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Abstract. We show that a #m(f) bound on the rate of drift of the distribution generating
the examples is sufficient for agnostic learning to relative accuracy ¢, where ¢ > 0 is a constant;
2
this matches a known necessary condition to within a constant factor. We establish a #m(}')

sufficient condition for the realizable case, also matching a known necessary condition to within a
constant factor.

We provide a relatively simple proof of a bound of O (%2 (VCdim(.’F ) + log %)) on the sample
complexity of agnostic learning in a fixed environment.
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1. Introduction

Learning often takes place in a gradually changing environment. This phenomenon
has been studied theoretically by assuming that the function to be learned, the
distribution generating the examples, or both, change at most a certain amount
between examples (see [14, 3, 5, 6]).!

In this paper, we study the problem of learning functions from some set X to
{0,1} (“concepts”) using two models of a drifting environment. In the first 3], it is
assumed that examples (z1,y1), (2,92), ... are generated independently at random
from a sequence of joint distributions over X x {0,1}, and the only constraint is
that consecutive pairs of distributions have small total variation distance. If this
distance is always at most A, then the sequence of distributions is called A-gradual.
For each t, the learning algorithm must output a hypothesis h; using only the first
t — 1 examples. For some concept class F and drift rate A, if, for any sequence of
A-gradual joint distributions, for large enough ¢, the probability that hs(x:) # y;
is at most € more than the minimum such probability from among f € F, then we
say that F is (e, A)-trackable in the agnostic case.

The second model of learning in a drifting environment [14, 3, 5] is obtained from
the above by adding the requirement that each distribution P; has some f; € F
such that the probability that the pair (x¢,y;) drawn according to P; has f;(x;) = y;
is 1. Here, if, for large enough ¢, the probability that hi(z;) # y; is at most €, we
say that F is (e, A)-trackable in the realizable case.

In this paper, we show that there is a constant ¢ > 0 such that a #:1(}.)

bound on A is sufficient for F to be (e, A)-trackable in the agnostic case, and a



ﬁi(ﬂ bound is sufficient for the realizable case. This work continues an existing
line of research [14, 3, 5, 6], and matches known necessary conditions for both the
agnostic [6] and realizable [3] cases to within a constant factor, closing log-factor
gaps. Note that both models allow for variation both in the target and in the
marginal distribution on the domain elements; some previous work addressed these
two types of changes separately.

The agnostic drift analysis uses a technique called Chaining from Empirical Pro-
cess Theory (see [23, 24]). We defer a high-level description of this technique until
later in the paper when appropriate context is available.

In the realizable case, as in [14, 3, 5], we consider an algorithm based on the one-
inclusion graph algorithm [13], which was originally designed for learning concepts
in a fixed environment. To determine h(z,,) from some sample

(3717?/1), sty (mm—laym—l)y

the original algorithm constructs a graph whose vertices are

{(F(@1), ... f(m)) : f € F}

and has edges between pairs of vertices that differ in only one component (the “one-
inclusion graph”).2 The edges of the graph are then directed, and these orientations
are used to determine h(x,,). The analysis involves relating the probability of a
mistake for some target f to the maximum (over z1,...,%,,) of the outdegree for
the vertex associated with f. Since any one-inclusion graph for F can be shown to
be sparse relative to VCdim(F), the edges can be directed so that the out-degree
of any vertex is at most VCdim(F) [13]. In [14, 5], the vertex set was expanded
to include elements of {0,1}™ that are within some Hamming distance of elements
of {(f(z1), .-, f(xm)) : f € F}; these graphs also can be shown to be sparse. The
main new idea in this paper’s realizable drift analysis is to show, for each F, how to
direct all the edges of the m-dimensional hypercube so that the outdegree of each
vertex is bounded appropriately in terms of its distance to the closest element of
{(f(z1), e, f(xm)) : f € F} as well as the VC-dimension of F.

1.1. Agnostic learning in o fixed environment
In the standard agnostic learning model [11, 17], random examples
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are drawn from an arbitrary joint distribution P, and the learner’s goal is to output
a function h such that probability that h(z) # y for another pair (z,y) drawn
according to P is nearly as small as that of the best function in F.

