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Abstract. We establish a new bound on the generalization error rate of
the Boost-by-Majority algorithm. The bound holds when the algorithm
is applied to a collection of base classifiers that contains a “diverse”
subset of “good” classifiers, in a precisely defined sense. We describe
cross-validation experiments that suggest that Boost-by-Majority can
be the basis of a practically useful learning method, often improving on
the generalization of AdaBoost on large datasets.

1 Introduction

Boosting [46,14,16] is an approach to training class prediction rules in which
an algorithm is applied repeatedly on a variety of datasets constructed from the
original dataset; an effort is made for each dataset to emphasize examples that
were often classified incorrectly by rules output by previous invocations of the
algorithm. After a number of rounds of this process, the class prediction rules
returned (the “base classifiers”) are often combined into a single rule by some
kind of voting; for example, each base classifier can be assigned a weight, and the
final classifier classifies an object as 1 if the total weight of the base classifiers
that classify it as 1 is more than the total weight of the classifiers outputting a
0 prediction. For a wide variety of applied problems, the best algorithms known
use boosting.

One interesting aspect of the behavior of boosting is that it appears to run
counter to Occam’s Razor, a principle that has played an important role in
guiding the design of machine learning algorithms. Occam’s Razor says that, all
else being equal, an algorithm should prefer class prediction rules that are in
some sense simple. Algorithms designed following this principle are viewed as
balancing a classifier’s fit to the data against its complexity.

Boosting seemed to contradict Occam’s Razor because the generalization
enjoyed by boosting algorithms was seen to improve as the number of rounds of
boosting increased, even after the algorithm obtained zero training error [43, 10].
This improvement was seen despite the fact that the final classifier output by
the boosting algorithm was getting more complex, without any accompanying
decrease in training error.



Schapire, et al [47] provided an theoretical explanation of this phenomenon.
This took the form of a bound on the generalization error of the boosted classi-
fier in terms of the “margin.” The margin by which a voting classifier correctly
classifies an instance is the difference between the fraction of the weight voting
correctly and the fraction voting incorrectly. Their bound can be paraphrased
as saying that it is highly likely that if most examples in the training data are
classified correctly with a large margin, then generalization will be good. They
also demonstrated experimentally that AdaBoost, the main boosting algorithm,
tends to improve the margin of the voting classifier during training. It has since
been proved that some related algorithms maximize the margin [44,45]. Im-
proved bounds have also been obtained [24]. This analysis has had a substantial
impact on the subsequent design and analysis of boosting algorithms.

Some experimental results suggested that it might be worth supplementing
the margin analysis with alternative explanations of the generalization ability
of boosting algorithms [10, 19, 36,29, 30]. In the paper presenting the margin
analysis, Schapire, et al also posed the problem of searching for alternative modes
of analysis.

In this paper, we show theoretically that boosting is able to take advantage of
situations in which the set of base classifiers is diverse, i.e. when there are many
base classifiers that perform moderately well individually, but complement one
another as sources of evidence of the correct classification of random objects.
(The importance of diversity in the pool of base classifiers has been discussed in
a number of papers, including [1, 34,41, 3].)

To formalize this, we use the standard assumption that the training data,
and any subsequent test data, is generated independently at random according
to an underlying probability distribution P over instance-classification pairs.
We further assume that the set H of n base classifiers used by the boosting
algorithm contains a set H* of k classifiers that are correct with probability at
least %+'y*. Finally, we assume that the random variables indicating whether the
base classifiers in H* are correct or not are mutually independent with respect
to P. We do not make any assumptions regarding the base classifiers in H — H*;
our analysis allows for them to depend on one another, and the classifiers in H*,
in a manner that is maximally confusing to the learning algorithm.

Note that the Hoeffding bound implies that a vote over the base classifiers
in H* is incorrect with probability at most e~272k_ This is what can be achieved
if H* is known. We show that, with probability 1 — 4, if 7, is a constant, given
m examples, the Boost-by-Majority algorithm [14] achieves accuracy
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=2k 4 0 (%) . (1)

One can apply existing theory to show that an algorithm, essentially pro-
posed in [4], that chooses a voting classifier to maximize the number of examples



correctly classified with a margin 4., which we call a MAM algorithm, achieves
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The Boost-by-Majority algorithm runs in polynomial time — in fact, for rea-
sonable collections of base classifiers, it can be very fast. We do not address how
to carry out the optimization for the MAM algorithm; it is not obvious to us
how to do it efficiently.

