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Abstract

We consider two models of on-line learning of binary-valued functions from drifting distributions
due to Bartlett. We show that if each example is drawn from a joint distribution which changes in
total variation distance by at most O(e®/(dlog(1/€))) between trials, then an algorithm can achieve
a probability of a mistake at most € worse than the best function in a class of VC-dimension d. We
prove a corresponding necessary condition of O(e3/d). Finally, in the case that a fixed function is
to be learned from noise-free examples, we show that if the distributions on the domain generating
the examples change by at most O(e2/(dlog(1/¢))), then any consistent algorithm learns to within
accuracy e.



For a list of the typographical symbols used, please consult Latez, by Leslie Lamport.



1 Introduction

In prediction models [Daw84, HLW94] like that studied in this paper, learning proceeds in trials,
where in the tth trial, the algorithm (1) is given z; chosen from some set X, (2) is required to
output a prediction §; € {0,1}, and (3) discovers y; € {0,1}. The focus of these models differs
from those like the PAC model [Val84] in that prediction models are tailored to situations where
learning is an ongoing process. However, results for one type of model often yield related results
for the other.

We will consider two models for prediction problems, both introduced by Bartlett [Bar92]. In the
first model, the pairs (z1,y1), (z2,y2), ... are generated independently from a sequence Py, Ps, ... of
distributions on X x {0,1}, and it is assumed that pairs of consecutive distributions are close. If,
for a class F' of functions from X to {0,1}, there is a learning algorithm that, for large enough
t, whenever the distribution changes by at most - in total variation distance between trials, the
algorithm achieves a probability of mistake that is at most € more than that of the best function
(w.r.t. P;), then we will say that F is (e,y)-agnostically learnable. For a more formal definition,
see Section 2.

Note that this model allows drift both in the marginal distribution on z; and in the dependence
between z; and y;. It therefore is a flexible but clean way to capture gradual variation in a learner’s
environment.

The second model we consider is the analogue of Ben-David, Benedek and Mansour’s solid learn-
ability [BBM89] with drifting distributions. In this model, there is a fixed function f € F that
maps each x; to y;, but the distribution on the domain changes by at most v between trials. We
say that F is (e,7)-solidly learnable if any algorithm in this setting which at each trial returns a
hypothesis consistent with previous trials achieves a probability of mistake of at most € for large
enough t.

In this paper, we show that if

63
7=0 (VCdim(F) In(1 /e))

then F is (e,y)-agnostically learnable. This improves on the O(e®/(VCdim(F)?In(1/¢))) bound
that follows from the work of Bartlett [Bar92], as pointed out by Bartlett and Helmbold in [BH95].

We also show that if F is (e,y)-agnostically learnable, then v = O(€3/VCdim(F')), matching our
sufficient condition for each F' to within a log factor.

Finally, we show that if y = O(e?/(VCdim(F)In(1/€))), then F is (e,)-solidly learnable, improving
on the O(e3/(VCdim(F)? In(1/¢))) bound of Bartlett [Bar92].

Bartlett and Helmbold [BH95] have described an algorithm for learning in a drifting environment.
Their results imply that when a function f maps each z; to v, then if v = O(¢?/(VCdim(F) +
In(1/€))), their algorithm achieves a probability of mistake of at most € for large enough ¢. Their
results in general treat the case in which the function mapping z; to y; is slowly changing as well.
A relative strength of our solid learnability result is that their algorithm requires time that is in
general exponential in VCdim(F') whereas in many concrete cases, efficient algorithms for finding
consistent hypotheses are known. For all classes F', both our result and theirs match Bartlett’s
[Bar92] v = O(e?/VCdim(F)) necessary condition up to log factors.

Littlestone and Warmuth [LW94], Kuh, Petsche and Rivest [KPR90, KPR91], Blum and Chalisani



[BC92], Herbster and Warmuth [HW95], and Auer and Warmuth [AW95] also studied learning in
a changing environment, but in frameworks substantially different from that considered here.

The main new idea in our proof of the sufficient conditions is in where the assumption that the
distributions are close to each other is applied. The proofs use Blumer, Ehrenfeucht, Haussler
and Warmuth’s idea of learning by estimating the error of all the hypotheses in the class from
a single sample [BEHW89]. To bound how hard this is in our setting, we follow the outline of
the proof of Vapnik and Chervonenkis [VC71]. In proofs of this type, the probability that the
error of some hypothesis is badly estimated is bounded by the probability that two samples give
rise to substantially different estimates. Pollard [Pol84] calls this the symmetrization step. The
“two-sample” probability is then bounded, making use of the resulting symmetry.

Bartlett’s [Bar92] analysis proceeded by showing that the product distribution on a suitably small
sequence of the most recent examples was close to the product distribution where these examples
were drawn from the “current” distribution. Helmbold and Long [HL91], who studied learning
drifting concepts from a fixed distribution, applied the fact that the functions were slowly changing
in the two-sample step. In their journal version [HL94], they presented an analysis using the fact
that, again for a small sequence of the most recent examples, what the learner saw was likely to be
close to what it would have seen had the target not been moving. Helmbold and Long [HL94] and
Bartlett and Helmbold [BH95] studied modifications of the one-inclusion graph strategy [HLW94].