We give a proof that, in a fixed environment, for any concept class F,

0 (;2 (VCdim(]—') +log %))



examples are sufficient for an algorithm to, with probability 1 — 4, output a hy-
pothesis whose error is at most € worse than the best in F. This bound, which also
follows from previous work of Talagrand [30], improves on the bound of
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that follows from Vapnik and Chervonenkis’ results (see [11]), and matches Simon’s
general lower bound [29] to within a constant factor for each concept class F.
Our constants are greater than Talagrand’s, but our proof is simpler and more
elementary.

2. Preliminaries

Fix a countable set X. Denote the reals by R, and the natural numbers by N.
An ezample is an element of X x {0,1}, and a sample is a finite sequence of
examples. A learning algorithm takes a sample as input, and outputs a hypothesis,
which is a function from X to {0,1}. We will also consider randomized learning
algorithms, which can be modelled as deterministic functions of another random
input along with the sample.
For a real-valued function g defined on Z, and Z' € Z™, define

m

Ez(9) = % > 9(zi)-

i=1

The VC-dimension of a set G C {0,1}™ is the length of the longest sequence
i1,...,iq of indices such that {(gi,, ..., gi,) : ¢ € G} = {0,1}¢. The VC-dimension of
a set G of functions from X to {0,1} is the maximum, over m € N, Z € X™, of the
VC-dimension of {(g(z1), -..,9(zm)) : g € G}.

The metric dry on probability distributions is defined by

drv(P,Q) = QS%NP(E) - Q(E)|.

Say a sequence Py, P, ... of probability distributions is A-gradual if for each ¢t € N,
drv (P, Piya) < A.

For a learning algorithm A, we say that a sample (z1,¥1), ..., (Tm,ym) and ran-
domization r cause a mistake for A if A, given (z1,y1), .., (Tm—1,Ym—1) and r,
outputs a hypothesis h for which h(z.,) # ym.-

Recall that the Hamming distance, which we will denote by p, is defined by
p(T, @) = ¥, |vi —w;|. Form € N, F C {0,1}™,7 € {0,1}", define p(7,F) =
min{p(7, f) : f € F}. For each k € {0,...,m}, define py(F) = {7 € {0,1}™ :
p(V,F) = k}.

Both analyses will use Fubini’s Theorem.



LEMMA 1 (SEE [26]) Choose countable sets Zy and Za, a function f : Zy X Zy —
[0,1] and probability distributions Dy over Zy and Dy over Zy. Then

/21 ( . f(z1,22) dDQ(Z2)) dDy (z)

/ f(zl,zg) d(D1 X DQ)(Zl,ZQ)
Z1 X Z2

_ /Z ( [ sz le(zl)) dDs(2).

We will also use the standard Hoeffding bound.

LEMMA 2 (SEE [23]) Let Y1,...,Ys, be independent random variables taking values
in [a1,b1], -, [@m, bm] respectively. Then
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3. Agnostic Learning

In this section, we consider agnostic learning in both fixed and drifting environ-
ments. We begin with a fixed environment.

3.1. Fized environment

Choose a class F of functions from X to {0,1}. For a probability distribution P
on X x {0,1} and a function h from X to {0,1}, the error of h with respect to
P, denoted by erp(h), is P{(z,y) : h(z) # y}. A learning algorithm A is said to
(e, 9)-agnostically learn F from m examples if for all distributions P on X x {0,1},

pm {Z: erp(A(2)) > e+}r€1£__erp(f)} <.

To set the context, we briefly review the work that our analysis builds on [32, 23,
8, 11].

For each f € F, define Ly : X x {0,1} — {0,1} by L¢(z,y) = |f(z) — y|. Define
Ly ={Ly: f € F}. The following reduces the learning problem to that of obtaining
uniformly good estimates of the errors of possible hypothesis (i.e. expectations of
elements of Lr).

LEMMA 3 ([11]) Choose €, > 0, m € N. If for all distributions P on X x {0,1},

Pm{EIHQEL}‘,

Bo(g) - /X oy 0 4P@)

>€/2} <

then F is (€,0)-agnostically learnable from m examples.

The following will also be useful.



LEMMA 4 (SeE [8]) VCdim(Ly) < VCdim(F).

