Let P, be the
distribution of Q. (f(z;) 4+ n), and let

FEs={(y,() e R" xR™ :erps(A(x1,91 + (1 -y Ty Ym + Cm)) = €},

In this case, Fs is the set of (y, () pairs that correspond to B choosing a bad function. Clearly,

(H P2|xz‘) (E1) = (H Psjg, % U;n) (£3).
=1 =1

Let v be a random variable with distribution D. Let Algorithm C' be the randomized algo-
rithm that adds noise ,(v) to each y value it receives, and passes the sequence to Algorithm B.

That is,
C(x1,Y1y oy Ty Ym) = B(x1,y1 + Qa(t1)s oy Trny Y + Qo)) -
Next we prove that, for a fixed sequence x, the probability that Algorithm B outputs a
bad hypothesis when it is called from Algorithm C in the scenario shown in Figure 1 (that is,

when it sees examples of the form (z;, Q.(f(2;)) + Qua(v;))) is no more than 6/2 more than the
probability that Algorithm B outputs a bad hypothesis after receiving examples of the form

(26 Qalf (i) + mi))-
Let Py, be the distribution of Q.(f(z:)) + Qa(v). Applying Lemma 7, with x equal the
probability under U, that A produces a bad hypothesis, gives

(ﬁ Py X Uén) (Es) — (z=ﬁ1 Py, X U&n) (Es)

=1

< ZdTV(P3|x,‘7 P4|931)/2

=1

From Lemma 6b, dry (Pyz,, Psjz;) < av(o), so we have

(ﬁ Pyjz; X U;”) (Es) < (ﬁ Py, X U;”) (E3) +6/2

i=1 i=1
= (T17e) B+ 52
< Dzl(E) +4.
We have shown that, for any z € X™,

U2 x D™ {(Cv) s erp s (A2, Qalf(21)) + Qulin) + G,
sty Qalf(#m)) + Qa(Vm) + Cn)) 2 €}
< D™ {n:erpys(A(sam(z,n, f))) > €} + 6.

It follows that
P x UL x D™ {(x,(,v)  erpys (A(a1, Qal(f(21)) + Qalr1) + G,
oy Ty Qa(f(2m)) + Qalvm) + () > €}

< P x D™ {(,n) : erpy (A(sam(z, 7, f))) 2 €} + 6
< 26.
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For any function h : X — [0, 1], the triangle inequality for the absolute difference on R gives

expy(h) = [ Ihe) = J(2)|dP()

> /X(Ih(w) — Qal(f(2))| = |f(z) = Qu(f(2))]) dP()
= erpg,n(h) — %
Z erRQa(f)(h) — €,

since for all z, | f(z) — Qa(f(2))] < a/2, and a < 2¢ by hypothesis. It follows that

{erpg.(n(C(--) 2 2¢} C {erp(C(--+)) 2 €}

Hence
Pr (erpg.s) (C (1, Qul(F(21)), -+, s Qu(F(2m)))) > 2€) < 26,

where the probability is taken over all  in X™ and all values of ( and v, the random variables
used by Algorithm C. This is true for any Q.(f) in Q.(F'), so this algorithm (2¢, 26)-learns
Qa(F) from m examples. O

3.2 Lower bounds for quantized learning

In the previous subsection, we showed that if a class F' can be (e, 6, 0)-learned with a certain
number of examples, then an associated class Q,(F') of discrete-valued functions can be (2¢, 26)-
learned with the same number of examples. Given this result, one would be tempted to apply
techniques of Natarajan [19] or Ben-David, Cesa-Bianchi, Haussler, and Long [11] (who consider
the learnability of discrete-valued functions) to lower bound the number of examples required for
learning QQ,(F'). The main results of those papers, however, were for the discrete loss function,
where the learner “loses” 1 whenever it’s hypothesis is incorrect. When those results are applied
directly to get bounds for learning with the absolute loss, the resulting bounds are not strong
enough for our purposes because of the restrictions on « required to show that learning F'is not
much harder than learning Q. (F).

In this subsection, we present a new technique, inspired by the techniques of [7]. We show
that an algorithm for learning a class of discrete-valued functions can effectively be used as a
subroutine in an algorithm for learning binary-valued functions. We then apply a lower bound
result for binary-valued functions.

For each d € N, let POWER, be the set of all functions from {1,...,d} to {0,1}. We will
make use of the following special case of a general result about POWER, ([12], Theorem 2.1b).

Theorem 8 ([12]) Let A be a randomized learning algorithm which always outputs {0,1}-
valued hypotheses. If A is given fewer than d/2 examples, A fails to (1/8,1/8)-learn POWER,.

Theorem 2.1b of [12] is stated for deterministic algorithms, but an almost identical proof gives
the same result for randomized algorithms.

We will also make use of the standard Chernov bounds, proved in this form by Angluin and
Valiant [2].
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Theorem 9 ([2]) Let Y1,...,Y,, be independently, identically distributed {0,1}-valued random
variables where Pr(Y; = 1) = p. Then

Pr (ZY; > 2mp) < e~mrl3

=1
Pr (ZY; < mp/Z) < el
=1
Lemma 10 For 0 < a < 1/2, choose a set F' of functions from X to Q.([0,1]), d € N and
v > 0 such that fatp(vy) > d. If a randomized learning algorithm A is given fewer than

d — 666
4419210 [1/a + 1/2]

examples, A fails to (v/32,1/16)-learn F without noise.