In our analysis, we apply the fact that the distributions are moving slowly in the symmetrization
step. As one can see by examining the proof, this is necessary to ensure that the resulting two-
sample problem is indeed symmetric, with both samples being drawn according to the same sequence
of drifting distributions. Once this is the case, the resulting two-sample product distribution is
invariant with respect to the usual pair-swapping permutations, and the remainder of the VC proof
can go through almost without modification.

For our proof of the necessary condition, we make use of techniques due to Simon [Sim93], Ehren-
feucht, Haussler, Kearns and Valiant [EHKV89] and Helmbold and Long [HL94]. The main new
idea required to prove this paper’s result was how to drift efficiently from a joint distribution with
no information to a hard joint distribution of the type useful in arguments of the type of Simon.
Our approach was to accomplish this by drifting the conditional distributions of the {0,1} labels
from 1/2 to a small amount on either side of 1/2. Our proof required us to prove a new lower
bound on the fatness of a tail of the binomial distribution. For this, we built upon a technique
of Littlestone [Lit90], lower bounding the sum of the largest few terms instead of the largest term
as he did. A similar bound has been proved by Simon [Sim93], who appealed to the central limit
theorem. Our bound has the advantage that it yields specific constants.

In independent work, Bartlett, Ben-David and Kulkarni [BBK96] studied learning a drifting concept
with a variety of constraints on the drift, including models which allowed large but infrequent
changes in the target concept. In addition to prediction models like those studied here, they also
studied estimating the entire trace of target concept positions.

Recently, Freund and Mansour [FM97] studied a model of learning in which, instead of assuming
that the position of the state of the environment is approximately constant (i.e. that drift is slow),
they assume that the rate and direction of change is approximately constant (i.e. that drift is
“persistent”).



2 Preliminaries

2.1 Definitions

Denote the positive integers by N.

For a countable set Z and probability distributions D1, Do over Z, the total variation distance
between D; and Ds, denoted here by dpy (D1, Ds), is defined to be the largest difference in the
probabilities that D; and Ds assign to any event, i.e. by

dry (D1, Ds) = sup |D1(U) — Dy(U)|.
Ucz

Following Bartlett [Bar92]|, we say a sequence Di, Do, ... of probability distributions on Z is +y-
admissible if for all t € N, dpy (Dy, Dyy1) < 7.
For the remainder of this subsection, fix a countable! set X.

A prediction strategy takes a finite sequence of elements of X x {0,1}, and outputs a rule for using
the first element of a pair to predict the second. Formally, it is a mapping from U,,(X x {0,1})™
to the set of functions from X to {0, 1}.

Choose a class F' of functions from X to {0,1}. We say that F' is agnostically (e,7)-learnable if
there exists a prediction strategy A and ¢y € N such that

e for all y-admissible sequences Py, P, ... of probability distributions on X x {0,1},

e forallt € N,t >t

the following holds:
t
(H Pi) {{(@s,ya)Yiz1 + (A, 9))i21)) (@) # ye} < e+ jnf Pi{(u,v) : f(u) # v},
i=1

where []}_; P; denotes the distribution over (X x {0,1})? obtained by sampling independently from
Py, ..., P, respectively. This model was studied by Bartlett [Bar92]. The sample complexity of
agnostic learning from fixed distributions was first studied by Haussler [Hau92].

A prediction strategy A is consistent with F' if for any (z1,vy1), ..., (Tm, Ym), if there exists f € F
such that y; = f(xl), s Ym = f(xm)a then A(('Tl,yl)a e ('Tm,ym)) is such an f.

We say that F is (e,y)-solidly learnable if for any prediction strategy A that is consistent with F,
there is a tg € N such that

o forall feF
e for all y-admissible sequences D1, Dy, ... of probability distributions on X,

e forallt € N,t >ty

!We assume that X is countable for convenience, but significantly weaker assumptions, like those of Pol-
lard’s [Pol84] Appendix C, are enough.



the following holds:

(1:[ Di) {{zi)izs = (A({(i, f(20)))i21)) (@) # f(@)} < e

This is a natural extension of the definition discussed by Ben-David, Benedek and Mansour
[BBM89], which itself extended the PAC model [Val84]. Results for this model follow from the
work of Bartlett [Bar92].

A subset {z1,...,zq} of some set X is shattered by a set F' of functions from X to {0, 1} if

{(f(@1), .. f(za)) : f € F} ={0,1}%.

The VC-dimension [VC71] of F is the size of the largest set shattered by F. For examples of the
VC-dimension, see [BEHWS89, Nat91, AB92].

2.2 Tools

The following is a special case of Fubini’s Theorem.

Lemma 1 (see [Roy63]) Choose countable sets Zy and Za, a function f : Z1 X Zy — [0,1] and
probability distributions D1 over Zi and Dy over Zy. Then

/Z1><22 f(z1,22) d(D1 X D9)(21,22) = /Z1 </22 f(z1,22) dDQ(zQ)) dD1(z1)

= /Z2 </21 f(z1,22) dD1(z1)) dDs(z2).

We also record the standard Hoeffding bound for reference.

Lemma 2 (see [Pol84]) Choose a < b and a countable set Z. Let D be a probability distribution
on Z, and let fi,..., fm be independent random variables taking values in [a,b]. Then the probability
under D™ of a sequence (21, ..., 2m) for which

1 1
— i\Zi — | — z‘ZDZ
‘(m;f( )) (m;/zm <)>

—2¢2m/(b—a)? .