So now we can concentrate on determining distribution-free bounds, in terms
on the VC-dimension, on the number of examples required to obtain uniformly
good estimates of the expectations of random variables in some set. Choose some
countable® set Z (in the learning application, Z will be X x {0,1}) and some set G
of functions from Z to {0,1} (in the learning application, G will be Lx).

The first lemma bounds the probability that any estimate is inaccurate in terms
of the probability that two samples yield substantially different estimates.

LEMMA 5 ([32]) Choose n > 0 and m € N for which m > 2/n? and some proba-

bility distribution P on Z. Then
Be(o) - [ o(u) dP(w) >}

< 2P?™{(z,@) : 3g € G,|Ez(9) — Ealg)| > n/2}

> g(z) — gui)| > nm/2} .

i=1

P’”{E:ngg,

— op2m {(z,ﬁ) ;g €,

The next lemma is an example of the “permutation trick”: note that setting
o; = —1 has the effect of exchanging z; and u;.

LEMMA 6 ([32, 23]) Choosen > 0, m € N and some probability distribution P on
Z. Then if U is the uniform distribution on {—1,1}™,

>nm}

> oilg(zi) — g(ui))| > nm} .

i=1
The previous lemma allows us to fix some sequence of 2m elements of Z, and

restrict our attention to the behaviors of elements of G on those 2m elements.
The following lemma is an immediate consequence of Lemma 2.

m

Z 9(zi) — g(u;)

pm {(2’,11') :dg € G,
i=1

< sup U{&’:ngg,

Z,uezZm

LEMMA 7 Choose m € N and G C {0,1}*>™. Then if U is the uniform distribution
over {—1,1}™,

m
Z 0i(9i — gm+i)

i=1

U{&':HgEG,

> nm} < 2|Gle™" ™2,

By combining Lemmas 3, 4, 5, 6, and 7, and applying a bound on |G| in terms of
VCdim(G) [27, 28, 32] in Lemma 7, one gets a bound of

0 (l2 (VCdim(]—") log1 + log 1))
€ € )



on the sample complexity of agnostically learning F [11].
Our argument will take advantage of the following refinement of a slight general-
ization of Lemma 7, which also follows directly from Lemma 2.

LEMMA 8 Choose m,k € N, and suppose that H C R™ has the property that each
h € H has Y ;*; h? < k. Then if U is the uniform distribution over {—1,1}™,

iaihi

i=1

U{U:HhEH,

—n2m2
> nm} < 2|Hle™= .

The idea of Lemma 8 is that if all of the elements of H are small, then the
variances of the random terms o;h; tend to be small, which means that its less
likely that any sum of them will stray far from 0 (its expectation).

The following lemma is the heart of our analysis.

LEMMA 9 Choose n > 0, and d € N. Choose an integer m > 278%#” and G C
{0,1}?>™ for which VCdim(G) = d. Then if U is the uniform distribution over
{=1,1}™, for any n >0,

m

Z 0i(9i — gm+i)

i=1

3=

U{&’:HgEG,

> n} < 4. 410~ n"m/400

The proof is a chaining argument. See Pollard’s books [23, 24] for others and
for further references. The idea is as follows. First, we form a sequence Gy, ...,G,
of approximations to G. The approximations get successively finer until G,, = G.
Next, we consider the sets Hy, H», ..., Hy,, where each H; consists of the adjustments
that need to be made to Gj_; to get the improved approximation G;. In particular,
Hj consists of the differences between each element of GG; and the closest element
of G;j_1. (See Figure 1.) If we define Hy = Gy, then each element of G is the sum
of an element of Hy, an element of H;, and so on up to an element of H,. So,
loosely speaking, if things are OK for each of the H}’s, then they’re OK for G. We
will apply Lemma 8 to analyze each of the Hj’s.

For relatively large j, H; consists of those adjustments needed to make an already
fine approximation finer. Thus, the elements of H; are small, and we can use the
fact that Lemma 8 provides a better bound in this case. When j is small, since
|H;| < |G,l], and G; is a relatively coarse approximation to G, H; does not have
many elements, which provides partial compensation for the fact that its elements
might be large.

