On-line Learning
with Linear Loss Constraints

David P. Helmbold Nicholas Littlestone
Computer Science Department NEC Research Institute
University of California at Santa Cruz 4 Independence Way
Santa Cruz, CA 95064 Princeton, NJ 08540
Email: dph@cse.ucsc.edu Email: nickl@research.nj.nec.com

Philip M. Long*
Department of Computer Science
National University of Singapore
Singapore 119260, Republic of Singapore
Email: plong@comp.nus.edu.sg

September 20, 2000

*Supported by AFOSR grant F49620-92—-J-0515, a Lise Meitner Postdoctoral Fellowship from the FWF
(Austria), and a UC Santa Cruz Chancellor’s postdoctoral fellowship.

Abstract

We consider a generalization of the mistake-bound model (for learning {0, 1}-valued func-
tions) in which the learner must satisfy a general constraint on the number M of incorrect
1 predictions and the number M_ of incorrect 0 predictions. We describe a general-purpose
optimal algorithm for our formulation of this problem.

We describe several applications of our general results, involving situations in which the
learner wishes to satisfy linear inequalities in M and M_.

1 Introduction

In this paper we look at a generalization of the standard mistake-bound model [Ang88, Lit88|
in which the learner wishes to guarantee that the total numbers of false positive and false
negative mistakes satisfy certain constraints. In the most basic form of the standard mistake-
bound model, a target function f, unknown to the learner, is chosen from a known class F'
of {0,1}-valued functions over some domain X. Learning is an on-line process, proceeding
in trials. In a given trial ¢:

1. The learner receives instance z; € X from the environment,
2. The learner outputs a prediction A\; € {0,1},

3. The learner discovers the value f(x).

Note that the learner only discovers the value of f(z;) after making the prediction in trial
t. If Ay # f(z;), we say that the learner makes a mistake on trial ¢, and (in the standard
mistake-bound model) the goal of the learner is to make few mistakes in an adversarial
environment.

The constraints on the learner treated in this paper can be thought of as limits on the
loss incurred by the learner. We imagine that the learner suffers one or more kinds of
loss. Each kind of loss is a function of the number of incorrect 1 predictions (false positive
mistakes) and the number of incorrect 0 predictions (false negative mistakes). The learner’s
goal is to keep each kind of loss below some limit.

Our primary interest in this paper is in loss functionals that represent losses that are
determined by summing per trial losses. We consider the case that the learner suffers 0
loss in any trial in which no mistake is made, and non-negative loss in each trial in which
a mistake is made. If each false positive mistake incurs some loss ¢ > 0 and each false
negative mistake incurs some loss b > 0 then the total loss is given by the linear functional
g(My,M_) =aM; +bM_, where M, is the number of false positive mistakes, and M_ is
the number of false negative mistakes. We pay special attention to cases where the learner is
constrained to keep one or more such functionals below given limits. The standard mistake
bound model can be seen to be a special case of this setting, where the learner wishes only
to constrain the value of M + M_.

A constraint-satisfaction learning algorithm is asked to meet certain constraints. We
only look at whether or not this happens, and pay no attention to the amount by which
the losses incurred by the algorithm are over or under the constraints. Thus the constraint
identifies a set of acceptable M., M_ pairs, and the algorithm succeeds if the number of
false positive and false negative mistakes it makes are one of the acceptable pairs. If the goal
of the user of the algorithm is to obtain the smallest possible loss, then the user must choose
the tightest achievable constraint. By choosing appropriate constraints, these algorithms
can be used in various ways: They can be used to minimize a single loss where false negative
and false positive mistakes have possibly different costs. They can also be used to deal with
cases where the size of a loss is irrelevant while it remains below some threshold, but the loss
becomes catastrophic above the threshold. Or they can be applied to the problem of keeping
such a loss below a threshold while making another kind of loss as small as possible—and
so forth. Taking this point of view allows us to unify our treatment of all of these cases.

The motivation for the generalization of the mistake bound model that this approach
provides should be obvious. First of all, there are natural learning situations in which
mistakes of different types have widely different ramifications. For instance, when diagnosing
a serious disease, incorrectly hypothesizing its absence can (sometimes) be far worse than
falsely conjecturing its presence. This motivates the use of a more general loss function.
The simultaneous satisfaction of several constraints enables one to model situations in which
the total loss according to one loss function must be kept below some value, and one wishes
to obtain the best performance possible relative to another loss function, subject to this
constraint. For example, a babysitter might be faced with occasional emergencies where
it is unclear whether he should deal with them on his own or should call his employers.
For a given family he works for, he wants to learn what situations are in each category.
Suppose that he is convinced from past experience that if he fails to call his employers
more than twice when he ought to he will be fired. He wants to minimize the number of
unnecessary calls while keeping his job. This can be modeled by trying to obtain the best
bound possible on M, given a constraint [on M_. This, in turn, can be achieved by
determining for which k£ a learner can simultaneously achieve My < k and M_ < [. One
can also easily imagine related situations in which the learner wishes to optimize the total
number of mistakes, given a constraint on one type of mistake. Finally, as discussed in
a companion paper [HLL], algorithms which “trade” effectively between false positive and
false negative mistakes are useful as subroutines for algorithms for learning in situations,
such as visually identifying tasty apples, when the value of the hidden function f is obtained
only when the learner (effectively) predicts 1 (e.g. bites into the apple).

The technical part of the paper divides into two major parts. We first present general
results relating to arbitrary reasonable (see Section 2 for what we mean here by reasonable)
constraints on the numbers of false positive and false negative mistakes. Later, in Section
3, we restrict our attention to linear constraints, and consider a number of particularly
interesting special cases.

Since Section 2 deals with arbitrary constraint predicates, multiple constraints can be
combined into a single predicate. We first present a strategy that, when invoked for a
given target class and constraint, is able to guarantee satisfaction of that constraint for
any sequence of trials generated by any target in the class, if any algorithm can make this
guarantee. We call this strategy the Standard Constraint Satisfier Algorithm (SCS). The
SCS algorithm is based on the observation that if a mistake is made in any trial then a
tighter constraint must be satisfied by the total numbers of false positive and false negative
mistakes made in subsequent trials. Fortunately, after each trial the target class can be
reduced by eliminating those members whose values are inconsistent with the information
received in that trial. The SCS algorithm always chooses a prediction such that if it is
wrong then the resulting tighter constraint can be satisfied for the resulting reduced target
class. If the original constraint can be satisfied, then there must always be an acceptable
prediction for the choice SCS algorithm. A more formal description is given in Section 2.
Algorithm SCS is useful for various theoretical purposes, but it may require a very time-
consuming examination of the target class to determine precisely whether or not various
tighter constraints are satisfiable for various subclasses.

In Section 2 we also present another algorithm, the Counting Constraint Satisfier (CCS),
that makes a less detailed examination of the target class. We can say more about the
bounds of this algorithm than the bounds of SCS, and, though we have not looked carefully
at the efficiency of SCS, SCS appears to be much less efficient. Algorithm CCS can be
computationally efficient for sufficiently small target classes, though it is not in general
an efficient algorithm. Although CCS does not in general have the optimality property
described for SCS, there are many target classes where the two algorithms are equivalent.
Some sense of the relationship between the two algorithms can be gained by imagining
that we start with some target class for which the algorithms are equivalent and shrink the
domain of each element of the target class to some new domain X that leaves the elements
distinct, thereby forming a new target class. If we give CCS a sequence of points from X
then it will make the same predictions for the new target class that it would have made for
the original target class over the larger domain. But the shrinking of the domain restricts
the challenges that the learner may face in the future, perhaps permitting tighter constraints
to be satisfied; SCS takes full advantage of this.

If a constraint C' has the property that for every target class of size n there is an
algorithm that guarantees its satisfaction, then CCS will guarantee its satisfaction for any
class of size n. Thus CCS can be seen as giving a way of answering the following question:
for each n, which constraints can be satisfied for all target classes F' of size n. Results of this
type are in the same spirit as the fundamental “Halving Algorithm,” [BF72, Ang88, Lit88]
which has served as a useful tool in analyzing target classes in the standard mistake-bound
model (c.f., [GRS89] [Lit88] [Lit89] [MT89] [MT90]).