> €

18 mo more than 2e

3 Sufficient Conditions

The following are the main results of this section.

Theorem 3 For any set F' of at least two functions from X to {0,1}, for any ¢ < 1/100, if
d = VCdim(F), then if

€3

< - -
7> 100000d1n L’
then F is agnostically (e,y)-learnable.



Theorem 4 For any set F' of at least two functions from X to {0,1}, for any e < 1/100, if
d = VCdim(F), then if
2
€
< -
7= 800dIn L’

then F' is solidly (e,7y)-learnable.
As discussed in the introduction, obtaining uniformly good estimates of the expectations of a family

of random variables (in our application, the errors of possible hypothesis) from a single sample plays
a key role here. We treat this subject first.

3.1 Uniformly Good Estimates of Expectations

While one can obtain a single unifying bound that yields both Theorem 3 and Theorem 4, the proof
is somewhat messy, and we therefore elect to split our analysis into two cases.

Both proofs will make use of the following lemma.

Lemma 5 Choose a countable set Z, g : Z — {0,1}. Choose K, > 0. Choose probability
distributions D, D1, ..., Dy, on Z such that for each i < m, dpy (D, D;) < k. Then if m > 1/2,

(ﬁ Di) {Z: lf:g(zi) —/ g(v) dD(v)| > ﬁ+,<u-} <1/2.
=1 miz zZ
Proof: We have

<:1DZ> Z %gg(zﬁ—/zg(v) dD(v) >ﬁ+n}

10:) {72 460 - [ st aneo
+ (%in;/ g(v)dDi(v)> - <l§;/ g(v)dDi(v)> > ﬂ+n}
() (s8]
+ (%g/g(v) dDi(fu)> - [ o) D) >5+H}
() - (15 )
+%§ /Zg(v) dDi(U)—/g(fu) dD(v) >ﬂ+ﬁ}
() ke (15 )

(since V’i, dTv(D, Dz) S ﬁ)

S
INgE

=
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=

+

x
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-
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- ({2

< 2¢ 2°m (by Lemma 2)
<1/2,

since m > 1/42. 0
We begin with a bound that will be applied in the agnostic learning case.
Theorem 6 Choose a countable set Z, and a set G of functions from Z to {0,1}. Let d =

VCdim(G). Choose m € N, and a distribution D on Z, and let Dy, ..., Dy, be distributions on Z
such that for each 1 <i < m, dpy(D;, D) < k. Then for all a > 2k, if m > 4/a?,

m . 1 m

(H Di) {Z :3g € G, (/ g(u) dD(u)) - = g(=)
. z m “
=1 =1

The right hand side of the above inequality is at most § if

16 10 4
> ——(2d1 In-).
m= (a0 — 2K)? ( dn(a—Qﬁ)+ n5>

> a} <4 <2edm>dexp(—((a—2/<;)Zm/8)).

We begin with the symmetrization step.

Lemma 7 Choose a countable set Z, and a set G of functions from Z to {0,1}. Choose a > 0
and 0 < k < a/2. Choose m € N such that m > 4/a®. Choose distributions D, D1, ..., Dy, on Z
such that for each 1 <i < m, dry(D;, D) < k. Suppose

o (Q is the set of all Z € Z™ for which there is a g € G such that

m

[ 5 ap@) - =302

i=1

> a,

and

o J is the set of all (Z,14) € Z™ x Z™ for which there is a g € G such that

m ZQ(W) “m Zg(zi)

=1 =1

1 & 1 &
‘ > a2 — k.

Then

(ﬁ Di) (@) <2 (ﬁ D; x ﬁ Dz-) (J).
=1 i=1 i=1

Proof: Choose 7 € () and choose a g € G such that

m

[ 9) D) = =3~ g(z1)

i=1

> . (1)

10



Applying Lemma 5,

m " 1 m N ; ;
([“7) {u o oatu) = [ glo) D)

By the triangle inequality, for any @ € Z™,

[, o601 00 30120 ‘

> a2+ n} <1/2. 2)

< (3ot - (5 ) | +| [ o) apto) - (%igwi))‘
=1 =1 =1
[, 900 a00) - (130000 )
> [ ot ane) - (3ot ) ‘ | 3ew) - (50 ‘
By (1) - - -
| gto) D) - (% zg<ui)) >a- ‘ (l zgmi)) - (l zg<zz)) ‘

(£3200) - (33 a) <

Applying (2),

(f”p) {a’e zm.

Since Z was chosen arbitrarily from @, for any z' € Q,

m

L3 gl = =3 gla)
=1

i=1

<af2 - K)} <1/2.

(ﬁ Di) {uez™: (Z,u) e J} > 1/2. (3)

Now, by Lemma 1,

(ﬁpixf[n,-) () = /m<(ﬁD {ﬁezm:@meJ}) (1P



Solving completes the proof. 0

We will make use of the following version of Sauer’s lemma [Sau72|, due to Blumer, Ehrenfeucht,
Haussler and Warmuth [BEHW89].

Lemma 8 ([Sau72, BEHW89]) Choose a finite set Z, and a set F' of functions from Z to {0,1}.
Let d = VCdim(F'). Then
|F| < (elZ]/d)".

Now we are ready for the second part of the proof. The proof of this part follows that of Vapnik
and Chervonenkis [VCT71].