We will use the following result due to Haussler, which bounds the number of
significantly different elements of a set G in terms of its VC-dimension. This can
be used to bound the size of an approximation to G [18].

LEMMA 10 ([12]) For all m € N, for all k < m, if each pair g,h of elements of
G C {0,1}™ has p(g,h) > k, then
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Figure 1. A schematic representation of the G;’s and H;’s from the proof of Lemma 9 in the
case m = 4. The G,’s, which form increasingly accurate approximations to G, are represented by
increasingly dense rows of nodes. For each j > 0, an edge is added between the node representing
each element of G; and that representing the closest element of G ;. If you think of this edge
as representing the difference between the two, then each H; (for j > 0) consists of the jth layer
of edges.

A1 VCdim(G)
G| < (Tm) .

Proof (of Lemma 9): Let n = 1 + |log, m|. Construct Go, ..., G, as follows.
Let Go consist of an arbitrary single element of G, and for each j € {1,...,n},
construct G; by initializing it to G;_1, and as long as there is a g € G for which
p(9,G;) > m/2, choosing such an g and adding it to G;. Note that Go C G1 C
.. CGp =G. Foreach g € G and j € {0,...,n} choose an element 1;(g) of G;
such that p(g,4;(g)) is minimized. Note that p(g,%;(g)) < m/27, since otherwise g
would have been added to G;. Let Hy = Gy, and for each j € {1,...,n}, define H;
tobe {g—1;_1(g) : g € G;}. Note that since for all g € G, p(g,1;—1(g)) < m /2771,
for each h € Hj, Y2 |hi| < m /29~

By induction, for each k € {0, ...,n} for each g € Gy, there exist

hg,() € Hy, ---7hg,k € H;,

such that g = Zfzo hg,j- Thus, for each ¢ € G = Gy, there exist hyo €
Ho, ...;hg,n € Hy, such that g = 377 hy,;. Let
> n}_

. 1 m n
p=U{G:39€G,|—> 0i(} (hg;)i = (hgs)mi)| > 1

p=U{6:EIg€G,

1 m
p— Z 0i(9i — gm+i)
i=1

Then, expressing g as )__ hg,j, We get



Rearranging the sums yields

. n 1 m

p=USG:3g€G, | — 2 0il(hg.j)i = (hgj)mei)| > 1 0
j=0 " i=1

and applying the triangle inequality, we get

pSU{&':EgEG,i

J=0

1 m
m Zai((hg,j)i = (hg,j)m+i)| > 77} .
For each j € {0, ...,n}, let n; = (1/7)\/(j +1)/27. Then }-7_;n; <7, and therefore

>77]'}7

pSU{&':EIgEG,Elj € {0,...,n},

1 m
m ; 0i((hg,3)i — (hg,j)m+i)

>’I7j}.
>T]j}.

Choose j € {0,...,n}. For each h € Hj, 37" |h;| < m/2/-1. Thus, since
h e {-1,0,1}>™,

which implies

pSZU{&’:EIgGG,
7=0

Since each hy ; € Hj;, we have

=Y 0l = (g )

1 m
- z=Z1 oi(hi — hm+i)

pﬁZU{&':EIhEHj,
j=0

Z(hi — hmti)® = A{i: |hi — hingi| = 2} + {0 ¢ |hi — hingi| = 1}

2m
2 |hil
i=1

< mj2772,

IN

Applying Lemma 8, we have

p< iQIHﬂeXP (M) :

m
=0 252

Substituting the value of n;, we get

n 2/ =
-G+ 1m
PS;2|HJ|GXP<T .



By construction, each pair of elements of G; have Hamming distance more than
m/27. Applying Lemma 10, we get

[Hj| < 1G] < (41-29)VOUm(E) < (41 . 97)

since G C G. Therefore

p < 2Zexp ((ln41 +jln2) 00

de M)
j=0
2. 41de—n2m/400
1 — 2de—n*m/400
< 4-41%mmm/100,
since m > w. O
Putting together Lemmas 3, 4, 5, 6, and 9, and solving for m, we get a new proof
of the following result due to Talagrand.