SCS is roughly a generalization of the Standard Optimal Algorithm of [Lit88] and CCS
roughly generalizes the Halving Algorithm. In fact, for a single linear constraint that bounds
the sum of the numbers of false positive and false negative mistakes (i.e. a standard mistake
bound) the worst-case loss bounds obtainable using SCS and the worst-case bounds for
CCS in terms of the size of the target class match the equivalent bounds for the Standard
Optimal Algorithm and the Halving Algorithm, respectively. However, the Standard Op-
timal Algorithm and the Halving Algorithm make their predictions by asking a different
question than that asked by the constraint satisfaction algorithms. The latter algorithms
ask only whether predicting 0 or 1 will guarantee they can satisfy whatever constraint they
were given; SOA and the Halving Algorithm, which aren’t given a constraint, ask which
prediction will let them be sure of satisfying the strongest constraint. This question makes
sense where constraints have a clear total order, but is less natural for more complex con-
straints (for example, those constraining two losses) since there may be no single total order
on the constraints that appropriately guides the choice of a better constraint for all appli-
cations. For example, sometimes the user might want to leave one loss fixed and minimize
the other, and other times the user might want to minimize the maximum of the two losses.
We do not consider these kinds of optimization here. The constraint-satisfaction algorithms
that we consider are content to satisfy whatever constraint they were given. However, it
is easy to construct algorithms, based on the ideas presented here and the ideas behind
the construction of the Halving Algorithm, that perform a variety of such optimizations
appropriate for various applications.

In the second part of the paper (Section 3) we restrict our attention to linear constraints.
For the case of a single linear constraint on the total loss of the form aM, + bM_ < v,
we look at how small we can guarantee the loss to be. Given a, b and n we are interested
in the least value v* such that for any target class F' of size n there exists an algorithm
that guarantees that a M + bM_ < v* for any sequence of trials generated from a target
in F. We show that v* is between log, n — max{a, b} and log, n, where « is the solution to
a~ %+ a~® = 1. Note that in the the mistake bound model (where a = b = 1) the halving
algorithm result [Lit88] follows as a special case. When a = b = 1 we have bounded v* in
the range (logy n — 1,logy 1], which contains only the single integer |log, n].

Vovk ([Vov90]) studies asymmetric loss from a different point of view. A special case of
his algorithm approximates CCS and can be used to obtain the log, n upper bound on v*.
However, for certain values of a and b his algorithm’s performance can be substantially worse
than the performance of CCS (see Section A.2 as well as Theorem 18 and the discussion
following it). Since Vovk and we have looked at this learning question from rather different
perspectives and have made different sorts of generalizations, it should be interesting to
make further comparisons between his approach and ours.

Although the log, n upper bound on v* is good when a = b =1, if a = 1 and b is
sufficiently large then log, n will be larger than n, and thus a poor upper bound on v*. In
[Vov90], Vovk does not discuss the behavior of the solution a to =+~ = 1 as a function
of a and b, and we do not know how to solve explicitly for . However, we can make a
further approximation that gives a better sense of the behavior of the bounds. We show that

if b > a, then the value of the quantity v* described above is © (min {a(n -1), m(ljll—f—%})'

where the constant hidden by the ©-notation is between % and 2 for all choices of n > 2,
a > 0, and b > 0 (see Theorem 27). Of course, a symmetric bound holds if @ > b. Since
algorithm CCS is able to satisfy the the constraint aM 4+ bM_ < v*, this also bounds its
performance.

In the special case that a =1 and b = 2 (or vice versa), we obtain a cute result: if fib;
is the ith fibonacci number (fiby = fib; = 1), we show that the total loss can be made at
most v for all target classes of size n if and only if n < fib|,| 2.

We also consider cases where there are two linear constraints that must be simultaneously
satisfied. The most basic case is one where there are separate constraints on the numbers
of false positive and false negative mistakes. We show that a learner can satisfy the pair of
constraints M <k and M_ </ for all classes of size n if and only if (k+l+2) > n. We also

k+1
show that a learner can, for any target class of size n, simultaneously satisfy the constraints

M, + M_ <wv; and M_ < vy exactly when EZLEOJH (Lvlgﬂ) > n.

We conclude Section 3 by examining the relationship between satisfying a single con-
straint of the form aM, + bM_ < v and satisfying a pair of constraints of the form
M, <k and M_ <. Constraint-satisfaction algorithms allow us to trade off the numbers
of false positive and false negative mistakes that the learner makes in various ways. Two
basic methods are: (1) give to an algorithm the single constraint aM, + bM_ < v, and
vary a and b depending on the desired trade-off, and (2) give to an algorithm the pair of
constraints My < k and M_ <[and vary k and [depending on the desired trade-off. How

do these compare? One comparison can be made by considering the task of minimizing the

maximum of the loss aM + bM_ over targets in some class F. The natural way to do this
is to determine the minimum achievable maximum loss v and then to give an appropriate
constraint-satisfaction algorithm the constraint aM, + bM_ < v. How well could we do
if instead we gave an appropriate constraint satisfaction algorithm the pair of constraints
M, <k and M_ <[for some k and [?7 It turns out that if we are willing to accept a
doubling of the loss, then one type of constraint can be used to substitute for the other: We
can use separate constraints on the numbers of false positive and false negative mistakes
to approximately solve the original problem of minimizing the loss aM, + bM_, if we are
willing to incur twice the loss that we would have incurred if we had used the single con-
straint aMy + bM_ < v (Corollary 31). Similarly, one can use a single constraint based on
a linear combination of M and M_ to solve the problem of keeping the numbers of false
positive and false negative mistakes separately (and simultaneously) below distinct bounds
if a bound which is twice the one that could be achieved by using separate constraints on
M, and M_ is acceptable (Corollary 32). These corollaries and the more general result
given in Theorem 28 indicate that in cases where it suffices to know the behavior of optimal
loss bounds up to a constant factor then one need not consider algorithms for all of the
different types of constraints that we consider here. One can use an algorithm set up to
satisfy a single linear constraint with appropriate coefficients or, if one prefers, one can use
an algorithm set up to satisfy separate constraints on the numbers of false positive and false
negative mistakes.

2 General Constraints

In this section, we describe two general purpose algorithms for satisfying general constraints.

2.1 Definitions and Notation

We begin by introducing notation and making a number of definitions.

Let Zo+ denote the non-negative integers, and Z, denote the positive integers.

Fix a domain X. For z € X and ¢ € {0,1}, VAL.(z) denotes the set of all functions
from X to {0,1} that take the value ¢ at . The appropriate domain should always be clear
from context.

A target class (usually denoted by F') is a class of functions that share the same domain
and have the range {0,1}. We say the domain of a target class is the domain of its func-
tions. Elements of the domain of target class F' are called instances. To avoid potential
computability issues, we typically assume that the domain of F is finite.

We call a target class F' amply splittable if for every subclass F' C F and every positive
integer k < |F'| there exists an instance z in the domain of F' such that |F' N VALy(z)| = k.
Note that if a class F' is amply splittable then any subclass of F' is also amply splittable.

SVAR,, denotes the target class consisting of the functions f1,. .., f, where f; : {0,1}" —
{0,1} is defined by f;(z1,-..,2,) = z;. INTERVAL,, denotes the target class of functions
defined on {1,...,n} consisting of fi,..., f, where f; '(1) = {1,...,i}. It is easy to see that
both SVAR,, and INTERVAL,, are amply splittable.

This is a fairly strong condition. Note, for example, that if the size of the concept

o © © © 0 0 O o © © © © 0 O o © 6 6 0 0 O
50 © © ®© ®© 0 © 50 © © ®© ®© 0 © 50 © © ®© ®© 0 ©
45.0.5...... 410 @ @ ®© ®© 0 O 10 © @ © 6 0 O
3000 00 0@ 30000000 30000000

MO 2ot M2 0t T S P
100000 e @ 100000 e @ 100 000O0O0
000000 e 000000 e 00000000
0198 A s 098 A s 01 YA s

M, My My

Figure 1: Three constraints are depicted above. Hollow circles and the dashed line indicate
the region where the constraints are satisfied. The constraint on the left is an allowed
constraint. The constraint in the middle is not allowed, as (M4 = 1, M_ = 3) satisfies the
constraint while (M = 0, M_ = 3) does not. The constraint on the right is also not an
allowed constraint as it is true on an unbounded region.

class exceeds the size of the domain by more than one, then the concept class cannot be
amply splittable. This shows that many commonly considered concept classes are not amply
splittable, such as the class of all conjunctions (allowing negated literals) over a space of
n > 2 boolean variables. It is also easy to see that the class of 2-variable, monotone
conjunctions over a space of n > 3 boolean variables is not amply splittable, since no
instance gets mapped to 0 (or false) by exactly one conjunction in the class.