Note that since one can always choose a smaller H*, loosely speaking, the
above bounds can be minimized over k. The second term will dominate unless
k is polylogarithmic in m, so (1) and (2) are incomparable.

Note that any statistically consistent algorithm will approach accuracy at
least as good as e~ 27k with high probability as m approaches infinity. A number
of algorithms related to boosting have been shown to be consistent [9, 22, 31-33,
11,51].

In one of these papers, Lugosi and Vayatis [31] informally discussed the be-
havior of an algorithm related to AdaBoost in the setting of this paper. They
pointed out that, as the number of examples approaches infinity, the accuracy of
this algorithm approaches e27:* with high probability. They did not work out
a detailed bound on the error probability for a finite number m of examples; the
most direct extension of their line of reasoning® leads to a bound, for constant
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One issue that arose during the course of performing our analysis surprised
us. Our analysis leading to (1) concerns the version of Boost-by-Majority that
performs Boosting-by-Filtering [14]. That is, in each round of boosting, the algo-
rithm generates a dataset by randomly choosing a subset of the original dataset,
where the probability of choosing an example depends on how many of the pre-
viously chosen base classifiers correctly classified the example. We started out
trying to analyze algorithms, like AdaBoost, that evaluate base classifiers based
on the total weight of the examples that are classified correctly, where the weight
of an example is determined by the number of previously chosen base classifiers
that got it correct. We planned to view this weighted sum as an estimate of the
expected error with respect to a modified distribution over the whole domain.
However, we were unable to prove (1) in this way. The trouble seemed to come
at this error estimation step.

In fact, this appears to be an instance of a phenomenon that has already
been discussed in the literature (see [27]). The problem of evaluating the accu-
racy of a base classifier in one of the later rounds of boosting can be described
as estimating the expection of a random variable according to a distribution Q,
given a random sample drawn according to P, where the function V' such that

3 In their notation, setting A = N.



V(z) = Q(z)/P(z) is known. Estimating the expectation of f as is done in the
view of AdaBoost adopted in this paper, by drawing z1, ..., £, according to P,
and then taking L > Q(z;)f(z;) as the estimate, is called importance sam-
pling, whereas performing this estimation as is done in Boosting-by-Filtering is
called variously the acceptance method, the rejection method, and the acceptance-
rejection method. When Q is quite different from P over much of the domain, as
often happens in boosting, the estimates obtained through importance sampling
are well known to suffer from high variance — the theoretical potential for this
high variance is what prevented us from proving (1) for algorithms like AdaBoost
that work this way.

Inspired by this observation, we experimentally evaluated a simple algorithm,
similar to Boost-by-Majority, that we call BBM*. For most of the larger bench-
mark datasets we tried them on, BBM* generalized better than AdaBoost, pro-
viding preliminary evidence of the practical utility of boosting by filtering.

2 Preliminaries

2.1 The main model

Let X be a countable domain. A class prediction rule maps domain elements in
X to classifications in {—1,1}.

An algorithm is given access to a set H of n base class prediction rules.
An unknown probability distribution P over X x {—1,1} is used to generate m
examples (z1,y1), .., (Tm,Ym), which are passed to the algorithm, which uses
them, together with the base classifiers H, to output a class prediction rule h.

We will analyze the Boost-by-Majority Algorithm? [14], which uses parame-
ters o and T':

— Divide the m examples into T bins: put the first {WJ in bin 0,

m m
2/T((T-1)-1) 2¢/T((T—1)—(T—2))
T — 2, and the remaining examples in bin 7" — 1. Denote the indices of the
examples in bin ¢ by S;.
— For rounds ¢t =0,...,.T —1
e for each i € S;
* let ry; be the the number of previous base classifiers hg,...,hs—1 that
are correct on (z;,y;), and
*wi = (3]0 ) G )l El g -l Elmrre

I_%_] —Tt,i

e let Wi max = Max, ({éj_l) t+a) 1%] T(i-a) [£1-t=147 be the largest

in bin

the next { J in bin 1, ..., the next {

-T

possible value that any w;; could take,

4 We have simplified the algorithm somewhat for the purposes of our analysis, but as
the spirit of the algorithm is maintained, we refer to the modified algorithm also as
Boost-by-Majority.



e apply the rejection method as follows, where a; ; is interpreted as indi-
cating whether example 7 was accepted: for each i € S,
% choose u;,; uniformly from [0, 1],

1if g ; < 2i
* let ag; = { b

— W¢,max
0 otherwise.
e choose a base classifier h; from H to maximize the number of exam-
ples in the filtered dataset that are classified correctly: {i € S; : a;; =
1 and h(z;) = y;}-
— Output the classifier obtained by taking a majority vote over hq, ..., hp_1.