Lemma 9 Choose a countable set Z, and a set G of functions from Z to {0,1}. Let d = VCdim(G).
Choose 7 > 0. Choose m € N. Choose distributions D1,...,D,, on Z. Let J' be the set of all
(Z,@) € Z™ x Z™ for which there is a g € G for which

m m

‘% 3 glw) = > g()

i=1 i=1

>

Then

m m 2 d
(H D; x [] Di> (J') <2 (ﬂ) o—m/2.
1. 1. d
1=1 =1
Proof: Define T (for “two sample”) by

m m
T = HD" X HD'L
i=1 =1

Note that, for each ¢ < m, u; and z; are both drawn independently from D;. Therefore, by
symmetry, for any fixed & € {—1,1}",

Thus, if U is the uniform distribution on {—1,1}",

m

%Zg(ui) -

i=1 =1

T{(Z',U) :dg € G,

= (T x U){((E,U),U)iﬂge G,

12



Viewing the RHS above as the expectation of the corresponding characteristic function, applying
Lemma 1 to express it as a nested integral, and overestimating, we get

S ) — > g(=)

m m

>n}
2 i) ~5(2)

Fix (Z,%) € Z™ x Z™. For each g € G, Lemma 2 implies that

m 1 m

T{(Z,ﬁ) .3 € G,

< sup U<d:3g €@,
(Zyw)ezmxzm

>af.

m

U {& : ‘% Z oi(g(ui) — g(zi))

> 77} < 21" M/2,

Zo'z —9(2i)) >77}

<2/{(g9(#1)s--»9(zm), g(u1), ..., g(um)) : g € G} |e—n2m/2’

which, applying Lemma 8, implies
d

=3 ailglw) — g(=0)
=1

completing the proof. 0

Therefore

U{&':ElgEG,

To prove the second inequality of Theorem 6, we will need the following lemma, written down
in this form by Bartlett and Long [BL95], which is implicit in the work of Anthony, Biggs and
Shawe-Taylor [ABS90].

Lemma 10 For any y1,y2,y4,0 > 0 and y3 > 1, if
2 2
m > — (ygln( y2y3) +lnﬂ> ,
(! (7 4

y1exp(y2 In(ysm) — yam) < 0.

then

Proof (of Theorem 6): Putting together Lemmas 7 and 9 proves the first inequality. To prove the
second, applying Lemma 10 with y; = 4, y» = d, y3 = 2e/d, and y4 = (a — 2k)?/8, we get that

m > ﬁ (dln (%) —I—ln%)

is sufficient for the right hand side to be at most ¢. Simplifying and overapproximating completes
the proof. 0

Now we turn to a bound that will be applied for solid learning. Its proof is similar to that of
Theorem 6.

13



Theorem 11 Choose a countable set Z, and a set G of functions from Z to {0,1}. Let d =
VCdim(G). Choose m € N, and a distribution D on Z, and let Dy, ..., Dy, be distributions on Z
such that for each i,1 <1i < m, drv(D;, D) < k. Then for all a« > 2k, if m > 4/a?,

2em

d
(H DZ-) {5’: dg € G, / g9(u) dD(u) > a and V1 < i <m, g(z;) = O} <2 (T) 9~ (a/2=K)m
; z

The right hand side of the above inequality is at most § if

6 12¢ 2
o (dln (OA—ZH) —I—lng) .

Again, we begin with the symmetrization step.

m >

Lemma 12 Choose a countable set Z, and a set G of functions from Z to {0,1}. Choose o > 0
and 0 < k < a/2. Choose m € N such that m > 4/a®. Choose distributions D1, ..., Dy on Z such
that for each 1 <1 < m, dpy(D;, D) < k. Suppose

o Q is the set of all Z € Z™ for which there is a g € G such that [, g(v) dD(v) > « and for all
1 < m, g(z’t) = O; and

e J is the set of all (Z,4) € Z™ x Z™ for which there is a g € G such that
1 m
EZQ(UZ) >af2 -k
=1
and for all i < m, g(z;) =0.
Then
m m m
(T17) @<2(fTx fi 2]
i=1 i=1 i=1
Proof: Choose Z € (Q and choose a g € G such that
/ g(v) dD(v) > o and Vi < m, g(z;) = 0. (4)
z

Applying Lemma 5, we have

(f2){=

Applying the triangle inequality and (4) in a manner analogous to the proof of Lemma 7, for any

7€ Q,

1 m
o oatu) = [ glv) D)

> af2 +/<a} <1/2.

(ﬁ Di> {UE Zm . if:g(uz) <a2- m} <1/2,
i=1 m

=1
so for any 2’ € @,

(ﬁ Di) {ieZ™: (zd)eJ}>1/2

From here the proof is as in Lemma 7. 0

Now we are ready for the second part of the proof. This closely follows the corresponding part of
the proof of the main result of [ BEHW89].