A constraint predicate is a predicate over Z2 1. We will denote the truth of a constraint
predicate C at (M4, M_) by SAT(C, M., M_). The set of allowed constraint predicates,
which will be denoted C, is the set of all such predicates C' that are true on bounded,
downward-closed regions (see Figure 1). That is, for each C € C there exists a B € Zg
such that SAT(C, M, M_) = M, + M_ < B, and for all M, M_, M! , M’ such that
0 < M, <Myand0< M < M_, we have SAT(C, My, M_) = SAT(C, M ,M").
We restrict our discussion to the class of allowed constraint predicates C. The downward-
closed requirement means that if it is permissible to make some numbers of mistakes of each
kind, then it is also permissible to make fewer mistakes of one or both kinds. Unbounded
downward-closed constraint predicates are uninteresting, since they must allow an infinite
number of mistakes of one kind or the other, and thus any such constraint is satisfiable
either by the algorithm that always predicts 1 or the algorithm that always predicts 0.

We say that a constraint predicate C' is satisfiable if there are M, M_ € Zgy, for which
SAT(C, My, M_). For allowed constraint predicates this occurs if and only if SAT(C, 0,0).
Given a constraint predicate C, any sequence of instances s, any target f, and any algorithm
A, we define SAT(A, C, s, f) to be true if and only if SAT(C, M;, M_), where M, and M_
are the numbers of false positive and false negative mistakes, respectively, that A makes
on the instance sequence s with target f. For any non-empty target class F, we define
SAT(A,C,F) to be true if and only if, for any sequence s of instances chosen from the
domain of F' and any target f € F', SAT(A,C,s, f). If F is empty we define SAT(A, C, F)
to be true for any C. (In this case we do not require C to be satisfiable.)

For any target class F, we define EGuar(C, F') to be true if and only if there exists an

oo 000 00 oo 00000
506 © © @ © 0 O 506 © © © 0 0 O
40 O|CO @ @ @ @ 40000000
310 0 0|0 @ @ @ 300000 0@
M‘2ooooooo M‘2ooooooo
110 O O 0|0 @ @ 1]0 O 0|0 0O @ @
00 O O 0|0 @ @ 000 O O 0|0 @ @
01 2 3 45 01T 23 45
M, M,

Figure 2: The above diagram illustrates a constraint C and two related constraints obtained
by shifting the original constraint. On the left, the original constraint C' (satisfied by the
hollow circles) and the constraint ADJ(C,1,0) (inside the solid line) are displayed. The
diagram on the right shows the same original C' and enclosed region is where the constraint
ADJ(C,1,2) is satisfied.

algorithm A such that SAT(A, C, F). We define LFail(C) to be the least n such that there
exists F of size n for which EGuar(C, F) is false. (EGuar stands for “exists guarantee” and
LFail for “least fail”.) It turns out to be convenient to express the recurrences that arise in
terms of LFail. Note that by the above definitions, EGuar(C, 0) is true for any constraint C'.
For any F of size 1, EGuar(C, F) is true if and only if C is satisfiable. Thus LFail(C) =1
if C is unsatisfiable, and LFail(C) > 2 if C is satisfiable.

To illustrate these concepts, consider the concept class F = INTERVALj3 over domain
{1,2,3}. The three functions in this class, f1, f2, f3, map (1,2,3) to (1,0,0), (1,1,0),
and (1,1,1) respectively. The halving algorithm predicts with the majority of the targets
agreeing with the previous trials (and thus initially predicts as f2). If the halving algorithm
makes a mistake then actual target will be identified and no additional mistakes will be
made. Thus the halving algorithm makes at most one mistake and EGuar(M; +M_ < 1, F)
is true. In fact, for every F where |F| = 3, the halving algorithm makes at most one
mistake (as two of the three possible targets will be inconsistent whenever the halving
algorithm predicts incorrectly). Now consider the class INTERVAL, on domain {1, 2, 3,4}.
An adversary can force any algorithm to make two mistakes by first forcing the algorithm
to make a mistake on instance 3 and then using either instance 2 or 4 (depending on the
algorithm’s first prediction) to force a second mistake. This shows that no algorithm can
guarantee that M, + M_ < 1 is satisfied on INTERVAL4. Therefore LFail(M, + M_ <
1) < 4. Since the halving algorithm satisfies the constraint on all classes of three functions,
we have that LFail(My + M_ < 1) =4.

For any constraint predicate C, and M, M_ € Zy, define ADJ(C, M., M_) to be the
constraint predicate C' given by SAT(C', M! ,M') <= SAT(C,M! + M, M' + M_).
Thus ADJ(C, M, M_) effectively shifts C' down and to the left (see Figure 2).

When discussing a particular run of a constraint-satisfaction algorithm that is to satisfy
the constraint predicate C, we define Cy to be ADJ(C, M, M_), where M is the number of
false positive mistakes made by the algorithm prior to trial ¢, and M_ is the corresponding

number of false negative mistakes.

Given a particular target class F' and a particular run of a constraint satisfaction algo-
rithm, we let F} denote the elements of F' that are consistent with the first £ — 1 trials, i.e.
if f is the target function, F; consists of those functions g € F for which g(zy) = f(zy) for
all # < t.

2.2 Algorithms SCS and CCS

The following algorithm is the general optimal algorithm for constraint satisfaction.

Algorithm SCS. In trial ¢, algorithm SCS(C, F') predicts 1 if both
EGuar(ADJ(Cy, 1,0), F, N VALy(z))

and
|Ft N VALl(JIt)| > 0.

Otherwise, SCS(C, F') predicts 0. O

Note that Algorithm SCS can be implemented whenever the required EGuar predicates
can be computed. If the domain of F' is finite there is a straightforward (although generally
not efficient) method to evaluate the needed predicates.

The following says that this algorithm is optimal. It further establishes the fact that
if EGuar(C, F) is false then any algorithm can be forced to make a mistake on every trial
until that constraint is violated. Here we use the notation “violates(A,C,s, f)” to stand
for “not SAT(A,C,s, f)”.

Theorem 1 For any satisfiable constraint predicate C € C, finite domain X, and non-
empty target class F over X the following are equivalent:

(a) EGuar(C, F)

(b) The following statement is false: For every algorithm A, there exists a target f €
F and a sequence of instances s such that A makes a mistake on every trial and
violates(A, C, s, f).

(¢) For each x € X either EGuar(ADJ(C,1,0), FNVALy(z)) or EGuar(ADJ(C,0,1), FN
VAL (z)).

(d) SAT(SCS(C, F),C, F).

Proof

We prove this theorem by induction on the size of F'. If |F| = 1, then SCS(C, F') makes
no mistakes. It is easy to see that in this case all four parts are true (since C' is satisfiable)
and thus equivalent. For arbitrary target classes of size n > 1, assume for the inductive step
that the entire equivalence holds for smaller non-empty target classes. Clearly, (d) implies
(a) and (a) implies (b).

10

To show (b) implies (c) we prove the contrapositive. We assume that there exists an z
such that both EGuar(ADJ(C,1,0), F N VALy(z)) and EGuar(ADJ(C,0,1), F N VAL(z))
are false, and show that for any algorithm A, an adversary can find an f € F and a sequence
of instances s such that A makes a mistake on on every instance in s and violates(A, C, s, f).
Since EGuar(ADJ(C,1,0), F N VALy(z)) and EGuar(ADJ(C,0,1), F N VAL;(z)) are false,
both F'N VALy(z) and F N VAL;(z) are non-empty; thus, 0 < |F'N VALy(z)| < |F)|-

The adversary chooses z as the first instance in s and chooses the target so that algorithm
A makes a mistake. Without loss of generality, assume that A predicts 1 on z so the target
chosen by the adversary will be an f € F'N'VALy(z). To complete the description of the ad-
versary we consider the algorithm A’ which predicts as A does after A has seen the instance
z labeled with the value 0. Thus the prediction of A’ on the #th instance of any sequence s’
with any target f' € FNVALy(z) is the same as the ¢+ 15t prediction of A on the sequence
(z,s") with target f'. If ADJ(C,1,0) is satisfiable then we can apply the induction hypothe-
sis to ADJ(C,1,0) and FNVALy(z). Since EGuar(ADJ(C,1,0), FNVALy(z)) is false, there
exists a target f € FNVALg(z) and a sequence of instances s’ such that A’ makes a mistake
on every trial and violates(A’, ADJ(C,1,0),s', f). If ADJ(C,1,0) is not satisfiable then we
set f to any function in F N VALy(z) and s’ to the empty sequence. Note that in both cases
A" makes a mistake on every trial of s’ and violates(A’, ADJ(C,1,0),s', f). The adversary
chooses f as the target and creates the sequence s by appending the sequence s’ to instance
z. Let M and M’ be the number of false positive and false negative mistakes made by A
starting with the second trial (i.e. not counting the false positive mistake made on instance
x). Since violates(A’', ADJ(C,1,0),s', f) holds, we have violates(ADJ(C,1,0), M’ , M")
and violates(C, M, + 1, M’). As A makes all the mistakes made by A’ plus an additional
false positive mistake on the first trial of s, we see that A makes a mistake on every trial
and violates(A, C, s, f). This completes the proof that (b) implies (c).