THEOREM 1 ([30]) There is a constant ¢ such that for any class F of functions
from X to {0,1}, for any €,6 > 0, there is an algorithm A that (€, d)-agnostically
learns F from at most 5 (VCdim(F) +1n}) ezamples.

3.2.  Drifting environment

For a class F of functions from X to {0,1}, we say a learning algorithm A agnos-
tically (e, A)-tracks F if for all A-gradual sequences Py, Ps, ... of distributions over
X x {0,1}, there is an mg such that for all m > my, the probability that a sample
drawn according to [];", P; and A’s randomization cause a mistake for A is at most
e+infrer Pp{(z,y) : f(z) # y}. If there is a prediction strategy that agnostically
(e, A)-tracks F then we say F is (€, A)-trackable in the agnostic case.

For our analysis of agnostic learning in a drifting environment, we will replace
Lemmas 5 and 6 with the following.

LEMMA 11 ([6]) Choose a countable set Z, and a set G of functions from Z to
{0,1}. Choose a >0 and 0 < k < a. Choose m € N such that m > 4/a*. Choose
distributions D, Dy, ..., Dy, on Z such that for each 1 <i <m, dry(D;,D) < k. If
U is the uniform distribution over {1,-1}™,

> a}

(HD,) {2’6 Z™:3g€g,
i=1

Bx(g) - /Z 9(v) dD(v)

1 m
s2 a4 Uqo:3g€g, |~ oi(g(u;) —g(z:))| > (a—k)/2 7.
(z,@)€Zm x 2Zm { m; (9(ui) — g(z:))| > ( )/

Putting together Lemmas 11 and 9, we get the following.
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LEMMA 12 Choose a countable set Z, and a set G of functions from Z to {0,1}. Let
d = VCdim(G). Choose a > 0 and 0 < k < a. Choose distributions D, D1, ...,Dp,

on Z such that for each 1 <i <m, dry(D;,D) < k. If m > 11(%[’15;1) then

o

Next, we record a slight variant of a well-known lemma for converting tail bounds
to expectation bounds.

d
(HDi) {é‘e Z™:3g€ g,
i=1

Bx(g) - /Z 9(v) dD(v)

<8- 41def(a7n)2m/1600_

LEMMA 13 For any [0, 1]-valued random variable Y, if ¢ : [0,1] — [0,1] is such
that for all B, Pr(Y > ) < ¢(B), then for all 0 = ap < a1 < ...ap < agr1 = 1,

E(Y) < Yo p(ai)ai.

Proof: The distribution on Y that maximizes its expectation subject to Vi, Pr(Y >
a;) < ¢(a;) assigns p(ay) probability on 1, p(ar—1)—p(ax) probability on ag, and so
on, until all the probability has been distributed. This can be verified by induction
moving from right to left, using a perturbation argument for the induction step.

O

THEOREM 2 There is a constant ¢ > 0 such that for any set F of functions from X
to {0,1}, for any e > 0, if A < #;(F), then F is (e, A)-trackable in the agnostic
case.

E3

Proof: Choose € <1, and A < z5565002-

Let m = |e¢/(16A)]. For each f € F, define Ly : X x{0,1} — {0,1} by L¢(z,y) =
|f(z) —y|. Consider the algorithm A which, given (z1,¥1), ..., (zt—1,y¢—1), returns
a hypothesis h € F that minimizes Z:;;_m Ly(zi,y;). Let Ly = {Ly : f € F}.
Recall that VCdim(Lz) < VCdim(F) (Lemma 4).

Choose a A-gradual sequence Py, P, ... of probability distributions, an arbitrary
f« € F (to compare h with), and ¢ > m. Applying Lemma 1 as in [13], the
probability that (z1,y1), .-, (z¢,y:) drawn according to H2=1 P; causes a mistake
for A is equal to the expectation, with respect to the first ¢ — 1 examples, of
Pi{(zs,y;) : h(zy) # v} (recall that h is a function of the first ¢ — 1 examples).