Proof We will show that if there is an algorithm that can (v/32,1/16)-learn the quantized class
F from fewer than the number of examples given in the lemma, then this could be used as a
subroutine of an algorithm that could (1/8,1/8)-learn POWER, from fewer than d/2 examples,
violating Theorem 8.

Choose an algorithm A for learning F. Let z{,...,24 € X be 7-shattered by F, and let
ri,...,74 € [0,1]? be such that for each b € {0,1}?, there is an f, € F such that for all
J,1 <y <d,

>r;+v iftbh; =1
fb(xj){ < rj-—'y ifbj- =0.

For each ¢ € N, consider the algorithm /qu (which will be used for learning POWER,) which
uses A as a subroutine as follows. Given m > ¢ examples, (k1,y1), .., (Km,Ym) in {1,...,d} X
{0,1}, Algorithm A, first, for each v € Q.([0,1])? = {0,,...,a[l/a—1/2]}", sets hy, =
A((2ry,v1)5 -+, (2x,,vq)). Algorithm A, then uses this to define a set S of {0, 1}-valued functions
defined on {1,...,d} by
S = {hew v e Qa0 1))},

where .

EH,U(_].) _ { 1 if h,ﬁ,v(l‘j) Z r;

0 otherwise,

for all j € {1,...,d}. Finally, /iq returns an A* in S for which the number of disagreements
with the last m — ¢ examples is minimized. That is,

W= argmin {[{j € {g+1,..,m} : h(ny) £y}

We claim that if A can (v/32,1/16)-learn F from my € N examples without noise, then A,
can (1/8,1/8)-learn POWER, from

mo + [96 (In32 + molIn [1/a + 1/2])]

examples without noise, and we can then apply Theorem 8 to give the desired lower bound on
mgo. To see this, assume A (v/32,1/16)-learns F' from mq examples, and let A = A,,,. Suppose

14



A is trying to learn ¢ € POWER, and the distribution on the domain {1,...,d} is P. Let P be
the corresponding distribution on {zy,...,z4}, and let b = (g(1),...,9(d)) € {0,1}%. Since A
(v/32,1/16)-learns F', we have

P {(k1,. . bimg) t €0p g, (A (2, f(@1))s s (T fo(Tmy)) ) = 7/32} < 1/16,
which implies
Pk e {l,...,d}™ : Vv € Qu([0,1))™, erp s, (hxy) > 7/32} < 1/16.
This can be rewritten as
Prod o, [holes) = fie)| dPG) = 9/32} < 1716,
which, applying Markov’s inequality, yields
Pro L oo, P{j : |heo(a) — filw)| > 4} > 1/32) < 1/16. (3)

Now, for all j, |fi(z;) — r;| > 7, so if ~|i~L,<“](]) — bj| = 1 the definitions of iz,w and f, imply
|hew(zj) — fo(z;)] = ~. Therefore er]s,g(h,w) > 1/32 implies

P{j o heu(zy) = folzi)| > 7} > 1/32,

so (3) implies
Pro{: Vo, erp  (hey) > 1/32} < 1/16. (4)
A

That is, A is unlikely to choose S so that all elements have large error. We will show that
can use the remaining u examples to find an accurate function in S. Let

u=1[96(In32 4+ mgIn[l/a + 1/2])] .
Fix a v in Q4([0,1])™ and a « in {1,...,d}™. If erp,g(;z,w) > 1/8, we can apply Theorem 9,

with .
v = { Loif heo(X) # 9(4))
=

0 otherwise,

to give

pu {(Al,...,Au) Gt hen(N) # gAY < u/16} < ulet
Similarly, if erp,g(izmv) < 1/32, Theorem 9 implies
p {()\1,...,/\u) 4Gt hen(N) # g(A) ] > u/m} < emul%,

Since this is true for any v and since |Q4([0,1])] = [1/a + 1/2], we have

P {(Ar, ) s T, (erpy(huw) = 1/8 and [{5 < huu(A;) # 9(A;)}] < u/16)
or (erp (hey) < 1/32 and [{j : heu(N)) # 9(A)} > u/16) }
< 2[1 /a4 1)2]m0eu/% (5)
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for any € {1,...,d}™. Let E be the event that some hypothesis in S has error below 1/32,
B={(r,\) €{l,....d}""" : v erp (hey) < 1/32} .

(Notice that this event is independent of the examples A € {1,.. .ld}“ that are used to assess
the functions in S.) For x € {1,...,d}"™ and A € {1,...,d}"*, let Ay, denote

A(th(/{l% .- '7Kmovg(/£m0)7/\17g()\1)7 .- ,/\u7g(/\u)) .

Then (5) and the definition of u imply
Pr(erp, (Acry) > 1/8| E) <2[1/a+1/2]™ /% < 1/16, (6)

where the probability is taken over all values of x and A conditioned on (k,\) € F. But (4),
which shows that Pr(not F) < 1/16, and (6) imply

Pr(erp, (Aeng) > 1/8) < Pr(erp, (Acr,) > 1/8| E) + Pr(not E)
< 1/8.