The final step is to show (c) implies (d). It suffices to show that SAT(SCS(C, F),C, s, f)
for an arbitrary instance sequence s and target f € F. We will consider three cases based
on the first mistake made by SCS(C, F') on s. Surprisingly, we need the antecedent (c)
only for the third case. The first case is when SCS(C, F') makes no mistakes on s. In this
case (since C is satisfiable) we have SAT(SCS(C, F),C, s, f). Otherwise, let ¢ be the first
trial at which SCS(C, F') makes a mistake. Note that C; (the adjusted constraint used by
SCS(C, F) on trial t) equals C and the set of consistent functions, F}, is a subset of F.

For the second case, assume that SCS(C, F) predicts 1 at trial ¢. In this case, both
EGuar(ADJ(C,1,0), F; N VALy(z;)) holds and |F; N VAL;(z;)| > 0. Since SCS made a
mistake, the target function maps z; to 0 so F; N VALy(z;) is non-empty and 0 < |F; N
VALy(zt)| < |Fi| < |F|. Also, EGuar(ADJ(C,1,0), F; N VALy(z;)) together with the non-
emptyness of F; N VALy(x;) imply that constraint ADJ(C,1,0) is satisfiable. This allows
us to apply the induction hypothesis to ADJ(C,1,0) and F; N VALy(z;). Using (a) = (d),
we know for all sequences s’ of elements of X and all targets f € Fy1 1 = F; N VALy(x)
that SAT(SCS(ADJ(C,1,0), Fiy1), ADJ(C,1,0),s', f). Let M’ and M! be the number of
false positive and false negative mistakes made by SCS(ADJ(C,1,0), F;;+1) applied to the
target f on the subsequence of s beginning with its (¢4 1)-st element. Algorithm SCS(C, F)
makes exactly the same mistakes on s (ignoring the the extra false positive mistake on trial
t) since the same constraints and sets of consistent functions are used on the trials after t.

11

This implies SAT(SCS(C, F),C, s, f), as desired.

The final case occurs when SCS(C, F) incorrectly predicts 0 at trial ¢. Note that
|Fy N VALi(z;)| > 0, since the target maps z; to 1. From the definition of SCS,
EGuar(ADJ(C,1,0),F; N VALy(z;)) fails to hold, so |F; N VALy(z¢)| > 0 and 0 <
|F; N VAL (z¢)| < |F;| < |F|. Since F; C F and EGuar(ADJ(C,1,0),F; N VALy(xt))
fails to hold, EGuar(ADJ(C,1,0),F N VALy(z;)) is also false. Therefore the antecedent
(c) ensures that EGuar(ADJ(C,0,1),F N VAL(z;)). Again using F; C F, we see that
EGuar(ADJ(C,0,1), F; N VAL (x;)) holds. As F; N VAL;(z;) is non-empty, ADJ(C,0,1)
must be satisfiable. Therefore the inductive hypothesis applies to ADJ(C,0,1) and
F;N VAL (z;), and we can use the argument from the previous case to complete the proof
that (c) implies (d). O

We will use Theorem 1 to characterize the function LFail that maps each constraint C
to the size of the smallest target class for which C' cannot be guaranteed to be satisfied.

The following lemma, describes a sense in which amply splittable classes are among the
hardest classes of a given size.

Lemma 2 Choose a constraint C € C, an amply splittable target class F', and an arbitrary
target class |F'| such that |F'| = |F|. Then EGuar(C, F) implies EGuar(C, F").

Proof The proof is by induction on |F|. The case F' = () is trivial. This establishes the
base case.

Assume |F| > 0, and that EGuar(C, F') is true. We wish to prove that EGuar(C, F') is
true. By Theorem 1, it is sufficient to prove that for all z, either

EGuar(ADJ(C,1,0), F' N VALy(z))
or
EGuar(ADJ(C,0,1), F' N VAL (z)).

Choose z. Let ng = |F' N VALy(z)| and ny = |F' N VALi(z)|. Since EGuar is always
true for empty classes, the desired result clearly holds if ng or ny is 0. Otherwise, since
ng +n1 = |F|, we have 0 < ng,n1 < |F|.

Since EGuar(C, F'), again, by Theorem 1, for an arbitrary y in the domain of F', either

EGuar(ADJ(C,1,0), F N VALy(y))

or

EGuar(ADJ(C,0,1), F N VAL (y)).

Since F' is amply splittable, there exists a y such that |F' N VALy(y)| = no and |[F' N
VAL:(y)| = ni. Note that both F N VALy(y) and F N VAL;(y) are amply splittable.
Therefore, since ng,n; < |F'|, the induction hypothesis implies that either

EGuar(ADJ(C, 1,0), F' N VALy(z))

or

EGuar(ADJ(C,0,1), F' N VAL (z))

12

as desired. O

The following lemma follows immediately as a corollary.

Lemma 3 Choose C € C. Then EGuar(C, F) is false for every amply splittable target class
F of size at least LFail(C).

Note that from the definition of LFail, EGuar(C, F) is true for every target class of size
less than LFail(C).

We apply these in the following theorem which characterizes LFail. Note that this
theorem leads to an obvious dynamic programming technique for calculating LFail(C) for
allowed constraints.

Theorem 4 LFail is the unique function f : C — Z. satisfying f(C) =1 if C is unsatisfi-
able and f(C) = f(ADJ(C,1,0)) + f(ADJ(C,0,1)) otherwise.

We present the proof of Theorem 4 as two lemmas, the first showing that LFail satisfies
the recurrence and the second showing (a stronger version of) the uniqueness property.

Lemma 5 The function LFail(C) mapping C € C to Z, satisfies f(C) =1 if C is unsat-
isfiable and f(C) = f(ADJ(C,1,0)) + f(ADJ(C,0,1)) otherwise.

Proof The case where C' is unsatisfiable follows immediately from the definition. Other-
wise, let F' be any amply splittable target class of size LFail(C). By Lemma 3, EGuar(C, F)
is false, so (by Theorem 1) there exists an z such that

EGuar(ADJ(C, 1,0), F N VALy(z))

and
EGuar(ADJ(C,0,1), F N VAL (x))

are both false. Applying the definition of LFail, we have |F N VALy(z)| >
LFail(ADJ(C,1,0)) and |F N VAL, (z)| > LFail(ADJ(C,0,1)). Thus

LFail(C) = |F| = |[FNVALy(z)|+|FNVAL (z)| > LFail(ADJ(C, 1,0))+LFail(AD.J(C,0,1)).

It remains to show that LFail(C') < LFail(ADJ(C,1,0)) + LFail(ADJ(C,0,1)). To
do this, we now let F' be any amply splittable target class of size LFail(ADJ(C,1,0)) +
LFail(ADJ(C,0,1)). It is easy to see that LFail is always at least 1. Thus since F
is amply splittable, there exists an z in the domain of F' such that |F N VALy(z)| =
LFail(ADJ(C, 1,0)) and |[FN VAL, (z)| = LFail(ADJ(C, 0, 1)). For this z, since FN VALy(z)
and F N VAL;(z) are both amply splittable, Lemma 3 implies that

EGuar(ADJ(C,1,0),F N VALy(x))
and

EGuar(ADJ(C,0,1), F N VAL (z))

13

are both false. By Theorem 1, this implies that EGuar(C, F) is false, which implies that
|F'| = LFail(ADJ(C,1,0)) + LFail(ADJ(C,0,1)) > LFail(C), completing the proof. O

The following lemma, completes the proof of Theorem 4 This lemma actually gives a
slightly stronger uniqueness property than that required by the theorem — the stronger
property will be needed later in the paper (for Lemma 12).