2.2 Correctness functions

For a class prediction rule h, its associated correctness function is an indicator
function rj, that tells, for a given pair (z, y), whether it is the case that h(z) = y;
r,, evaluates to 1 in that case, and 0 otherwise. When A is defined over a domain
with an associated probability distribution, we will naturally refer to r, as its
correctness random variable.

2.3 Main result

Theorem 1. Fiz a constant v, > 0. Suppose the set H of base classifiers has a
subset H* of k base classifiers

— whose associated correctness random variables are mutually independent with
respect to the underlying distribution P, and

— each of which is correct with probability at least 1/2 + . (again, with respect
to P).

Then if the Boost-by-Majority Algorithm is run with T =k and o = %, there
are constants c1,c2 > 0 such that, for any underlying probability distribution P,
with probability at least 1 — &8, the output h of the Boost-by-Majority Algorithm
applied to m random examples chosen independently according to P satisfies

3/21 nk
P(h(z) #y) < ek 5

3 Some Lemmas

In this section, we establish some useful lemmas.

Since the rescaling factor for each example in each round of the Boost-by-
Majority Algorithm is determined by the number of previously chosen base clas-
sifiers that classified the example correctly, we have the following.

Lemma 1. Suppose the Boost-by-Majority algorithm is run on a dataset gener-
ated independently at random according to an underlying distribution P. Then,
for each round t, after conditioning on the examples seen before round t, the ex-
amples accepted by the algorithm in round t are mutually independent, and are
distributed according to a probability distribution Py over the whole of X x {—1,1}
defined as follows.



— Ri(z,y) = {s <t:hs(z) =y},

— Wi(z,y) = (LTJT It%i(lz y)) +a) [ 1= Rt(w,y)( )[%]—t—HRt(z,y)
— Pu(z,y) = Wz, y)P(z,y)/Z, where Z; is chosen so that Py is a probability

distribution.

The following lemma, will be used to show that Boost-by-Majority is often
able to find accurate classifiers in rounds in which the distribution P; is not too
different from P. It uses one known probabilistic method trick [42,20,47,4].

Lemma 2. Suppose P satifies the requirements of Theorem 1: there is a subset
H* of k elements of H whose correctness random wvariables are mutually in-
dependent with respect to P, and each of which are correct with probability at
least % + v«, where v« > 0. For any probability distribution Q such that for all
(xay) €X x {_151}:

Qa.y) < T P(a,y),

there is a g € H* such that

Qg(z) =y) > 5 +

N
N

Proof. Let g1,...,gr (the “good” ones) be the elements of H*. For each i €
{1,...,k}, denote r,,, the correctness random variable for g;, simply by ;. The
mutual independence of the r;’s with respect to P, together with the Hoeffding

bound, implies
1 1 .
P(EZ”<§+7§> < e k2, (3)
i=1

Let us refer to the set of pairs (z,y) € X x {—1,1} on which % Zle ri > % + %
as the good examples, and call them U. The complement are the bad examples
B.

First, we claim that for any probability distribution R for which R(B) = 0,
there is an i € {1,...,k} such that R(r; = 1) > 1 4+ 2=. For all examples in U,
% Zf:1 i 2 %"'77* 50 E(w,y)NR(% Ef:l i) > %"‘77* which implies % Ef:l R(r; =
1) > 1+ + 2. So there is an i such that R(r; = 1) > 2 + 2=

The above claim implies that there is an i such that Q(g; (z) = y|U) > 3+ %
Fix such an 4. Then

Qi) = 1) > Qlg: @) = YAV
> (5+12) Q)
= (3 +7/2) - B)
> (5+02) (1- Fotrr)
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completing the proof. O

(G+22) (1-2)  ove)
1
2

For the most part, Freund’s original analysis [14] can take us the rest of the
way to prove Theorem 1. For completeness, we provide the details of how.