That is, A (1/8,1/8)-learns POWERy using mg 4 [96(In 32 + mqIn[1/a + 1/2])] examples, as
claimed. Applying Theorem 8, this implies

mo + [961n32 + 96moIn [1/a + 1/2]] > d/2
= mo (14 [961n [1/a+ 1/2]7) + 333 > d/2
d/2 — 333
>
= S S 060 [1/a+ 1/2]

which implies the lemma. O

3.3 The lower bound

In this section, we combine Lemmas 5 and 10 to prove the following lower bound on the number
of examples necessary for learning with observation noise. Obviously the constants have not
been optimized.

Theorem 11 Suppose F is a set of [0, 1]-valued functions defined on X, D is an admissible
noise distribution class with total variation function v, 0 <~y <1, 0 <e <+/65, 0 < <1/32,
o € RY, and d € N. Iffatp(v) > d > 1000, then any algorithm that (¢, 6, 0)-learns F with noise
D requires at least mo examples, where

. d d d
o = min { 11521n(2 + dv(o)/17)" 11521n(d/238) 576 1n(35/7) } | .

In particular, if
v(o) > max (1/14,101/(d\/7)), (8)

d
"0 115210 (2 + do(o)/17)

then
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This theorem shows that if there is a 4 > 0 such that fatz(«y) is infinite then we can choose
¢, 6, and o for which (¢, 6, 0)-learning is impossible from a finite sample. Similarly, if fatz(y)
grows faster than polynomially in 1/, we can fix ¢ and Theorem 11 implies that the number
of examples necessary for learning must grow faster than polynomially in 1/e. This proves the
“only if” parts of the characterization theorem (Theorem 3).

We will use the following lemma.

Lemma 12 [fz,y,z>0,yz > 1,w > 1, andz > z/In(w(1+zy)), thenx > z/(2In(w(l+yz))).

Proof Suppose z < z/(2In(w(1l 4+ yz))). Then, since xIn(w(l + zy)) is an increasing function
of x, we have

zln(w(l +2y)) < (an( (fﬂz ) ( (1+21n 1+y2))))
. Z(ln( w (14 ey )))

2In(w(l +yz))
But yz > 1, so

Yyz 2 2
1 w (1 + 1
w( + 21In (w(1 -I—'yz))) <wi(l+yz),

which implies x In(w(1 + zy)) < z, a contradiction. O

Proof (of Theorem 11) Set ¢ = ~/65 and § = 1/32. Suppose a learning algorithm can
(¢,6,0)-learn F' from m examples with noise D. Lemma 5 shows that, provided

o < min (8/(v(0)m), 2¢), )
then there is a learning algorithm that can (2¢,26)-learn Q,(F) from m examples. From the
definition of fat-shattering, fatz(y) > d implies fatqg, (7 (y — @/2) > d. Furthermore, since
€ = /65, if Inequality (9) is satisfied, we have
(v —a/2)/32 = (v —~/65)/32 = 2e.

Lemma 10 shows that, if an algorithm can (2¢,26)-learn Q,(F') from m examples (when 2¢ <
(v — «/2)/32 and 26 < 1/16), then

S d — 666

m .

4+ 192In[1/a+ 1/2]

That is, if Inequality (9) is satisfied, we must have m at least this large.

(10)

Using a case-by-case analysis, in each case choosing a to satisfy Inequality (9), we will show
that m is larger than at least one of the terms in (7).

Consider the two cases 2¢ > ¢§/(v(o)m) and 2¢ < 6/(v(o)m).
Case (1) (2¢ > 6/(v(o)m))

If we set a = 6/(v(o)m), Inequality (9) is satisfied, so

. d — 666
— 44192In [v(o)m/6+ 1/2]
d/3
7 1419200 (320(0)m + 3/2)
d

12 4 5761n (2(1 + 64v(0)m/3))’
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Consider the two cases v(o) > 3/64 and v(o) < 3/64. First, suppose v(c) > 3/64. Using
Lemma 12 with 2 = m, z = d/576, w = 2¢'*/°™ and y = 64v(0)/3 (so0 yz > d/576 > 1), we
have
d
11521n (2€12/576 + 12/576dy () /18)
d
11521n (2 + d’v(a)/17)’

which is the first term in the minimum of Inequality (7). Now suppose that v(o) < 3/64.
Then (11) implies

d
m > .
124 5761n (2(1 4 m))
Using Lemma 12 with @ = m, z = d/576, w = 2¢'*°™ and y = 1, (and noting that yz =
d/576 > 1), we have
d
11521n (3e12/576 (1 + d/576))
d
11521n(d/238)

which is the second term in the minimum of Inequality (7).
Case (2) (2e < ¢§/(v(o)m))
If we set a = 2¢, Inequality (9) is satisfied, so Inequality (10) implies

d — 666

44 1921n [1/(2¢) + 1/2]
d

12457610 (£ + 2)

4

5761n(35/~)’

>

>

which is the third term in the minimum of Inequality (7).
We now use Inequality (7) to prove the second part of the theorem. If

11521In(2 + dv(o)/17) > 11521n(d/238) (12)
and
11521n(2 + dv(o)/17) > 576 1n(35/7) (13)

then
d

"0 115210 (2 + do(o)/17)
So it suffices to show that (12) and (13) are implied by (8). Indeed, we have that

v(o) > 1/14
= dv(o)/17T > d/238
= 24 dv(o)/1T > dJ238,
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which implies (12). Similarly,

v(o) > 101/(d\/7)
=2+ dv(o)/1T > /35/7,

which implies (13). O

4 Upper bound

In this section, we prove an upper bound on the number of examples required for learning with
observation noise, finishing the proof of Theorem 3.
For n € N,v,w € R”, let

n

1
d(v,w) = - > v — wil.
=1

For U C R", € > 0, we say C' C R™ is an e-cover of U if and only if for all v € U, there exists
w € C such that d(v,w) < ¢, and we denote by N (e, U) the size of the smallest e-cover of U
(the e-covering number of U).