Lemma 6 IfC' CC and if for all C € C' we have ADJ(C,1,0) € C' and ADJ(C,0,1) € (',
then there is a unique function f : C' — Zy satisfying f(C) = 1 if C is unsatisfiable and
f(C) = f(ADJ(C,1,0)) + f(ADJ(C,0,1)) otherwise.

Proof Let C' be any downward-closed subset of C and
B(C)=max{M; +M_: M, M_ € Zy; and SAT(C,M,,M_)},

if C is satisfiable, and —1 otherwise. The quantity B(C) is finite for every C € C'. We
use induction to show that for every integer b, if functions f and g satisfy the conditions
of the lemma then f(C) = ¢(C) for all C € C’ such that B(C) < b. Once we have
shown that this holds for all b we will have shown that it holds for all C € (', yielding
the desired result. The base case (b = —1), is immediate. For the induction step, we
assume that for some b > 0 and any f and g satisfying the conditions of the lemma,
f(C) = g(C) for every C € C' such that B(C) < b. Let C’ be an arbitrary constraint in
C' where B(C') = b. Since B(C') > 0, constraint C' is satisfiable and from the definition
of ADJ we have B(ADJ(C',0,1)) < B(C") and B(ADJ(C",1,0)) < B(C'). Therefore
f(ch = f(ADJ(C',1,0))+ f(ADJ(C",0,1)) = g(ADJ(C",1,0))+g(ADJ(C",0,1)) = g(C"),
as desired. O

We next describe Algorithm CCS, which usually makes its prediction on a given trial
t by counting the number of functions f in F' consistent with the previous trials for which
f(z) =0, and comparing this number with a threshold.

Algorithm CCS. In trial ¢, algorithm CCS(C,F) predicts 1 if |F; N VALy(xy)| <
LFail(ADJ(C,1,0)) and |F; N VAL (z;)| > 0. Otherwise, CCS(C, F') predicts 0. O

The following theorem gives a basic result about the relationship between CCS and

SCS.

Theorem 7 For any C € C and any amply splittable target class F over a finite domain,
CCS(C,F) and SCS(C, F) make the same predictions.

Proof From the definition of LFail and Lemma 3, we have EGuar(ADJ(C}, 1,0), F; N
VALy(z)) if and only if |F; U VALy(z;)| < LFail(ADJ(Cy,1,0)). Thus, the two algorithms
make the same predictions. Ol

The comparison between algorithms CCS and SCS is more complicated when target
class F' is defined on an infinite domain X. If F' is finite then algorithm CCS can be

14

implemented whenever the value of each f € F on each element is computable. However,
even if F is finite, it may be impossible to implement algorithm SCS as it is unclear that
EGuar(C, F) can always be computed when the domain is infinite.

CCS can perform very badly compared to SCS. Consider the target class F' over the
positive integers where each function maps all but two points to one, i.e. F = {f;; :4,j €
Z.} where f; ;(k) =0ifk =i or k = j and f; (k) = 1 otherwise. Algorithm SCS can
satisfy the constraint My < 2 and M_ < 0 for this class while CCS cannot satisfy any
simultaneous finite bounds on M, and M_. A similar example can be constructed using a
large finite domain.

There are two obvious ways to create algorithms related to Algorithm CCS. First, the
bias of Algorithm CCS towards 0 predictions can be neutralized or reversed. Second, it may
be desirable to use a different function mapping constraints to reals other than LFail. In
particular, one might want to use an approximation of LFail when it is difficult to compute
LFail exactly. (Of course, the algorithms become less able to guarantee satisfaction of
constraints as the approximation to LFail gets worse.) The following lemma is used in our
analysis of Algorithm CCS and is stated in a such a way that it can be applied to these
relatives of CCS.

Lemma 8 Suppose that function h : C — R is such that h(C) < 1 if C is unsatisfiable
and h(C) < h(ADJ(C,1,0)) + h(ADJ(C,0,1)) for every satisfiable C € C. Let F be a
non-empty target class over a finite domain and C € C be any allowed constraint such that
|F| < h(C). Pick a T in Z; U oo. Suppose that A is a constraint-satisfaction algorithm
with the property that, in every trial 1 <t < T, algorithm A predicts:

o (Zf |Ft N VALo(.’L‘t)| > h(ADJ(Ct, 1,0)) and |Ft N VALQ($t)| > 0,
o 1 if |Ft N VAL, (,Tt)' > h(ADJ(Ct,O, 1)) and |Ft N VALl(iEt)| > 0.

(If neither of these conditions holds, then algorithm A may make either prediction.) For
every run of A on sequences of length T and targets from F, |Fy| < h(Cy) for allt < T and
if T is infinite then SAT(A,C, F).

The parameter T is introduced to facilitate inductive proofs using this lemma, and the
function h corresponds to the function LFail used by CCS.
Proof

First we prove that |F;| < h(Cy) for all t < T'. Since C; = C and F} = F, |Fy| < h(C4)
by assumption. If a false positive mistake is made in trial ¢ < T then the value of the target
function in that trial is 0, so |F3 N VALy(z;)| > 0. Since the algorithm did not predict 0, we
must have |F; N VALy(z;)| < h(ADJ(Cy,1,0)). Since in this case Fy 1 = F;N VALy(z;), and
Ciy1 = ADJ(C4,1,0) this yields |Fiy1| < h(Cit1) in this case. Similarly, if a false negative
mistake is made in trial ¢ < T', we must have |Fy N VAL;(z;)| < h(ADJ(Cy,0,1)) and again
we get |Fip1| < h(Ciq1). If a mistake is not made in the ¢th trial, we have |Fy1| < |Fi| and
Ci41 = Cy. Therefore a trivial inductive argument yields that |F;| < h(Cy) for all ¢ < T'.

To complete the proof of the lemma for the case where T is infinite, note that since
|Fy| > 1 for all ¢, we have h(C;) > 1 for all ¢, which by our assumptions about A implies
that C} is satisfiable. If the algorithm makes M, false positive mistakes and M_ false

15

negative mistakes before trial ¢, then Cy = ADJ(C, M, M_). Since C; is satisfiable, we
have SAT(C},0,0) which implies SAT(C, M, M_) as desired. O

The following theorem gives the basic result regarding CCS.
Theorem 9 If |F| < LFail(C), then SAT(CCS(C, F),C, F).

We give two proofs of this theorem. The first relies on Lemma 8 and the second on
results about Algorithm SCS.
Proof We apply Lemma 8 with h = LFail. By Theorem 4, h satisfies the requirements
of Lemma 8. To obtain the desired result we need only show that the predictions of CCS
satisfy the appropriate requirements. It is clear that CCS predicts 0 when it is required
to to satisfy the hypothesis of this Lemma. We will show by induction on T' that for any
T > 0 and any trial t < T, CCS predicts 1 if |F; N VAL (x¢)| > h(ADJ(C,0,1)). It holds
vacuously for T'= 1. For any T' > 1, we will assume that the hypotheses of the lemma, are
satisfied for this value T" and show that this implies that they are for 7"+ 1. The lemma
implies that |Fr| < h(Cr). Therefore h(ADJ(Cr,1,0)) + h(ADJ(Cr,0,1)) > h(Cr) >
|FT| = |FT N VALl(.’ET)l + |FT N VAL()(:L‘T)|. Thus if |FT N VAL, (:L'T)| > h(ADJ(CT,O, 1))
then |Fr N VALy(z7)| < h(ADJ(Cr,1,0)). Since h = LFail which is always at least 1, if
|Fr N VAL (z7)| > h(ADJ(Cr,0,1)) we also have |Fp N VAL (z7)| > 0; thus in this case
CCS will predict 1 in trial 7. Thus the hypothesis of the lemma regarding the algorithm’s
prediction will be satisfied for any ¢ < T' + 1. This completes the induction step. O

We give an informal statement of the following alternate proof.