Lemma 3. Suppose the Boost-by-Magjority is run with parameters o and T, and
generates classifiers hg, ..., hr—1 for which

1 1
Po(ho(z) =y) = 3 T, v Pr_i(hr_1(z) =y) = 5 Tt

Then, for a random element of P, a majority vote over the predictions of the
base classifiers hg, ..., hy—1 is incorrect with probability at most

T-1

2
2T 1 3 (= )7,
t=0

Proof. Define B(t, R) recursively as follows:

(1 R<T/2
B(T,R) = {0 otherwise
1 1
B(t,R) = (5 —a) B(t+1,R) + (§+a> B(t+1,R+1).

The following is equivalent:

mem="S () o) )

Define the potential &; to be

by = Z P(.ﬁC,y)B(t,Rt(J),y))
(z,y)exX x{-1,1}

The Hoeffding bound implies

By < e~2°T (4)
Freund [14, Lemma 3.7] proved that
¢t+1 = dst + (Oé — ’Yt)Zt- (5)

Finally, the probability with respect to P = Py that a majority vote over
ho, ..., hr—_1 is wrong can be rewritten as Po(Rr(z,y) < T/2), which is &r.
Putting this together with (4) and (5) completes the proof. O

Lemma 4 (Lemma 3.9 of [14]). For all iterations t < T — 2, Wymax <
2

VT—1-t°



4 Proof of Theorem 1

Recall that T' = k and o = 7. /8. Since the theorem is vacuously true if 4k < m,
we can assume without loss of generality that m > 4k, which means that the

. . . m m
rejection method is applied to at least " \/T((T—l)—t)J > S/TT=D=D examples
in each round t < T — 2.
Let ;
T3/% (log 2L) 3T
€ = max 4096%, 3—67wa/2 . (6)
Yim Y
Solving for m, we get
T3/2(log ZX
m > 4006708 55). (7)
V€

Lemma 5. If T = k, for any t such that Zy > €/T, with probability at least
1—=0/T, vt > 7+/8(= ).

Proof. We will give the details assuming ¢ < T — 2. The case t =T — 1 can be
proved similarly.

Let my be the number of examples accepted in round ¢. Since the probability
that an example is accepted is Z;/w max, the standard Chernoff bound implies

.1s Zim .
the probability that m; < o/ T(T=D =0 is at most

e Ztm
X — .
P\ 640 man /T(T = 1) = 0)

Since, by assumption, Z; > €/T', and, by Lemma 4, w; max < ﬁ, (7) implies
that this probability is at most §/(27).
The definition of ¢, (6), implies that

Z,>¢/T > 3 /2,

VY

This implies that for all (z,y),
Pi(z,9)/P(a,y) < 1/2: < T2,
Applying Lemma 2, there is a base classifier b} € H such that

" 1 7
Py(hi(z) =y) > B + 1

For each ¢, let P, be the empirical distribution over the examples (x;,y;) in the
filtered dataset of round ¢, i.e. the examples such that a;; = 1. Then

Pr(v < a)



16
or Pi(hi(z) = y) = Pi(hi(a) =) > 12)
<Pr (There is an h € H, |By(h(z) = y) — Py(h(z) = y)| > Z—ﬁ)
Applying Hoeffding bounds,
yamy
Pr(y < a) < 2nexp (— I28 ) .
Ifmy > Zym , then since Z; > €¢/T and Wi, max < 2/4/((T—1)—1),

16we, maxy/T((T—1)—t)
we have m; > 57577, and the definition of m then implies Pr(v; < a) < %,
completing the proof. O
Let us return to proving Theorem 1. Lemma 5 implies that with probability
at least 1 — 4, for every ¢ for which Z; > €/T, v+ > a. Thus, applying Lemma 3,

with probability at least 1 — §

Pr(MAJORITY (ho, ..., hr—1) incorrect)

2k T—1
<eTF 4+ ) (a—m)Z
t=0
'yfk
=e 5+ > (a—wZ|+| Y (@a—-W7%
t:Z,<e/T t:Zy>e/T

2

Ik
<e T 4+€+40,

completing the proof. O

5 A margin-based bound

Recall that H is formally a set of {—1,1}-valued functions. Let co(H) be the
set of all convex combinations of functions in H. In this section, we analyze
the algorithm that chooses f from co(H) to maximize the number of examples
(@i,y;) for which y; f(x;) > 7«, and outputs the classifier hy defined by hy¢(z) =
sign(f(z)). In other words, this algorithm chooses weights with which each of
the classifiers in H vote in order to maximize the number of training examples
that are classified correctly with a margin of v.. Since it maximizes agreements
with a margin, let us call such an algorithm a MAM algorithm.