For a function f : X — [0,1], define £; : X x R — R by {s(z,y) = (f(z) — y)?, and if
FCl0,1)%, let £r = {l; : f € F}.

IfWisaset, f: W — R,and w e W™, let f|, € R™ denote (f(w1),..., f(wy)). Finally, if
Fis a set of functions from W to R, let F|, C R™ be defined by F|, = {f, : f € F'}.

The following theorem is due to Haussler [15] (Theorem 3, pl107); it is an improvement
of a result of Pollard [22]. We say a function class is PH-permissible if it satisfies the
mild measurability condition defined in Haussler’s Section 9.2 [15]. We say a class F' of real-
valued functions is permissible if the class {z is PH-permissible. This implies that the class
% = {(z,y) — |f(z) —y|: f € F} is PH-permissible, since the square root function on R is
measurable.

Theorem 13 ([15]) Let Y be a set and G a PH-permissible class of [0, M]-valued functions
defined on Z = X x Y, where M € R*. For any a > 0 and any distribution P on 7,

>oz}§

4 max (./\/ (oz/lG,G|2)) g~ o /(A7)

ZEsz

m

Y g(z) — / gdP

i=1 z

Pm{zEZm:EIgEG,

k)
m

Corollary 14 Let F be a permissible class of [0, 1]-valued functions defined on X. LetY = [a, b]
with a <0 and b> 1, and let Z = X x Y. There is a mapping B from (0,1) x U; Z* to [0, 1]¥
such that, for any 0 < € < 1 and any distribution P on Z,

m m : —e2m/(576(b—a)?)
P {z e 2™ [ toiydP = int [ 17dp + e} <4 max (W (e/18,6.) ) .
The proof is similar to the proof of Haussler’s Lemma 1 [15].
Proof For a sequence z = (z1,...,2n), let the mapping B return a function f* from F' that
satisfies

iiéf*(zi) < inf iﬁ;@(zz) + ¢/3. (14)

m i=1 ferm =
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Let M = (b— a)2. Theorem 13 implies that, with probability at least
1 - 4maXN(6/48,€F|Z)e_€2m/(576M2)’

we have

< ¢/3, (15)

SN ,-—/E*dP
‘m;f(2> e

and

inf — fo z; —mf/EfdP

feFm

< ¢/3. (16)

By the triangle inequality for absolute difference on the reals, (14), (15), and (16) imply

/ﬁf*dp— mf/zfdp‘ <e
Z ferJz

O

The following result follows trivially from Alon, Ben-David, Cesa-Bianchi and Haussler’s
Lemmas 14 and 15 [1].

Theorem 15 ([1]) If F is a class of [0,1]-valued functions defined on X, 0 < ¢ < 1, and
m € N, then for all x in X™,
Ne, F,) < 2(mb?)'ee,

fat z(e/4) _
c= Y (m) b,
1

=1

where b= [2/¢e] + 1 and

Corollary 16 For F' defined as in Theorem 15, if 0 < € < 1/2 and m > fatp(e/4)/2, then for
all x in X™

9m

N(e, Fl,) < exp <ﬁfatp(6/4) In® —> .

€2

Proof Let d = fatp(e/4). If d = 0 then any f; and f; in F have |fi(z) — fa(2)] < €/2, so
N (e, Fiz) <1 in this case. Assume then that d > 1.
We have b < 3/e and

loge < logé(tb) (3/¢)

< log (d (T;) (3 /e)d)
< log (d(?)m/e)d)
< dlog(3m/e) + logd.

So we have

In NV (e, Fe) < In2+4 (dlog(3m/e) + logd) 1n(9m/62)
< 2dIn(3m/e)In(9m/e*)/In 2
<

2d1n2(9m/62)/ In 2.
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O

Note that the bound of Corollary 14 involves covering numbers of {z, whereas Corollary 16
bounds covering numbers of F. This was handled in [1] in the case of probabilistic concepts
(where the Y = [a,b] in Corollary 14 is replaced by Y = {0,1}) by showing that in that case,
fat,,(v) < fatg (7/2). In the following lemma, we relate the covering numbers of ¢z and of F®.

Lemma 17 Choose a set F' of functions from X to [0,1]. Then for any ¢ > 0, for any m € N,
ifa <0 and b> 1,

max N(e,(ﬁF)|z)smaxN( ‘ F)

2€(X x[a,b])™ T€EX™ 316 — a|’ ls

Proof We show that, for any sequence z of (z,y) pairs in X X [a,b] and any functions f and
g, 1f the restrictions of f and ¢ to x are close, then the restrictions of ¢; and ¢, to z are close.
Thus, given a cover of Fj;, we can construct a cover of {f|, that is no bigger.