Alternate Proof of Theorem 9 Imagine expanding the domain of the target class F,
defining the functions of F' on the new points of the domain in such a way that F becomes
amply splittable. This can be done for any target class. Let F' denote the target class F
with some such expanded domain. By Theorem 7, CCS(C, F') and SCS(C, F') will make
the same predictions. From the assumption that |[F| < LFail(C) we have EGuar(C, F'),
so by Theorem 1 we have SAT(SCS(C, F'),C, F'), and thus SAT(CCS(C, F"),C,F'). Tt is
easy to see that in any sequence of trials where the all of the instances are from the domain
of F' and the target is in F’ (or equivalently F'), algorithms CCS(C, F) and CCS(C, F')
make the same predictions. We obtain the desired result by noting that this implies that if
SAT(CCS(C, F),C, F) did not hold, then neither would SAT(CCS(C, F'),C, F"). O

Given a constraint C' and a target class F' such that |F'| < LFail(C), Theorems 1 and 9
show that for any run of SCS(C, F') or CCS(C, F), the numbers of false positive mistakes
M, and false negative mistakes M_ will always be such that SAT(C, M, M_) holds. The
following theorem gives a partial converse.

Theorem 10 Suppose that C' is a satisfiable constraint predicate, F is an amply splittable

target class such that |F| = LFail(C) — 1, and A is any algorithm for which SAT(A,C, F)
holds. Then for any non-negative integers My and M_ for which SAT(C, M, M_) holds,

16

there exists a sequence of M, + M_ instances chosen from the domain of F and a tar-
get chosen from F such that A makes My false positive mistakes and M_ false negative
mistakes.

Proof Since C is satisfiable, |F| > 1. We prove the theorem by induction on M, + M_,
describing how an adversary can choose an appropriate target function in F' and se-
quence of instances. If M, + M_ = 0, then the empty sequence suffices, and any el-
ement of F' can be chosen as the target. Otherwise, suppose that M, > 0. (The
case where M, = 0 and M_ > 0 can be handled similarly.) By Theorem 4, we have
|F| = LFail(C) — 1 = LFail(ADJ(C, 1,0) + LFail(ADJ(C,0,1) — 1. Since SAT(C, M, M_)
we have SAT(ADJ(C,1,0), My — 1, M_) and thus LFail(ADJ(C,1,0)) > 2. Thus |F| >
LFail(ADJ(C,0,1) > 1. Since F is amply splittable, this implies that the adversary can
choose an z such that |F'N VAL, (z)| = LFail(ADJ(C,0,1)). When given this instance = on
the first trial, the algorithm A must predict 1, since otherwise, by Lemma 3, there exists a
sequence of trials (corresponding to some target in F' N VAL;(z)) for which the numbers of
false positive and false negative mistakes fail to satisfy C, contradicting the assumption that
SAT(A,C, F) holds. The adversary will choose a target function that maps = to 0. Let A’
denote an algorithm constructed from algorithm A in the same manner that an algorithm A’
is constructed from some algorithm A in the proof of Theorem 1. To obtain algorithm A’ we
prime algorithm A by giving it the instance z and value f(z) = 0 in a simulated first trial be-
fore the real first trial starts. We have SAT(A’, ADJ(C,1,0), F N VALy(z)) since otherwise,
SAT(A,C,F) would not hold. Also, |FF'N VALy(z)| = LFail(ADJ(C,1,0)) — 1. Thus the
induction hypothesis applies to the constraint ADJ(C,1,0), the target class F' N VALy(x),
the algorithm A’, and numbers of false positive and false negative mistakes M, —1 and M_.
If we prefix the sequence of instances yielded by application of the induction hypothesis with
the instance = chosen above, and use the target yielded by the induction hypothesis, we

obtain the desired sequence and target.
O

3 Linear Constraints

Here we consider constraint predicates that are expressible as conjunctions of linear inequal-
ities. We will refer to these as linear constraint predicates.

3.1 Definitions, Notation, and Basic Results

We represent a linear constraint predicate as a pair (G,¥) where G is an r X 2 matrix
and 7 is a column vector with r components, for some r. The pair (G,¥) represents the

constraint predicate that is true for those (M, M_) such that G [%J_f] < ¥, where we use

v
the convention that |: :

Ur

w1
< [: :| ifv, <w; fori=1,...,7.
w,
When discussing a particular run of a constraint-satisfaction algorithm that is to satisfy

the constraint predicate (G, %), we define ¥; to be 7 — G[AA;I[f], where M is the number of

17

false positive mistakes made by the algorithm prior to trial ¢, and M_ is the corresponding
number of false negative mistakes.

We say that a matrix of real numbers is an allowed constraint matriz if it has exactly two
columns, all of its entries are non-negative, and each column and each row contains at least
one non-zero entry. Let Cr, denote the set of all pairs (G, %) such that ¥ is an r-component
column vector with real entries, for some r» > 1, and G is an allowed constraint matrix with
T TOWS.

The following lemma indicates that it suffices to work with C;, when dealing with linear
constraints, and characterizes satisfiable constraints.

Lemma 11 If (G,7) € Cr, then it represents a constraint predicate in C; it is satisfiable if
and only if each component of ¥ is non-negative. If (G, V) represents a constraint predicate
in C then there ezists a pair (G',v") € Cr, that represents the same constraint predicate.

If (G,7) € Cy, then for all My, M_ > 0, we have (G,7 — G[%‘_L]) € Cr, and (G,7 —

G[AA:[I‘_L]) represents the constraint predicate ADJ((G,v), My, M_).

Proof The claims of the lemma are readily verified. Note that the assumption that each
column of G contains at least one non-zero entry guarantees that the constraint predicate
represented by (G,7) is true on a bounded region. If we start with a pair (G,¥) that
corresponds to an unsatisfiable constraint, it is trivial to find a suitable (G',7"). For a
satisfiable constraint, to obtain the pair (G',7") we delete all rows with no strictly positive
entries from G and the corresponding components from ¥ is in Cr. Any row with two
non-positive entries can be deleted, since the fact that My = 0, M_ = 0 must satisfy the
constraint implies that including such a row cannot eliminate any points from the region in
which the constraint is satisfied. We replace any row with entries a, b, where one is negative
and one is positive with the row with entries max(a,0), max(b,0). Since the region where
the constraint is satisfied is downward-closed, no point in the region can have My > v/a
if a > 0 (consider what happens when M_ = 0) nor can it have M_ > v/b if b > 0. Thus
replacing the row as indicated does not make the constraint stronger. It is easy to see that
it also does not weaken it.

For the final claim, we have SAT(AD ((G v) M+, M_),M!,M") if and only if

G[ﬁtiﬁf] < ¢ if and only if G[] < Ival]) if and only if SAT((G, v —

G[M+]),M’+,M'_). O

For an allowed constraint matrix G with r rows, we define LFg : R" — Z by LF(?) =
LFail((G, 7)).

Lemma 12 Suppose that G is an allowed constraint matriz with r rows. Then LFq is the
unique function fg : R" — Z satisfying fa(¥) = 1 if any of the components of ¥ are negative
and fq(¥) = fa(v — G[(1]]) + fa(¥ — G[(1)]) otherwise.

Proof This lemma follows immediately from Theorem 4, Lemma 6, and Lemma 11. [J

18

The following lemma is a restatement of Lemma 8 for the case of linear constraints.

Lemma 13 Suppose that F is a non-empty target class. Suppose that G is an allowed
constraint matriz with r rows, and h : R" — R satisfies, for every ¥ € R", h(v) < 1 if

any component of U is negative and h(v) < h(v — G[(1)]) + h(v — G[(1)]) otherwise. Let

T be a positive integer or infinity. Suppose that A is a constraint-satisfaction algorithm

with the property that, in any trial t < T it predicts 0 if |Fy N VALy(x¢)| > h(0; — G[(1)])

and |Fy N VALy(x¢)| > 0, and it predicts 1 if |Fy N VALy(x¢)| > h(0; — G[?]) and |Fy N

VAL (z¢)| > 0. (If neither of these conditions holds, then it may make either prediction.)
For any run of A with target class F, if |F| < h(¥) and T is finite then |Fy| < h(v;) for all
t <T. If|F| < h(¥) and T is infinite then |Fy| < h(¥}) for all t and SAT(A, (G,?), F).

The proof of this lemma is essentially identical to the proof of Lemma 8.

In the next few subsections, we consider several applications of the above results re-
garding linear constraint predicates, each characterized by a particular choice, or class of
choices, for G.