14



Lemma 13 Choose a countable set Z, and a set G of functions from Z to {0,1}. Let d =
VCdim(G). Choose n > 0. Choose m € N. Choose distributions D1,...,Dy, on Z. Let J' be
the set of all (Z,@) € Z™ x Z™ for which there is a g € G such that

m

> g(u) >

1
mi3

and for all i <m, g(z;) =0. Then
U i 2em.\ ¢
D; x D; | (J) < (—) 2-mm
(T2 T2 ) 0 < (%

Proof: Define T by
m m
T =[] Di x [[ D:-
=1 =1

By Lemma 1 and by symmetry, for any fixed ¢ € {0,1}"™,
1 m
T<(Z,4):3g€ G, — ; dVi< ) =0
{<z,u) 9EG, Y glu) >y and Vi < m, g(z) }

1 m
=T {(2’, %) :3dg € G, pon Zg(aiui + (1 —03)z;)) >nand Vi <m, g(oz + (1 —o;)u;) = } .
i=1

Informally, the role of ¢; in the above is to decide whether to “swap” z; and u;. Since the z;’s and
u;’s are mutually independent and z; and w; are identically distributed, if we fix o, we obtain the
same distibution on the “post-swap” sequence pairs as on the original sequence pairs.

Since the above holds for any o, if U is the uniform distribution on {0,1}™, choosing o according
to U, we get

T(J) = (T x U){((5,@),0) : 39 € G, =Y glows + (1 1)) > 1
=1
and Vi <m, g(o;z; + (1 — o;)u;) = 0}.

Applying Lemma 1 and overestimating, we get

1 m
T(J)< sup U{d:3ge€G, = gloiui+(1—05)z)>n
(E,ﬁ)EZmXZm m i=1
and Vi < m, g(oiz; + (1 — o;)u;) = 0}.
Fix Z,4 € Z™. For each g € G, the above event can only occur if
e for no index 7 is g(z;) = g(u;) = 1,
e for at least nm indices i, either g(z;) =1 or g(u;) = 1, and

e for each of those, 0; =1 < g(u;) = 1.

15



Thus, for each g € G,

m
U{& : Zg(oiui + (1 — Uz)zz) >n and Vi < m, g(aizi + (1 — O'Z)’U,z) = 0} < 27Mu,
i=1

Therefore

1 m
U{d:3g € G, p- Zg(aiui + (1 —04)z;)) >n and Vi < m, g(o;z + (1 — 0;)u;) = 0}

=1

< H(g(21); -+ 9(2m), g(w1), - g(um)) : g € G}H27"™,

which, applying Lemma 8, implies

1 m
U {6' :dg € G, p” Zg(aiui + (1 —04)z;) >n and Vi < m, g(o;z + (1 — o;)u;) = }

=1

< (26m)d2nm
— d ?

completing the proof. 0

Proof (of Theorem 11): Here, putting together Lemmas 12 and 13 proves the first inequality of
Theorem 11. To obtain the second inequality, rewrite the RHS of the first as

2exp (dln%Tm — (In2)(a/2 — n)m) .

Applying Lemma 10 with y; = 2, y» = d, y3 = 2¢/d, and ys = (In2)(a/2 — k), we get that

m> 2 (dln (4—6) +1n3)
~ (In2)(a/2 — k) (In2)(a/2 — k) )
is sufficient for the RHS to be at most §. Applying the fact In2 > 2/3 completes the proof. 0

Now we are ready for the proofs of the sufficient conditions of learning in a drifting environ-
ment. These proofs borrow ideas from the work of Blumer, Ehrenfeucht, Haussler and Warmuth
[BEHW89] and Haussler [Hau92].

Proof of Theorem 3: Since |F| > 2, VCdim(F) > 1.

Let m = |€¢/(167)]. Consider the algorithm A which, at each trial ¢ > m returns a hypothesis h € F
that minimizes disagreements with the last m examples. That is, A((z1,91), -, (Tt—1,¥¢—1)) is an
h € F minimizing |{t —m <1 <t : h(z;) # y;}|- For each f € F, define £; : X x {0,1} — {0,1} by
¢4(7,y) = |f(z)—y|- Then algorithm A returns a hypothesis on trial ¢ minimizing 3>/}, £ (zi, v;)-

Let £p = {{; : f € F}. It is known (see [Hau92]) that VCdim(¢p) < VCdim(F).

Choose a y-admissible sequence Pj, P;, ... of probability distributions, f € F and a trial ¢ > m.
Denote the (random) hypothesis output by A on the tth trial by h. Applying Lemma 1 as in
[HLW94],

t—1

( II P) o w) b # i) = P(we, ) : hlae) # ey d( [ P).

1=t—m XX{Oyl})m i=t—m

16



Since

t—1 t—1
> tnlziy) <Y L(wi, ),
i=t—m t=t—m

if
Pi{(zs,y) - M(we) # ye} > Pe{(we, ) = f(2e) # e} +€/2,

then either
=

Pi{(zt, ye) : h(ze) # ye} — - D hlmi yi)| > e/4

i=t—m
or
t—1
1
P{(ze,ye) : flm) 2y —— D Lplmipi)| > e/4
m i=t—m
or both. Since for all i < m, dpy(Pi—;, P;) < ym = 7v|e/(167)] < €/16, applying Theorem 6 with
Z =X x {0,1} and G = £p, the probability that either of these happens is at most €/2 if

16 10 8
>——— (2dln———+1In—
™2 (Jh—¢/3) ( AT ne>

or equivalently

1024
m > 0 <2d1n@+ln§). (5)
€ €

(Note that both f and h are in F, so if all r.v.’s in /p are estimated accurately, both £; and ¢,
are.) Thus, if (5), the probability that