Choose 8 > 6Am. Since for all i < m, dyy(P;_;, P) < Am, applying Lemma 12
with a = /2, Z = X x {0,1}, and G = Ly, and doing some simple calculations,
we get

> ﬂ/2>

t—1

Plony) s fe) i} = = Y Lylanw)
i=t—m
—B%m
< 8-41%exp (14400) i
Since 31—, Lu(i,yi) < Siry_ Ly (@i, y3), for all B> 6Am,
Pr(P{(xt,yt) : h(ze) # yie} — Pi{(ze, ye) = fu(xt) £y} > B)

Pr (EIfef,
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< 8-41¢ :
<8-41 exp<14400

Applying Lemma 13 with ¢ given by the the above bound when 8 > 6Am and 1 oth-

14400(In 84(In41)d+iIn 2)
m ?

erwise, and with a; = 6Am, and for all relevant ¢ > 1, a; = \/
we get

E(P{ (@t y0) - h(ze) # g} — Pl(@e,90) = fu (@) 7 ye})

<6Am+ Y \/14400(1n8 + (In41)d + (i + 1)In2)

2—1'

m

=1
d & ;
< 6Am + 1/ — 144 i+ 1)In2)2*
< 6Am + mi;\/ 0006+ (i + 1)In2)

< 6Am + 341,/i.
m

Substituting the values of m and A and approximating, we get

E(P{(zt,y:) : h(we) # ye} — Pe{(me,91) = fu(@e) # ye}) < e

As discussed above, this completes the proof. O

4. The realizable case

Say a probability distribution P over X x {0,1} is consistent with a function f
from X to {0,1} if the probability that a pair (z,y) drawn according to P has
f(z) =y is 1. For a set F of functions from X to {0,1}, say that P is consistent
with F if it is consistent with some member of F. For a class F of functions from
X to {0,1}, we say a learning algorithm A (e, A)-tracks F in the realizable case
if for all A-gradual sequences Py, P, ... of distributions over X x {0,1} that are
consistent with F, there is an mg such that for all m > myg, the probability that
(z1,91), -, (Tm, ym) drawn according to [[;~, P; and A’s randomization cause a
mistake for A is at most e. If there is a prediction strategy that (e, A)-tracks F in
the realizable case then we say F is (e, A)-trackable in the realizable case.

Recall that the mth hypercube, which we will denote by H,,, is the undirected
graph whose vertex set is {0, 1}™, and whose edges are all ¥, & such that p(7, W) = 1.

THEOREM 3 ([13]) For any m € N, for any F C {0,1}™, if G is the subgraph of
H,, induced by F, the edges of G can be directed so that the mazimum outdegree of
any node is at most VCdim(F).

LEMMA 14 ([28, 27, 8]) Form € N, F C {0,1}™, |F| < (em/VCdim(F))VOdim(F),
The proof of our next lemma is similar to that of a related result of Roy [25].

LEMMA 15 For any m € N, for any F C {0,1}™, for any k € {1, ...,m},
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VCdim(pg—1(F) U pi(F)) < 5(VCdim(F) + k).

Proof: Assume without loss of generality that |F'| > 1. Let d = VCdim(pg—1 (F)U
pr(F)). Choose a set i1, ...,i4 such that

{(gila"'agid) 1g € Pk—l(F) U Pk(F)} = {0, 1}d

Each element of {(gs,,---,9i,) : 9 € pr—1(F)} can be derived from an element of
{(fiys--» fiy) : f € F} and a subset of k — 1 elements of {1, ...,d}, and therefore

(i) 19 € s N < (0 )Mo fi) 5 S € P

Applying a similar observation with regard to py(F'), we get

|{(gi15"'agid) ‘g€ pk—l(F) Upk(F)}|

<((o21)+ () MU i 1 e P

= (")) s 1 € FY

§ d+1 ed VCdim(F)
=\ k) \VCdim(F)

by Lemma 14. Thus

d+1 ed VCdim(F)
k) \VCdim(F)

(dd; 1))k (vca?i(p))mdimm-

Taking logs, we get

e(d+1) . ed
< ]
dln2_k1n< A )+VCd1m(F)ln (VCdim(F))

2d

IN

Since for all z, A > 0, 1 +Inz < Az + In(1/X) (see [1]), we have that for all A > 0,
din2 < A(2d+ 1) + (VCAim(F) + k) In(1/X).
Solving for d and substituting A = 1/10 completes the proof. O

LEMMA 16 Choosem € N and F' C {0,1}™. Then the edges of H,, can be oriented
so that the outdegree of any U € {0,1}™ is at most 15(VCdim(F') + p(7, F)).