Now, choose (z1,¥1), .o, (T, Ym) € X X [a,b], and f,g: X — [0,1]. We have

o L la(e) = ) = (F() =
= 2 o) = 0* = (2 = gle) + o(2:) = "
= 2l = o) =207 (e0) = a(e)ale) ~ o)
< -3 (m) = g+ 2w 9(e)te) — i)
< L3 08]b = all (i) - gla)|.

o
Il
—

Thus if = (21,...,2m) € X™ and 2 = (21,¥1,. .., Tm, Ym) € (X X [a,0])", and d(fz, g1z) <
¢/(3|b — a|) then d({y,,4,.) < €. Soif S is an €/(3|b — a|)-cover of Fj,, we can construct an
e-cover T of (p|, as

T= {((ul - y1)2a---7(um - ym)2) tu € S}
Since (21,Y1), vy (Tm, Ym ) Was chosen arbitrarily, this completes the proof. O

In our proof of upper bounds on the number of examples needed for learning, we will make
use of the following lemma.

Lemma 18 For any yy,y2,y4,6 >0 and y3 > 1, if

¢ g 2 .
m > 3 (4y2 (4—}—1n <y2y3)) + In y—l) ,
Ya Ya o

y1 exp(yz 1n2(y3m) —ygm) < 6.

then

®Recently, Gurvits and Koiran have proved a result relating the fat-shattering functions of £r and F' [14].
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Proof The assumed lower bound on m implies that

2.0
m > —In =, 17
Ya o ( )
and
8y2 Y2Ys3 ?
(21n(4\/_)+1 ( )) .
Ya Y4

Taking square roots of the latter inequality and fiddling a little with the second term, we get
Vm > 2V2 y—2(21n (4\/5 y—2)+1ny3).
Ya Ya

Setting b = ﬁ, /z—z, the previous inequality implies that

\/_(1—2@) > V2 z—z(‘Zln(l/b)-l-lnyg,)

Vm > \2 ﬁ (2(bv/m + In(1/8)) + lnys) .

The above inequality, using the fact [24] that for all a,b > 0,Ina < ab+ In(1/b), implies that

Vi > V2, [ (200 im - Ings) = V2, 2 In(yam).
Ya Ya

which trivially yields

Squaring both sides and combining with (17), we get
> ! < In?(yam) + 1 >
m " yoIn"(ysm) + 10 ).
Solving for 6 completes the proof. [

We can now present the upper bound. Again, the constants have not been optimized.
Theorem 19 For any permissible class F' of functions from X to [0,1], there is a learning
algorithm A such that, for all bounded admuissible distribution classes D with support function

s, for all probability distributions P on X, and for all 0 < e < 1/2,0<é < 1, and o > 0, if
d = fatp (e2/(576(s(0) + 1))), then A (e, 6,0)-learns F from

1152(1 + s(0))* (12d (25 R 3(0))6)2 i é)

et €8 1)
examples with noise D.

Proof Let B be the mapping from Corollary 14. Choose 0 <e<1/2,0<6<1,and o > 0.
Let ¢ = €2. Let D be a distribution in D with variance o? and support contamed in [e,d], s
d—c<s(o ) Choose a distribution P on X and a function f € F.
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For x € X™ and 5 € [¢,d]™, let B,, = B(ey,sam(z,n, f)). Define the event
BAD = {(x,n) € (X" x [e,d]™):
fo [ (Beati = (@) 4 R dD(1P) 2 0+ o).
Since D has variance o* and mean 0,

inf [ [ (000) = (F(u) 4 %))* dD()P(u) = o*,

geEF JX

BAD = {JJT] //[Cd (f(u) + «))* dD(k)dP(u)
>t /[] 406 = () + 0 dDP() + o).

The random variable f(u) 4+ & has a distribution on [¢, 1 + d], determined by the distributions
P and D and the function f. Thus, by Corollary 14,

—62m
< : '
Pr(BAD) < 4 (ZE(x?[i?id])z‘mN (co/48, (KF)'Z>) xPp (576(1 + s(o))“)

Lemma 17 implies

Prinan) =4 (mN (MF')) P (576(1_ fZL»J '

Applying Corollary 16, if

d = faty (m) ’

and m > d/2, then

Pr(BAD) < dexp (%dlnz 373248m(6(1% +5(0))? 576(16377@8(0))4) | (18)
For any particular x € X™ n € [¢,d]™,
Jo Ly (Besw) = () £ 5))? dD(s)dP(x)
= [ [ (Beolw) = f(w))* dD()dP(u) -

me u) — (u)) dD(/-;)dP(u)—I—J2

/
/ — f(u))k dD(k)dP(u) + o
= s
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because of the independence of the noise, and the fact that it has zero mean. Thus