Pi{(ze,yt) - M(we) # ye} > P{(we,ye) = f2) # e} +€/2

is at most €/2, and therefore the expectation of

Pi{(zt,yt) : h(zt) # yi}

is at most
P{(ze,y) - fx1) # ye} + e
We have

€3

1000004 In %
17y €
€ 5883d1n 1
€ 5883d In
17y €2
{ € J 5883d In
| > =57 e
167y 2

2
IN

IA

v
o= o

o=

€

. e 5883dIn L N . T
since ﬁ > 16. Substituting, we get m > = ~< which immediately implies

m >
62

1024d 1 (2In80+1n8)Ini
3ln— + £ .
€ 1n 100
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Since € < 1/100, we have

€2 €

1024 1
_ U (3d1n——|—(21n80+1n8)d)

€2 €

1024 1
02 ((2d +1)In-+2dIn80 + In 8) (since d > 1)
€ €

1024
= 02 (2dln@ +ln§>.
€ € €

m > 1024d (31n1+21n80+1n8)

Vv

Since this satisfies the requirement of (5), this completes the proof. 0

Proof (of Theorem 4): Again, since |F| > 2, VCdim(F) > 1. Set m = |¢/(8y)]. Choose a
consistent algorithm A. Choose f* € F (interpreted as a target function), and a y-admissible
sequence D1, Do, ... of distributions over X.

For each f € F, define £y : X — {0,1} by £f(z) = |f(z) — f*(z)|. (Note that this is different
from the definition used in the proof of Theorem 3.) Then algorithm A returns a hypothesis A on
trial ¢ for which Y021 £, (7;) = 0. Let £p = {{; : f € F}. Clearly, VCdim(¢r) < VCdim(F) (see
[BEHWS9)).

Fix a trial t > m. Denote the (random) hypothesis output by A on the ¢th trial by A. Since

) f;%_m Eh(l‘i) =0, and
e for all i < m, dpy(Di—i, Dt) < ym =v|e/(8y)] < €/8,
applying Theorem 11 with Z = X and G = ¢F, the probability that
Di{zy = h(ze) # f™ (1)} > €/2,

is at most €/2 if

m2ﬁ(dln<ﬁ)+lné)

24 4 4
mz—(dln&-!-ln—). (6)
€ €

€

or equivalently

Thus, if (6), the probability that Dy{z; : h(z) # f*(z1)} > €/2 is at most €/2, and therefore the
expectation of Dy{z; : h(z) # f*(z4)} is at most €.

In this case, we have

62

800d In %
9y €

¢ 85d1n 1

85d1n 1

9y €

85d1n %
€

2
IA

|
A

|
v

,_

Sk

| I
v
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. S 85dIn 1 L . .
since % > 8. Substituting, we get m > % which immediately implies

24d (21n1+ (1+ln48+1n8)ln%>

D it
m= € € In100

Since € < 1/100, we have

m > % <2ln1+1+1n48+ln8)
€

o))

_ A <2dln1 + (1—I—1n48+1n8)d)

€ €
24 1

> 2 ((d+ 1)In < 4 d(1 +n48) + ln8) (since d > 1)
€ €
24 4

= = (dlnE —I—ln§> .
€ € €

Since this satisfies the requirement of (6), this completes the proof. 0

4 A Necessary Condition

In this section we show that, for small enough ¢, v < % is a necessary condition for F' to be

agnostically (e,y)-learnable. For each class F, if d is the VC-dimension of F', we show that F' is

not agnostically (e,~)-learnable if v = 7110020063_

Our proof uses ideas of Ehrenfeucht, Haussler, Kearns and Valiant [EHKV89], Helmbold and Long
[HL94], and Simon [Sim93]. At a high level, it proceeds as follows. For some trial ¢, we will choose a
sequence of drifting distributions that drifts only during the last m trials. Each of the distributions
will assign equal probability to each of the d shattered points; the conditional probability that the
label is 1 is what will change. Before drift, this will be 1/2 for each of the shattered points. We
will then randomly choose a direction for each conditional probability to drift. They will drift just
far enough that the learning algorithm must be able to determine which direction most of them
drifted to obtain an accurate enough hypothesis. Examples before drift starts yield no information
about the drift direction, and if the drift rate is large enough a difficult “test” distribution can be
reached with few “useful” examples. We observe that the best way guess the drift direction is to
look at the fraction of times each shattered point was accompanied by a label 1, and to guess that
the drift was up if and only if this is fraction is at least 1/2. However, since even during the useful
examples the probability of being labelled 1 is close to 1/2, such information is highly unreliable.
Finally, we will argue that since the learner fails on average for a random sequence of directions,
there must be some particular sequence of directions that will make it fail.

Given some € and a class F' of VC-dimension d, we can define an mg € N, whose value is appropri-
ately chosen in terms of € and d. Consider a subset X' C X, | X'| = d such that the restriction of F
to X' contains all functions from X’ to {0,1} (i.e. a “shattered” set X'). For a large ¢, we randomly
choose a y-admissible sequence of distributions Py, Py, ..., P, on X’ x {0,1}. The distribution is
such that we can characterize the algorithm which minimizes the overall probability of making a
mistake on the ¢th prediction. Call this algorithm A. Moreover, infrep Pi{(z,y) : f(z) # y} is
obvious, because X' is shattered. This infimum is realized by a function which evaluates to 1 at
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exactly those elements of X' for which the corresponding conditional probability of 1 is at least 1/2
(the behavior outside X' is immaterial since P{(z,y) : z ¢ X'} = 0).