Our analysis of this algorithm begins with the following lemma, which is an
immediate consequence of Theorems 13.9, 12.8 and 14.20 of [4] (see also [2, 5]).



Lemma 6. Fiz a constant v. > 0. There are positive constants c3 and c4 such
that, for any underlying distribution P, if (x1,y1), -, (Tm,ym) are drawn inde-
pendently at random according to P, then

7: S Y ;i) < *
Pr (31 € olt), Ba(hya) #9) > 2 HEN <20 )
< exp(cs(log® m) logn — c4fm).
We will make use of the following standard Chernoff bounds.

Lemma 7 (see [40]). Let p be the fraction of successes in m independent
Bernoulli trials with success probability p. Then

— if0< B <1, Pr(p> (1L+f)p) < e Frm/3,
— if B> 1, Pr(p > (1+ B)p) < e~ (1B In(1+B)pm/4

We then easily obtain the following.

Theorem 2. Fiz a constant vy, > 0. There are positive constants cs and cg such
that, for H, P and . satisfying the requirements of Theorem 1, with probability
1—4, the output h of an MAM algorithm applied to m random examples chosen
independently according to P satisfies

ce(log® m)(logn) log

P(h(z) # ) < e~ + -

Proof. First, we claim that it is likely that there is a voting classifier that

correctly classifies all but a fraction 2e~ k2 4 % of the training examples
correctly with a margin +.. (Let B be the event that this does not happen.)
If f(-) = X hem- h(:), then the Hoeffding bound implies P(yf(z) < 7.) <
e~7-k/2_ Applying Lemma 7 then establishes that Pr(B) < 1 —4§/2 (use the
B =1 bound if m > 3e?+*/2In 2, and 8 > 1 bound otherwise).

Applying Lemma 6 completes the proof. O

6 Experiments

The fact that we were only able to prove Theorem 1 using Boost-by-Majority
made us wonder whether an algorithm like Boost-by-Majority might perform well
in practice. In this section, we describe some preliminary experiments aimed at
addressing this question.

Our experiments compare the performance of AdaBoost with an algorithm
we call BBM* which is like Boost-by-Majority, but with a few changes. Both
algorithms were applied in conjunction with decision stumps, and the decision
stump for each attribute was chosen to minimize the empirical error.

The differences between BBM* and Boost-by-Majority are as follows:



— When run for T rounds, instead of partitioning the training data into T
disjoint parts to be used in the various rounds, BBM* uses all of the examples
in each round. The rejection method is applied to choose a subset of the
examples in each round in a manner analogous to Boost-by-Majority.

— If the number of examples accepted in a given round is less than 5, then, in
BBM?*, the round is skipped: no base classifier is added to the list of voters
in that round. (This is similar to the practice Freund [14] analyzed: when the
number of accepted examples is too small, add a base classifier that predicts
randomly. The cutoff of 5 was chosen arbitrarily and not optimized, and the
same value of 5 was used on all of the datasets.)

— If more than one attribute has a decision stump that minimizes training
error on the filtered dataset in a given round, then an attribute is chosen
uniformly at random from the list of minimizers.

— The parameter « is chosen using 5-fold cross-validation on the training data.
The values {0.002,0.005,0.01,0.02,0.05} are tried, and the value minimizing
the cross-validation error is used. In case of a tie, the geometric mean of the
values attaining the minimum is used.

In our experiments, both BBM* and AdaBoost were applied in conjunction
with decision stumps, and both were run for 100 rounds. We evaluated the
algorithms using the protocol of Dudoit, et al [13], in which the data is randomly
split 100 times into a training set with 2/3 of the examples, and a test set with 1/3
of the examples. Both algorithms were evaluated on the same 100 training-test
splits, and the average test-set error was tabulated. We applied both algorithms
to a list of datasets from the UC Irvine repository previously used for evaluating
AdaBoost [15], together with one microarray dataset called ER (see [49, 30] for
a description).

Our results are summarized in Table 1. BBM* appears to significantly im-
prove on the performance of AdaBoost on most of the larger datasets.