BAD = {(;17,77) e (X" x [a,0]"): [

[ (Beou) = @) dP() = o}

If
m > Us20tato))t <12d (25+1HM)2+IH§), (19)
0

4
o

then applying Lemma 18, with y; = 4, yo = 2d/In2, y3 = 373248(1 + s(0))?*/€d, and yy =
ea/(576(1 + s(o))*), we have that (18) and (19) imply
P D) [ (Be() = f()) dP@) 2 0} < 6 (20)
From Jensen’s inequality,
{@n)s [ 1Bualw) = f)] dP) > Va| € @) [ (Bup(u) = f())? dP() > ao}
so if m > mo(e, 6, 0),
P 0 { () [ (B sam(a,n, 1)) = f(u)] dP() = ¢f <6,

where

mo(€, 6,0) = 152(1 + 5(0))° (12d (25 +In d(l-l——s(a))G)2 +In é) )

et €8 6

and

Now, let A be the algorithm that counts the number m of examples it receives and chooses
€1 such that mg(er, 1,0) = m. This is always possible, since d and hence mq are non-increasing
functions of e. Algorithm A then passes € and the examples to the mapping B, and returns
B’s hypothesis. Since s(o) is a non-decreasing function of o, mg is a non-decreasing function of
1/e, 1/6, and o, so for any €, 6, and o satisfying mo(€, 6, 0) < m, we must have € > ¢;. It follows
that, for any e, ¢, and o for which A sees at least mg(e, 6, o) examples, if P is a distribution on
X x Y and D € D has variance ¢? then

P D { )+ [ I(AGsam(e,n, 1)) = f()] dP() > ef <6,

completing the proof. [

As an immediate consequence of Theorem 19, if F' has a finite fat-shattering function and D
is a bounded admissible distribution class, then F' is learnable with observation noise D. The
following corollary provides the one implication in Theorem 3 we have yet to prove.

Corollary 20 Let F' be a class of functions from X to [0,1]. Let p be a polynomial, and suppose

fatp(y) < p(1/5) for all 0 <~ < 1. Then for any almost-bounded admissible noise distribution
class D, F' is small-sample learnable with noise D.
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Proof We will show that Algorithm A from Theorem 19 can (e, 6, o)-learn F' from a polynomial
number of examples with noise D.

Let s : RT — R* (we will define s later). Choose 0 < ¢€,6 < 1, o > 0. Fix a distribution P

on X, a function f in F', and a noise distribution D in D with variance o?.

Construct a distribution Dy from D as follows. Let ¢ be the pdf of D. Define the pdf ¢ of
D, as
if —s(0)/2 <z < s(0)/2

0 otherwise.

%L
¢s(z) = { IOy

Since D is an almost-bounded admissible class, there are universal constants sg,co € RT such
that, if s(o) > sq0,

s(c)/2
/ d(z)de > 1 — coe™*)/7,
—s(o)/2

Let I = ff(s(zz,/)% é(z) dx. The total variation distance between D and Dj is

drv(D.D) = [ |8(a) = ¢u(e)| do

s(0)/2
= 1-1+ [p(z) = ¢s()| da
~5(0)/2
5()/2
- 1—1+|1—1/1|/ () da
—s(0)/2
= 21 -1)
< 2epe0) (21)

For some m in N, fix x € X™ and define the event
Ey = {neR™:erp (A(sam(z,7, f))) = €} .
Then (21) and Lemma 7 show that
D™ (Ey) < DJ*(Ey) + megexp(—s(a)/o).
If we choose s(o) = o(so+ | In(mey/6)]), then (21) holds and s(o) > o1n(2meg/6), so D™(Fy) <
D7(Eq) + 6/2, Since this is true for any € X",
P™ x D™ (E;) < P™ x D™(E,) + 6/2,
where
Ey ={(z,n) € X™ X R™ : erp(A(sam(z,1, f))) = €} .

Clearly, Ds has mean 0, finite variance, and support contained in an interval of length s(o).
From the proof of Theorem 19, there is a polynomial p; such that if

m > pl(S(J), da 1/6a In 1/5)
then
P™ x DT (Ey) < §/2. (22)
Now, fatp(y) < p(1/7), so for some polynomial py, m > py(o,1/e,log(1/6),logm) im-
plies (22). Clearly, for some polynomial ps, if m > ps(o,1/€,log(1/6)) then P™ x D™(E,) < 6.
Since this is true for any P and any D in D with variance o, Algorithm A (e, §, o)-learns F
with noise D from ps(o,1/¢,log(1/6)) examples. O
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5 Agnostic learning

In this section, we consider an agnostic learning model, a model of learning in which assumptions
about the target function and observation noise are removed. In this model, we assume labelled
examples (z,y) are generated by some joint distribution P on X x [0, 1]. The agnostic learning
problem can be viewed as the problem of learning a real-valued function f with observation noise
when the constraints on the noise are relaxed — in particular, we no longer have the constraint
that the noise is independent of the value f(z). This model has been studied in [15], [17].

If A is a [0, 1]-valued function defined on X, define the error of & with respect to P as

erp(h) =/Xx[m] h(z) — y| dP(z, y).

We require that the learner chooses a function with error little worse than the best function
in some “touchstone” function class F. Notice that the learner is not restricted to choose a
function from F'; the class F' serves only to provide a performance measurement standard (see

[17]).

Definition 21 Suppose F' is a class of [0, 1]-valued functions defined on X, P is a probability
distribution on X x [0,1], 0 < €,6 < 1 and m € N. We say a learning algorithm L = (A, Dyz)
(e,0)-learns in the agnostic sense with respect to F' from m examples if, for all distri-
butions P on X x [0,1],

(P™ x DY) {(:c,y,z) € X" x[0,1]"x Z™ rerp(A(x,y,z)) > }Ielgerp(f) + 6} < 6.