Set ¢; = 1100000. Given any € < 1/1100, let v = %. Below we describe the chosen y-admissible
distribution sequence Py, Ps,...,P; on X' x {0,1}. Let t = mo + k and X' = {z1,29,...,24}-
For each j, 1 < j < d, let C; = 1 if an independent flip of an unbiased coin is heads; otherwise
let C; = 0. The following constraints uniquely define the target distribution sequence. Note that
“drifting” begins only after the kth sample and for each x;, the drift direction is randomly assigned.
We call the kth sample the drift initiating sample.

1. Pi(z,0) + Pi(zj,1) =3 for 1 <i<t,1<j<d.
2. Py(z;,0) = Py(z;,1) = 95 for 1 <i < k,1<j <d.

3. Poyi(zj,Cj) =5 + D for 1 <i<(t—k),1<j<d.

We have the following straightforward characterization of the optimal function for a particular
sequence of distributions.

Lemma 14 If the ith sample is drawn from the distribution P;, then the function fon: which min-
imizes prediction error from among those in F is such that Vj, fopi(xj) = Cj. The corresponding
probability of error is 1/2 —i'v/2, where ' = max{0,7 — k}.

A similar observation to the following lemma was made by Simon [Sim93].

Lemma 15 Consider the algorithm A which ignores information from all samples seen prior to
and including the kth sample, the drift initiating sample. For i < k, A behaves arbitrarily. For
i > k, if the ith sample is the point z; of X', A outputs a 1 if a majority of the previous instances of
xj that were seen after the drift initiating sample were associated with 1; A outputs a 0 otherwise.
Then A is an optimal online algorithm. That is, if the sequence of probability distributions is chosen
randomly as described above, any other online algorithm will have probability of mistake at least

that of A.

Proof: As is well known (see [DHT73]), the optimal algorithm is obtained by choosing the hypothesis
to minimize the a posteriori probability of making a mistake.

Since the probability that a hypothesis makes a mistake on the ¢th example is a linear combination
of the probabilities that it makes a mistake given that the various elements of X’ are observed
on the tth trial, minimizing the overall probability of a mistake can be achieved by separately
minimizing the probability of a mistake given that each element of X’ is observed last.

Choose zj. Given that a majority of the time x; was seen since drift began the corresponding
label was 1, the a posteriori probability that C; = 1 is at least 1/2. This implies that in this case,
the a posteriori probability of a mistake given that z; is seen last is minimized by guessing one.
Similarly, if the label was 0 a majority of the drifting time, the a posteriori probability of a mistake
is minimized by predicting 0. 0

Having established the optimal online algorithms and the optimal element of F' for a particular
sequence of distributions, we now derive an expression for the difference in the probabilities of
prediction errors.
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Lemma 16 Consider the tth sample (t > mg) drawn according from P;. Let p be the probability
that the hypothesis output by A and fop: do not agree on their prediction outputs for the tth sample.
Then the difference in their probabilities of prediction errors is pymy.

Proof: If eg = 1/2 — ym/2 represents the probability that fop errs in its prediction for the
tth sample, we note that the probability that A makes a prediction error on the tth sample is
p(1—ep)+ (1 —p)ep. The required difference in the probabilities of prediction error is then simply
p(1 —ep) + (1 — p)ep — ep, which can be simplified to pymy. 0

We have now reduced the problem to one of finding a lower bound on the quantity p above. The
following simple observation plays a role in the lower bound.

Lemma 17 For any odd m € N,
(m-1)/2
3 <7l”> > %(1 — 2e72)2m,
I=(m—1)/2—[v/m]

Proof: If we flip an unbiased coin m times Lemma 2 implies that the probability that the number
H of heads satifies |H/m — 1/2| < 1/y/m is at least 1 — 2e 2. Since each sequence of outcomes is

equally likely,
[m/24+/m
1
— ¥ <m> >1-22

2m
I=|m/2— /]

[m/2+/m]
3 (7?) > (1 — 2¢72)2m
I=m/2—/m]

(m-1)/2

3 <Tl”> > %(1 — 2e2)2m
I=|m/2—y/m]

which directly implies the lemma. []

Solving, we get

and by symmetry

Now we are able to show that p is at least a constant, and we do so by choosing an appropriate
value for? mg below.

Theorem 18 If e < 1/1100, a necessary condition for a class F of functions from X to {0,1} to

be agnostically (e,~y)-learnable is v < %.

3

Proof: Assume as above that v = =25 —. Set my = [40d/(c1€?)]. Note that since ¢ < 1/1100,

VCdim(F)
40d 41d
— < < —.
cre? — mo = c1€? @

2This proof requires us to lower bound the tail of the binomial distribution. As is apparently required, our lower
bound is stronger than what follows from the more general bound of Littlestone [Lit90]. A similar lower bound was
proved by Simon [Sim93], who appealed to the central limit theorem. Our bound has the advantage that it yields
concrete constants.
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Define p as it is earlier in this section.

Consider the time at which the ¢th sample is drawn as per the distribution P; of our distribution
sequence. Now, since less than mg samples were seen after the drift initiating kth sample, at most
d/2 elements of X' were seen at least 2mg/d times and so at least d/2 elements of X' were seen less
than 2mg/d times after drift initiation. Let m be the least odd integer which is at least 2mq/d.
We will restrict our attention to the subset X" C X’ of the at least d/2 elements seen less than m
times after drift initiation. The probability that the ¢th sample is from X" is thus at least 1/2.