3.2 Bounds on the numbers of false positive and false negative mistakes

Consider a robot which must return to a recharging station before its power supply is
exhausted. At each stage of the journey the robot can either rush towards the recharging
station and risk a collision (predicting 1) or proceed cautiously and risk running out of
power (predicting 0). Assume also that v; collisions are enough to seriously damage the
robot and vy unduly cautious decisions will cause the robot to run out of power before

reaching the recharging station. This situation can be modeled with the simple linear
10
0 1

because they are satisfied on a rectangular subset of Zg x Zg.
From Lemma 12 we have that LF¢ is the unique function satisfying LFg(vi,v2) = 1
when either v; < 0 or v < 0 and LFg(v1,v2) = LFg(v1 — 1,v9) + LFg(v1,v2 — 1) for

v1,v2 > 0. This has the solution for vy,vy > —1 of LF g (v, v2) = (LUIJL:;JLZS{”).

If the proper robot responses (rush or caution) can be viewed as an amply splittable
target class, then we can categorize when the robot will be able to make it back to the
recharging station with the following lemma.

constraint (G, [v1,v2]) where matrix G = [} We call these constraints rectangular

Lemma 14 Pick my,m_ € Zoy and an amply splittable target class F. If |F| >
(m++m_+2
m_—+1

get in F' such that either A makes at least m4 false positive mistakes or A makes at least

m_ false negative mistakes. If |F| < (mt:_"_flw

makes fewer than my false positive mistakes and fewer than m_ false negative mistakes
when the target is in F.

) then for any learning algorithm A there exists a sequence of trials and tar-

) then there is an algorithm which always

Proof Follows from the fact that LFg(v1,v2) = (™*™7%), Lemma 3, and the definition

of LFail. O

19

Satisfying rectangular constraints has another application related to “apple tasting”
[HLL]. The apple tasting learning model is an on-line learning model where the learner tries
to minimize the total number of mistakes (with false positives and false negatives weighted
equally). However, the value of the target on the instance remains hidden whenever the
learner predicts 0. This means that the hungry learner must bite into the apple (predict
1) in order to determine if the apple contains a worm. The apple tasting model leads to
interesting exploitation/exploration tradeoffs, as the learner must decide whether to exploit
a hypothesis that the correct prediction is 0 or to check the hypothesis by predicting 1.

We show in the companion paper [HLL] that on-line algorithms which obtain the value
of the target on every trial can be converted into apple tasting algorithms. If the number
M, of false positive and M_ of false negative mistakes mistakes made by the original
on-line algorithm satisfy M, < v; and M_ < vy, then the resulting (randomized) apple
tasting algorithm expects to make at most v; + 2v/Tvo mistakes on any sequence of T trials.
Furthermore, the companion paper presents lower bounds showing that if no (standard) on-
line algorithm can satisfy the rectangular constraint M, < v; and M_ < vy then every apple
tasting algorithm can be forced to make at least % min{v, %\/vz—T} (expected) mistakes on
sequences of length! T' (for the same target class). Therefore determining whether or not
rectangular constraints can be satisfied has a direct bearing on the apple tasting complexity
of a target class.

3.3 Bounds on the number of false negative mistakes and the total num-
ber of mistakes

Another specific constraint matrix for which we can solve the LFg recurrence indicated

by Lemma 12 is G = [(1) 1] This matrix represents a constraint on the total number of

mistakes together with a constraint on the number of false negatives. This kind of constraint
can arise in the recharging robot example if every collision costs the same amount of time
as proceeding cautiously, and a certain number of collisions will cause the robot to fail.
For these kinds of constraints, LF is the unique function satisfying LF(vi,v) = 1
when either v; < 0 or v9 < 0 and LF(v1,v2) = LF(v1 —1,v2) + LF(v; — 1,v3 — 1) otherwise.

This has the solution LF(v1,v9) = ZZLZ)HI (L“%H) for vy,vy > —1.

3.4 General loss

Here we consider a single linear constraint with arbitrary factors multiplying the number
of false positive and false negative mistakes. Thus the constraint matrix G has the form
[a b], where a is the loss for each false positive mistake, and b is the loss for each false
negative mistake. We assume that G is an allowed constraint matrix so both a and b are
positive. The goal of this section is to closely approximate the value LFg(v) as a function
of a, b, and v. First we state the following lemma.

Lemma 15 For any a,b > 0, the equation o ®+a~% =1 has ezactly one positive solution.
At this solution o > 1.

1Actually, this only holds if T' > min{vi,v2}.

20

Proof The function f(a) = a~® + a~? is continuous and monotone decreasing for o > 0.
It takes the value 2 at 1 and approaches 0 as a approaches infinity. This gives the desired
result. Ol

Now we are ready to approximate LFg.

Theorem 16 Let G = [a b], where a,b > 0. Let o be the unique positive solution of

a4 a~b =1. Then for any v > — max{a, b}, we have o’ < LFg(v) < avtmax{ab},

Proof Fix a G satisfying the required conditions. Let Bg(v) = max{M+M_ : M, M_ €
Zy, and G[AA//?F] < v} if this set is non-empty, and —1 otherwise. Because a and b are

positive, Bg(v) is finite. We prove this theorem for a given G by induction on Bg(v). For
the base case we consider values v such that Bg(v) = —1. In this case the constraint (G, v)
is unsatisfiable, so —max{a, b} < v < 0 and the inequality holds.

For the induction step, we assume that there is a (integer) & > 0 such that the theorem
holds for all v where Bg(v) < k and show that it holds for an arbitrary v where Bg(v) =
k > 0 Since Bg(v) > 0, constraint (G, v) is satisfiable and v > 0. Applying Lemma 12, we
see that

LF¢(v) = LFg(v — a) + LFg(v — b). (1)

In order to apply in the inductive hypothesis, we must establish that Bg(v—a) < Bg(v)—1
and Bg(v —b) < Bg(v) —1. If v —a < 0 then Bg(v—a) =—-1<Bg(v) —1. fv—a >0
then there is a pair of integers, M; and M_, such that M, + M_ = Bg(v — a) and

G’[Aj‘ﬁ] < v —a. Therefore, G[MJJ\F/ITI] <wvand Bg(v) > My +M_+1= Bg(v—a)+1.

The analogous argument shows Bg(v — b) < Bg(v) — 1. From the inductive hypothesis we
have the following.
o’ < LFG(,U _ a) < av—a+max{a,b}

b~ < LFG(,U . b) < av—b—}-max{a,b}

Substituting these inequalities into Equation (1) gives
av(a—a —I—Oé_b) < LF(;(U) < a’u—|—max{a,b}(a—a +a—b)’
showing the desired result. O

Theorem 16 implies that there exists a constraint-satisfaction algorithm that satisfies the
constraint (G, v) for any target class of size o’ or less. One such algorithm is an appropriate
instantiation of CCS, which in fact satisfies the constraint for any class of size less than
LFG(v). Running the algorithm CCS requires calculating values of LF. From Lemma 13
it follows that it if we are willing to approximate LF(v) with o’ in our bound, then we
can also make that approximation in the algorithm. (There is a region where this is not a
good approximation, but, as remarked after Theorem 18, a simple alternate algorithm can
be used in that region.) If one modifies CCS so that LFg(v) is approximated by a” and
applies the resulting algorithm to some target class F' with v initialized to log, |F|, then
one obtains an on-line learning algorithm that incurs loss at most log, |F| for any target

21

in F. This result also follows from the work of Vovk [Vov90]. His algorithms depend on a
parameter A\ that he restricts to (0,1). If one lets A go to 0 then one obtains from Vovk’s
results an algorithm that we can show satisfies the hypotheses of Lemma 13 with h(v) = o”.
Hence we obtain the same loss bound for his algorithm with A = 0 as for our approximation
to CCS. The same bound also follows for Vovk’s algorithm from a very different derivation

given by Vovk. Vovk’s algorithm (for A = 0) predicts 1 exactly when <%0”1)b > (%{“)a,
where n; = |F; N VAL;(z;)| for 7 € {0,1}. (Either prediction is OK in the case of equality.)
We show that this algorithm satisfies the hypotheses of Lemma 13 (in Section A.1) by first
showing that this prediction rule is equivalent to the rule of predicting 1 when a’n; > a®ny.