The function class F is agnostically learnable if there is a learning algorithm L and a function
mo : (0,1) x (0,1) — N such that, for all 0 < €,6 < 1, algorithm L (e, 6)-learns in the agnostic
sense with respect to F' from mo(€,6) examples. If, in addition, mq is bounded by a polynomial
in 1/e and 1/8, we say that F' is small-sample agnostically learnable.

The following result is analogous to the characterization theorem of Section 2.

Theorem 22 Suppose F' is a permissible class of [0, 1]-valued functions defined on X. Then F
1s agnostically learnable if and only if its fat-shattering function is finite, and F' is small-sample
agnostically learnable if and only if there is a polynomial p such that fatp(vy) < p(1/7) for all
v > 0.

Alon etal’s proof in [1] that finiteness of the fat-shattering function of the class ¢ is sufficient
for learnability of a class F' of probabilistic concepts also shows that this condition is sufficient
for the agnostic learnability of a class F' of real-valued functions. A simpler version of Lemma 17
then shows that finiteness of the fat-shattering function of F' suffices for agnostic learnability.

If the “loss” of the learning algorithm was measured with (h(z) — y)? instead of |h(z) — y|,
then the necessity part of Theorem 22 would follow from the results of Kearns and Schapire [16].

The following result proves the “only if” parts of the theorem.

Theorem 23 Let F be a class of [0, 1]-valued functions defined on X. Suppose 0 < v < 1,
0<e<~/650<6<1/16, and d € N. Iffatp(y) > d > 1000, then any learning algorithm
that (e,6)-learns in the agnostic sense with respect to F requires at least mg examples, where
- d
mog > ——————.
7 5761n(35/7)
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Proof The proof is similar to, though simpler than, the argument in Section 3. We will show
that the agnostic learning problem is not much harder than the problem of learning a quantized
version of the function class F', and then apply Lemma 10.

Set € = /65 and 6 = 1/16. Consider the class of distributions P on X x [0, 1] for which
there exists an f in F' such that, for all x € X,

P(y|x) — { L y= QZc(f(xD

0 otherwise

Fix a distribution P in this class. Let L be a randomized learning algorithm that can (e, 6)-learn
in the agnostic sense with respect to F'. Then

Pr <erp(L) > nf (erp(f)) + e> <,

where erp(L) is the error of the function that the learning algorithm chooses. But the definition
of P ensures that infseperp(f) <e, so

Pr(erp(L) > 2¢) < 6.

Since this is true for any distribution P that can be expressed as the product of a distribution
on X and the generalized derivative of the indicator function on [0, 1] of a function in Qa.(F),
the learning algorithm L can (2¢, ¢)-learn the quantized function class Qa.(F').

By hypothesis, fatz() > d, but then the definition of fat-shattering implies that fatg, (m)(v—
€) > d. Since € = /65, 2¢ < (v —€)/32. Also, § = 1/16, so Lemma 10 implies

N d — 666
T 19210 [1/(26) + 1/2]
d
~ 124 5761n(65/(27) + 3/2)
s 4
5761n(35/7)

O

With minor modifications, the proof of Theorem 19 yields the following analogous result for
agnostic learning.

Theorem 24 Choose a permissible set F of functions from X to [0,1]. There exists an algo-
rithm A such that, for all 0 < e < 1/2, for all0 < 6 < 1, if fatp(e/192) = d, then A agnostically

(e,0)-learns F' from
1152 _ d\’ 4
= (12d (23 +In 6—4) + In 5)

Proof Sketch First, the analog of Corollary 14 where the expected absolute error is used to
measure the “quality” of a hypothesis in place of the expected squared error, and b = 1 and
a = 0, can be proved using essentially the same argument. Second, the analog of Lemma 17

examples.

where {p is replaced with a corresponding class constructed from absolute loss in place of /,
where a = 0,b = 1, and where the ¢/(3|b — a|) of the upper bound is replaced with e, also is
obtained using a simpler, but similar, proof. These results are combined with Corollary 16 and
Lemma 18 in much the same way as was done for Theorem 19. [
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6 Discussion

All of our results can be extended easily to the case of [L,U]-valued functions by scaling the
parameters ¢, v, and o to convert the learning problem to an equivalent [0, 1]-valued learning
problem.

It would be worthwhile to extend the characterization of learnability in terms of finiteness of
the fat-shattering function to weaker noise models. It seems likely that it could be extended to
the case of unbounded noise; perhaps the techniques used in [13] to prove uniform convergence
with unbounded noise could be useful here.

There are several ways in which our results could be improved. The sample complexity upper
bound in Theorem 19 increases at least as 1/e*. It seems plausible that this rate is excessive;
perhaps it is an artifact of the use of Jensen’s inequality in the proof. Obviously, the constants
in our bounds are large. Another weakness of our bounds is the gap between constant factors
in the argument of the fat-shattering function. If the domain X is infinite, this gap alone can
lead to an arbitrarily large gap in the sample complexity bounds. Recent results [9] for agnostic
learning narrow this gap to a factor of two.

The lower bound on the sample complexity of real-valued learning (Theorem 11) does not
increase with 1/e¢ and 1/6. In fact, the lower bound of that theorem is trivially true if the
standard deviation of the noise is sufficiently small.® i.e.