The code for these experiments is a modification of the code from [30]. The
site

http://giscompute.gis.nus.edu.sg/ plong/bbm_star

has the new code.

7 Conclusion

We have provided a theoretical analysis of boosting that shows how a boosting
algorithm can take advantage of a collection of base classifiers that contains
a large, diverse collection of fairly good classifiers. Inspired by this analysis,
we have investigated the practical utility of an algorithm like Freund’s Boost-
by-Majority algorithm, and found that, on some large datasets, it appears to
perform better than AdaBoost. We have also showed that a better bound can
be obtained by an algorithm that maximizes the number of examples classified
correctly with a certain margin, but we have not shown how to efficiently perform
this optimization.



Dataset BBM*|AdaBoost||# attrs.|# examples
ER 20.0 18.1 7129 49
promoters 10.8 9.9 57 106
hepatitis 18.2 19.2 19 155
ionosphere 11.4 10.3 34 351
house 4.2 4.0 16 435
breast 34 4.5 9 699
pima 25.7 24.7 8 768
hypothyroid || 0.86 1.01 25 3163
sick-euthyroid|| 2.5 3.1 25 3163
kr-vs-kp 3.0 4.3 36 3196

Table 1. Summary of our experimental comparison between the BBM* algorithm
and AdaBoost when both are applied for 100 rounds in conjunction with decision
stumps. On each dataset, the percentage of test examples misclassified by each of the
algorithms, together with the number of attributes and number of examples in the
dataset, are shown.

It is trivial to generalize our results to the case in which the correctness
random variables of the good base classifiers H* are negatively associated, say in
the sense studied in Dubhashi and Ranjan’s [12] paper. An analysis in which a
limited amount of positive association among the errors of classifiers in H* was
allowed would be interesting.

All that we use about our assumption is that it implies that there is a convex
combination f of the classifiers in H such that P(yf(z) < 7.) < e 7-#/2. Thus,
more general theorems concerning this form of assumption are implicit in our
analyses. This implies that our results can also be strengthened to apply when
the average (instead of the maximum) error rate of the classifiers in H* is at
most 1/2 — ~,.

Directly applying (1.5) from [25] (see also [24]) leads to a bound, for the
MAM algorithm, of

logo n

1+ 25 m
m_m
If 7. is a constant and n is moderately large, the dependence on m is roughly
as 1/4/m. However, it seems likely that some the techniques used in [24] can be
applied to improve Theorem 2, at least by a factor of logm.

It would be good to prove a bound like Theorem 2 for a provably fast algo-
rithm. One promising avenue is to try to use boosting to do the optimization,
possibly approximately, for an algorithm like MAM.

In our analysis, the parameters of the Boost-by-Majority algorithm were set
as a function of k and v*. It would be nice to be able to prove a similar theorem
for an algorithm that did not need to do this. A modification of the smooth
boosting algorithm studied by Gavinsky [21, 23, 18] to use boosting-by-filtering



seems a good place to start. (Similarly, the MAM algorithm used knowledge of
Ve-)

Another question is whether the bounds of this paper, or better bounds,
can be obtained by an algorithm that minimizes a convex function of the vot-
ing weights that is an upper bound on the number of misclassifications, as
some boosting algorithms can be seen to do (see [8,35,17]). Recently, signifi-
cant progress has been made on the analysis of such algorithms (see [31, 50,6,
7]). Recent strong bounds obtained for Support Vector Machines [26, 37] using
the PAC-Bayes methodology [39, 38] also raise hope for that technique to be
profitably applied here. Either of these would result in guarantees with the fla-
vor of the margin analysis, as well as for the framework of this paper, for the
same, efficient, algorithm.

It also appears possible that improved analysis could be obtained with an al-
gorithm like Boost-by-Majority. For example, can improved bounds be obtained
for an algorithm like BBM* that, in each round, applies the rejection method
on all the examples?

Finally, we view BBM* as a crude first step in investigation of the practical
utility of the rejection method in the context of boosting. It appears possible
that sophisticated hybrids of the rejection method and importance sampling, as
have been developed for other applications (see [28]), might lead to significant
improvements in practical performance for boosting algorithms. Another tanta-
lizing possibility is that recent refinements to importance sampling that reduce
the variance while remaining unbiased (see [48]) might have a role to play in
boosting, both in theory and in practice.
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