Moreover, if the ¢th sample is any particular element z; € X", because the probability that more
than half of m tosses of a biased coin come up heads is monotone in m, we can assume that z; was
seen exactly m times after drift initiation. Let us recall the assignment of the random variable C;
for 1 < j < d made above and the definition of the y-admissible sequence and the algorithm A and
Jopt- Then A disagrees with fop; on the ¢th sample only if z; was associated with C; on [ instances
and with 1 — C; on m — [ instances after drift initiation with 0 <1 < m/2.

The probability that this happens is easily seen to be the probability that one gets less than m/2
heads when flipping m biased coins having probability of heads between 1/2 and 1/2 + mgy/2.
But this is at least the probability that one gets less than m/2 heads when sampling m times
from the distribution where the probability of heads is 1/2 + mqy/2. (It is worth mentioning that
substituting into the definitions of mg and y and applying the fact that e < 1/1100 implies that
moy/2 < 1/10.)

By virtue of the above paragraphs, with 8 = mgvy/2, we have that
1m0z l .
p 25 > (T]ar+staz-p)
=0

1 m R (m) (1724 8\
- tap-pm Y <l>(1/2_5)

=0

(m—1)/2 1
e 8 (0)62)
I=(m—-1)/2-[v/m]
1 (m—1)/2 m
> 52—’“(1—25)’” > (l>(1+2ﬁ)Zl (since Vz,1/(1 —z) > 1+ z)
I=(m~1)/2~[y/m]
> lo-m _9gym(q 4 9)2m/2—vm-3/2) M/ m
> 5271 - 28)"(1+26) > l

I=(m=1)/2—[vm]
Applying Lemma 17 and rearranging a little gives
p> 12 (1414 28) V(1 — 202 (8)
Recall that 8 < 1/10, which implies (1—432)™ > e=5°™ since (1—482)Y/#8%) > (1—1/4)% > ¢=5/4,
On the other hand (1 4 28)~2V™=3 > 28(=2Vm=3) {rivially, and since 8 < 1/10, this implies

(14 2p8) 2Vm=3 > ¢=48Vm /2 Thus

2
p> 1 —82/e o~ 56%m —4py/m
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Define the RHS of this bound by c.

Using Lemma 16 and substituting v = ¢;€®/d implies that the difference in probabilities of predic-
tion error of A and fop is at least cymg with ¢ as defined above. Plugging in the value of ¢, we
have ) _58Pm —ap i
1-2/e ¢ AP e e Mo

8 11
By (7), since € < 1/1100, we have 2mg/d > 80/(c1€?) > 80, so m, the least odd integer which is at
least 2my/d, is at most 3mg/d. Thus

cYymo =

6—15,82m0/d677,5\/m0/d,ym0
11 )

cymg >

Substituting mgy/2 for 5, we get

ef4mg'yz/def4'y\/mg/d,ym0
11 )

cymgy >

Substituting c;€3/d for v, we get

3,.2.6 /43 3
e—4micie®/d ef4c1\/m066/d361€3m0

11d

cymgy 2>

Applying (7), we get
e~ 4413 /c1 o —4y /413 /¢ 40¢
>
11
Thus the difference in probabilities of prediction error of A and f, is more than e.

cymg > €.

Applying Lemmas 15 and 14, we can see that if v > %, then there is a distribution over
Py, ..., P, such that the difference between the probability that the Bayes optimal algorithm makes
a mistake on the ¢th prediction and infrep Pi{(z,y) : f(x) # y} is greater than e.

Now we apply the trick of Ehrenfeucht, Haussler, Kearns and Valiant [EHKV89]. The above lower
bound for the Bayes optimal algorithm implies that for any on-line algorithm A’, the difference
between the probability that A’ makes a mistake on the ¢th prediction and inf;cp Pi{(z,y) :
f(z) # y} is greater than e. This implies that there is a particular sequence P, ..., P; such that the
probability that A’ makes a mistake on its ¢th prediction is greater than infrcr P{(z,y) : f(z) #
y} + €, completing the proof. 0

5 Conclusion

In this paper, we have determined, to within a log factor, the complexity of learning according to
two models which capture a drifting environment.

The algorithms for agnostic learning analyzed in this paper work by minimizing disagreements with
some of the most recent examples. For many simple concept classes, such as monomials [ALSS]
and halfspaces [HS92], this has been shown to be NP-hard, and even a nonapproximability result
for the latter is known [ABSS93].

Helmbold and Long [HL94] showed that approximation algorithms for minimizing disagreements
could be applied for “noise-free” learning of drifting concepts, but their techniques do not apparently
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extend to the agnostic case, at least not to bound the difference between the learner’s error and
that of the best function in F', as in the model considered here. One direction for future research
would be to search for efficient algorithms for agnostic learning in a drifting environment.

Another obvious problem is to try to close the log factor gaps that remain in these models. It
seems possible that modifying the proof of a result of Talagrand [Tal94] in a manner analogous to
the modification of the proof of Vapnik and Chervonenkis given here might improve the general
bound on the rate of drift sufficient for agnostic learning by a log factor. It also seems possible
that the lower bound of Haussler, Littlestone and Warmuth [HLW94] for solid learning in a fixed
environment can be adapted to show that the bound given here for solid learning in a drifting
environment cannot be improved in general by more than a constant factor.
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