< de=t/13217,

v(o)
However, the following example shows that a condition of this form is essential, and that when
the noise variance is small there need be no dependence of the lower bound on the desired
accuracy and confidence.
Example Fix d € N. Let the measurable sets S;, j =0,...,d — 1, form a partition of X (that
is, U;S; = X, and S; NSy =0 if j # k). Consider the function class

Fi={frouy b€ {0,110 =0,....d =1}
of functions defined by

3 d—1 1 d—1
fbo,...,bd_l (:E) = - Z 1SJ‘ (:E)b] + - Z bk2_k,
4 7=0 8 k=0

where 1, is the indicator function for S; (1s,(z) = L iff z € 5;). That is, the labels b; determine
the two most significant bits of the value of the function in S;, and the d least significant bits of
its value at any @ € X encode the identity of the function. Clearly, for any v < 1/4, fatg,(v) = d.

With no observation noise, one example (z,y) suffices to learn Fy exactly, because the learn-
ing algorithm can identify the function from the d least significant bits of y. (As an aside, the
union of these function classes, F' = U2, Fy, has fatp(y) = oo for v < 1/4, but any f in F' can
be identified from a single example (z,y) with no observation noise’.) One example also suffices
with uniform observation noise provided the variance is sufficiently small; if

1
U<W§,

6Note that as the standard deviation gets small, the total variation of the density function must get large.
"Thanks to David Haussler for suggesting this function class.
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a learning algorithm that sees one example (z,y) and chooses the integral multiple of 27772 that
is closest to y will be able to identify the target function. That is, if

1 1
'U(O’) < 2d+2\/§’

then (¢, 6, 0)-learning with uniform noise is possible from a single example, for any ¢, > 0.
Suppose the observation noise is gaussian, of variance o%, and

1
< .
24+5/2, /log 4

Consider the following algorithm. For each example (x,y), the algorithm chooses the integral
multiple of 27972 that is closest to y, and stores the corresponding function label (the d least
significant bits). After m examples, it outputs the function with the most common label. The
bound on ¢ and Inequality (1) (the bound on the area under the tails of the gaussian density)
imply that, with probability at least 3/4 a noisy observation is closer to the value f(z) than to
any other integral multiple of 27%=2, From Chernov bounds (see Theorem 9), if m > 121og(1/6)
the probability that the algorithm will store the correct label for fewer than half of the examples
is less than ¢. So this algorithm can (¢, 6, o)-learn from 12log(1/8) examples, for any € > 0. O

g

The above example shows that a gap in the growth of the upper and lower bounds with 1/¢
and 1/6 is essential. However, the gap is unnecessarily large: a recent result relating several scale
sensitive dimensions (Lemma 9 in [3]) implies improved lower bounds on the sample complexity
of learning quantized function classes. In turn, these imply an improved general lower bound
(of Q(d/(elog®(d/€)))) on the sample complexity of learning with observation noise that is valid
if the noise variance is sufficiently large.

The example also shows that finiteness of the fat-shattering function is not necessary for
learning real-valued functions without noise. However, the function classes that provide this
counterexample are unnatural. We can interpret Theorem 3 as showing that if we change the
definition of learning by requiring the learning algorithm to cope with additive observation noise,
this rules out these unnatural function classes. Similarly, the main result in [3] shows that, if
the learning algorithm is constrained to return a function from the class that approximately
interpolates the training examples, finiteness of the fat-shattering function is again necessary
and sufficient for learning.

Simon [25] shows that a stronger notion of shattering provides a lower bound for the problem
of learning without noise. However, the finiteness of this strong-fat-shattering function is not
necessary for learnability, as the following example shows.

Example We say that a sequence x4, ..., 24 is strongly ~-shattered by [ if there exist u, [ €
[0, 1] such that for each b € {0,1}¢, there is an f € F such that for each 7, u; — [; > 2v and

(o= | f@) = itbi=1
flxi) = { flzi)=1 ifb;=0.

For each ~, let
sfatp(v) = max{d € N: Jzq, ..., x4, F strongly y-shatters z1,..., 24}.

if such a maximum exists, and oo otherwise. If sfatz () is finite for all 7, we say F' has a finite
strong-fat-shattering function.
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Suppose X = N. For each ¢ : N — {0, 1}, let y, be the element of [0, 1] whose representation
as a binary fraction is given by ¢, i.e., let y, = .22, ¢(2)27. Also, let f, : N — [0, 1] be defined
by

£,() = { 3/4 +y,/4 %f Q(J) =1
1/4 = y,/4 if q(j) =0.
Let
Q = {g € UZ{0,1}" : Vjo 3j > jo. q(s) = 0}.

Informally, () represents the set of all infinite binary sequences that don’t end with repeating
I’s. Each real number in [0, 1) has a unique representation in ) [23]. Suppose F = {f, : ¢ € Q}.
Since X is countable, F' is permissible. Trivially, fatz(1/4) = oo, so F' is not learnable in any
sense described in this paper. However, since for any ¢1, ¢2 € @ for which ¢; # ¢, for any j € N,
far(7) # fi.(7), trivially, sfatz(y) = 1 for all v < 1, so neither the finiteness nor the polynomial
growth of sfaty characterizes learnability in any of the senses of this paper. O

Simon provides examples in his paper that show that his general lower bounds are tight.
These classes have identical strong-fat-shattering and fat-shattering functions.
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