Proof: Let d = VCdim(F'). Assume without loss of generality that |F| > 1 (and
therefore d > 0).

Let G be the subgraph of H,, induced by F', and for each k = 1, ...,m, let G}, be
the subgraph of H,, induced by pi(F) U pr—1(F). (See Figure 2.) For each k, let
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Figure 2. For m = 4 and some F C {0,1}™, the m-dimensional hypercube has been diagrammed
with F' at the bottom, those vertices at a Hamming distance 1 from some element of F' in the row
above, and so on. The subgraphs Gy, ..., G4 from the proof of Lemma 16 are as shown.



14

G}, be a directed graph obtained by directing the edges of G, so that the outdegree
of each vertex in G, is at most 5(d + k).

By the triangle inequality, if ¥, is an edge in H,,, then |p(7, F) — p(W, F)| < 1.
Therefore, each edge of H,, is in Gy for at least one k. Form a directed graph
H], by directing the edges of H,, by choosing the direction for each edge from the
graph G, with the least k such that the undirected edge is in G}.

Choose a vertex ¢ € {0,1}™. Assume without loss of generality that p(¥, F') < m.
Then @ appears in G, exactly when k € {p(7, F), p(7, F) +1}. Hence the outdegree
of ¥in H] is at most

5(d + p(@, F)) + 5(d + p(#, F) + 1) < 15(d + p(7, F)),

completing the proof. O

For each set F of possible targets, the tracking algorithm A’ used to prove
Theorem 4 will apply a subalgorithm Az to a subsequence consisting of the most
recent examples. We begin by describing and analyzing Axr.

Algorithm Az will make use of an arbitrary order on X. For each F, we will
describe the hypothesis h output by Az on input (z1,¥1),---, (Tm_1,Ym—_1) by de-
scribing a process for generating h(z,,) for each possible z,,. Algorithm Ax first
SOrtS 1, ..., T (let ai, ..., a;, be the resulting reordering of x4, ..., Tm; let by, ..., by
be the corresponding reordering of yi,...,ym—1,[ |, where [ ] serves to hold the
position corresponding to z,,; and let ¢* be the position of z,, in ai,...,an).
Next, it sets F' = {(f(a1), ..., f(am)) : f € F}, and creates a directed graph H/,
by orienting the edges of H,, so that the outdegree of each vertex ¥ is at most
15(VCdim(F)+p(¥, F)) as in Lemma 16. Finally, it sets h(z,,) = 1 if and only if the
edge in H between (b1,...,bix—1,0,bix41,...,bp) and (b1, ..., bix—1, 1, b 41, ., )
is oriented toward (by, ..., bix—1, 1, b 41, e, b))

LEMMA 17 ([3]) For any probability distributions P and Q, dryv (P x Q,Q x P) <
dTV (Pa Q)

LEMMA 18 Choose m € N, a set F of functions from X to {0,1}, and a A-gradual
sequence Py, ..., Py, of probability distributions on X x{0,1} that are consistent with
F. The probability under T];* | P; that (x1,Y1) ..., (Tm,Ym) causes a mistake for
Ax, is ot most

15VCdim(F) + 6Am + Pr(3i, j, z; = z;).

Proof: Define x((z1,41); -, (Tm,ym)) to indicate whether (z1,y1), ..., (Tm,Ym)
causes a mistake for Ax and 1, ..., z,, are distinct. Clearly,
Pr(mistake) < E(x) + Pr(not distinct),

so we will bound E(x).
Let Z = X x{0,1}. For Z € Z™,j € {1,...,m}, define p(Z,j) to be the re-
sult of exchanging z; and z,. By the triangle inequality, for all ¢ € {1,...,m},
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drv(Pj, Pn) < Am. Choose j € {1,...,m — 1}. Repeatedly applying Fubini’s
Theorem (Lemma 1),

[x@a(] 7@

— / (/X(g‘) d(P; x Pm)(zj,zm)> d( H P)(21,5 ey 2j—15 Zj4 15 ey Zm—1)-

t¢{jm}
Applying Lemma 17 and the definition of drv,

/ (@ d[] P

< [ ([ x@ aPux Pz + 52 T POtz )

t¢{j,m}
= [ty ] ro@ + 5

again, because of Fubini’s Theorem. Thus

[x@adlme s 3+ [ (% Zx(so(é',j))) adlrne. o

Fix an arbitrary Z = ((21,91), -, (m,¥m)) € (X x {0,1})™. If z4,...,z,, are
not distinct, then the definition of y implies that % E;”:l x(p(Z,7)) = 0. Assume
Z1,..., Ly, are distinct. Let aq, ..., a,, be 21, ..., 2., in sorted order, and let vy, ..., v,
be the corresponding reordering of the y;’s. Let

F={(f(a1), ..., f(am)) : f € F}.

Since algorithm Az sorts the sample, the directed graph H), constructed by
algorithm Az using any reordering of the z;’s is the same. Choose j € {1,...,m}.
Let j' be the position of z; when z1, ..., zp, is sorted. Then ¢(Z, j) causes a mistake
for Ar if and only if the edge in H), between ¢ and the vertex obtained by negating
the j'th bit of ¥ is oriented away from . (This is because ¥ represents the correct
labellings, and Ax predicts according to the direction of the named edge.) Thus
Yty x(p(7,5)) < outdegree(d).

For each t € {1,...,m} choose f; € F such that P, is consistent with f;. Then

p(0,F) < [{t: fe(ze) # frm (i)}
Thus,
outdegree(d) < 15(VCim(F) + [{t : fi(x1) # fm(1)})

and therefore
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> x(p(Z,4)) < 15(VOdim(F) + [{t : filx:) # fm(@:)})-

=1

Since VCdim(F) < VCdim(F), plugging into (1), we have

[x@ adlre < 5+ B B e £ sl

m
(2)
Since P,, is consistent with fn,
Pu{(z,y) : frm(z) #y} = 0. (3)
For any t € {1,...,m}, since dry (P;, Pm) < Am, (3) implies
Pii{(z,y) : ful@) # fm(2)} = P{(2,y) : fm(2) # y} < Am/2.
Thus
E({t: fi(z:) # fm(z)}]) < Am?/2.
Substituting into (2) completes the proof. m

THEOREM 4 There is a constant ¢ > 0 such that for any set F of functions from
X to {0,1}, for any € > 0, if

ce?

A<
= VCdim(F)’

then F is (€, A)-trackable in the realizable case.

Proof: Let d = VCdim(F). Consider the algorithm A’ defined as follows. First,
it sets R = {1,...,[11560d?/€*]}, and for each ¢, it draws r; uniformly at random
from R.

Given (21,41), - (Tm, Ym), if* m > 33d/e, then A’y gives the last m' = [33d/€]
elements of ((x1,71),91), -, ((ZTm>Tm), Ym) 10 Ax.

Let U be the uniform distribution over R. For some A > 0, choose a A-gradual
sequence Py, P,,... of distributions over X. Then P, x U, P, x U,... is also A-
gradual. Also, if for each f € F, we define a function fg from X x R to {0,1}
by fr(z,r) = f(x), then, straight from the definitions, VCdim({fg : f € F}) = d.
So applying Lemma 18, if m > 33d/e, the probability that A’; makes a mistake
is at most 15d/m' + 6Am' + (m')?/|R|. Substituting the definitions of m' and R
and observing that 33d/e < m' < 34d/e, if A < ﬁzd, this probability is at most e,
completing the proof. O
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Notes

. Recently, other constraints on the drift have been examined (e.g., [4, 9]). In this paper we

restrict our attention to the simplest drift models, but direct application of a slight variant
of Lemma 12 of this paper leads to a small improvement in the analysis of [9]. Models of a
changing environment that are more dissimilar to that studied here were considered in [22, 20,
21, 7, 10, 15, 2, 19, 31, 16].

2. Their statement of their algorithm is slightly different; we describe an equivalent algorithm to
facilitate comparison with our modification.

3. We assume that Z is countable for convenience. Considerably weaker measurability assump-
tions suffice for the results mentioned in this paper [23, 11].

4. The behavior of A’ for small m is immaterial.
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