We now examine the loss bounds for this case more closely. We wish to study the best
loss that can be guaranteed to be achieved for a given [a b] as a function of the size n of the
concept class. This is given by LCg 4, defined as follows:

LCqp(n) = min{v : LF[, 4j(v) > n}.

The existence of this minimum follows from the fact that LCqp(n) = min{v : LF[, 5(v) >
n + 1} and LF[,) is continuous from the right, which can be shown by induction using
Lemma 12.

The following trivial lemma establishes the fact that it suffices to study the case where
b>a=1.

Lemma 17 Choose a nonnegative integer n, and a,b,c > 0. Then
LCea,ch(n) = cLCyp(n).
Also,
LCap(n) = LGCpa(n)

= aLCl,b/a (n)
= bLCl,a/b('n).

Theorem 16 yields the following bound on LC, 4(n).

Theorem 18 Suppose b > a > 0, n € Z, and o > 0 is the solution to o ® + a~% = 1.
Then
LC,p(n) < min{a(n — 1),log, n}.

Proof First, an algorithm can obtain a loss bound of a(n — 1) by simply predicting 1
whenever any consistent hypothesis evaluates to 1. Each mistake eliminates at least one
hypothesis, thus the number of false positive mistakes is at most (n — 1). This algorithm
obviously never makes a false negative mistake. Thus

LCup(n) < a(n—1). (2)

By Theorem 16, for any v > 0 we have LF,4)(v) > a”. This implies that the v for which
a’ = n provides an upper bound on LC,(n). Solving for v proves that LC,4(n) < log, n.
Combining this with (2) completes the proof. O

22

Notice that the upper bound of Theorem 18 is stronger than the log,, |F'| bound discussed
above. In some ranges of parameters, the alternate linear bound can be significantly better.
The linear bound can be obtained directly using the non-approximated version of CCS,
or, as is done in the proof of Theorem 18, it can be obtained when desired by running an
alternate algorithm that predicts 1 whenever any consistent hypothesis takes the value 1.
In Appendix A.2 we show that though Vovk’s algorithm achieves the log, |F'| bound, it can
fail to achieve the alternate linear bound.

We next prove a lower bound on LC, ;(n) that matches the above upper bound to within
a constant factor.

Theorem 19 Suppose b > a > 0, n € Z, and o > 0 is the solution to a~® + o~ = 1.
Then

1
LCyp(n) > min{a(n — 1), max{b,log, n — b}} > min {a(n - 1), og; n} .

Proof If n = 1, then LC,3(n) = 0, and the theorem holds. Next we consider the
case where 2 < n < b/a+ 1. In that case, for 0 < v < n — 1, from Lemma 12, we
have LF[; y/q(v) = 2+ |v] < n. Thus LC;/(n) > n — 1. By Lemma 17 we have
LCq(n) > a(n — 1), so the theorem holds for n < b/a + 1.

By Theorem 16, for G = [a b] and for any v > 0,

LFG'(’U) < av—l—max{a,b} — av+b.
Thus if v < log, n — b then LFg(v) < n, so
LCqp(n) > log,n —b. (3)

We apply this bound most fruitfully when n > b/a + 1. In this case n > [b/a] + 1. For
any v < b/a we have |v] < [b/a], so 2+ |v| < [b/a]+1. Thus, for 0 < v < b/a from Lemma
12 we have LF[; 4/q)(v) = 2+ [v] < n. Therefore, from the definition of LC; 4/,(n) we have
LCi/a(n) > b/a. By Lemma 17 we have LC,(n) > b. Also, by (3), LC,5(n) > log,n —b.
Therefore in this case, LC,3(n) > max{b,log,n — b} > (b + (log,n —b))/2 = (log, n)/2,
completing the proof. O

We may learn something more of the flavor of how LC,(n) varies with a and b by
obtaining looser, closed-form bounds based on the above results.

By Theorem 18 and Theorem 19, LC,p(n) is always within a constant factor of
min{a(n — 1),log, n}, where « is the solution to

a +at=1.

Therefore, we may determine the rate of growth of LC,3(n) to within a constant factor by
treating the rate of growth of log, n. Since log,n = (Inn)/(Ina) we may achieve this by
determining how 1/(In @) varies with a and b. If z = 1/(In«), then z is the solution to

efa/z + efb/z =1,

23

so we might just as well work with the above equation, bounding the rate of growth of z as
a function of a and b.

Recall that by Lemma 17, we may assume without loss of generality that b > a = 1.
Our proof of an upper bound on the solution z of

e /7y etz =1 (4)

when b > 1 proceeds in a series of lemmas. First, notice that it is trivial to solve for b in
terms of z.

Lemma 20 Real numbers b and z satisfy
e—l/z + e—b/z =1,
if and only if
b=zIn
1

— e 1/z7

But we’d like to have bounds on z in terms of b. Thus, we’'d like to (approximately)
invert the right-hand side of the above lemma. The following standard approximation will
prove useful.

Lemma 21 Forallz, 1 +x < €".

The next lemma shows that as the z in Equation 4 increases, so does the solution b in
terms of z.

Lemma 22 If g is defined on the positive reals by

1
g(z) =zln 1= o1/
then g is increasing on its domain, and
1
-1
1) = —.
9 V) =175

—1/z

Proof Since 1/z is a decreasing function, —1/z and therefore e are increasing func-

tions. Continuing in this vein, it is easy to see that 1/(1 — e /%) is increasing, and thence
that g(z) is increasing. One can readily verify that g(1/In2) = 1.
O
We will also use the following.

Lemma 23 Forallz>1,In(l+z) <1+Inz.

Proof The fact that In(1 + z) — Inz < 1 follows from the mean value theorem and the
fact that the derivative of Inz is at most 1 for x > 1.
O

Now, we are ready to upper bound z.

24

Theorem 24 Ifb > 1 and b and z satisfy
efl/z _+_€fb/z =1,

then
< 2b
2 < ——.
~ In(1+b)
Proof First, notice that Lemma 22 establishes that z > 1/In2.
We start by rewriting z.

1
1—(1—1/2)
1

]__ei—l/z (Lemma 21)
1
In PRV
1
1—el/z
1 1
21In 1_67_1/‘2 (Lemma 21)

1
21n v

1
1+lnz+lnlnm

IA

Inz

21In

IA

lnz—}—]nm

IA

1

1

IN

(Since z > 1/1n2)

1
2z1n =V

1+ 1In(zln H%l/z)
2b

1+1nb
2b

In(1 +b)

(Lemma 20)

(Lemma 23)

This completes the proof.

We will also make use of the following inequality.

Lemma 25 For all x > 1,
In(l1+2z) >zln(1+1/z).

Proof Define f:[1,00) - R by,
flz)=In(l+z) —zln(1+1/x).

For any =z > 1,

25

> 1 i - % (Lemma 21)
2z — (1+)
z(l+x)
z—1
z(1+ x)
> 0,

since, again, z > 1.
Thus, f is increasing on its domain. Since f is 0 at 1, this gives the desired result. [J

Now we are ready for the following.
Theorem 26 Ifb > 1 and b and z satisfy
ey eble Z 1
then
AP
“In(1+0b)
Proof Choose b > 1. Define f;: (0,00) - R by
fo(z) = e~V 4 b2,
Clearly, fp is an increasing function. By Lemma 25,
In(1+0b)
% In(1+0b)

(1+b)'/°

1
(7+3)
1
(7+3)

1 \ /b
(m) +m <1

) +exp (—In(1+d))

fo (ﬁ) < L

b
flz)=1 = zzm.

Y

bln (1 + 1/b)

v

In (1 + 1/b)

Y

1+1/b
b

1/b

1+b
1/b 1
1

IA

IA
—_
|

VAN
—_

exp (7_ o (; +b)

Since fp is increasing, we have that

This completes the proof. O
Finally, we apply Theorems 18, 19, 24 and 26 to obtain closed-form bounds on LC, 3(n).

26

Theorem 27 Choose b > a > 0, and an integer n > 1. Then

min{a(n -1), %} < LCgp(n) < min{a(n - 1), %} .

Symmetric bounds hold if a > b.

Proof We prove the theorem under the assumption that b > 1 and a = 1. The remaining
cases can be handled through trivial application of Lemma 17.
By Theorems 18 and 19, if « is the solution to

al+al=1,

then))
nn nn
i — < < mi — — .
min {(n 1), 21na} < LCip(n) < mln{(n 1), lna} (5)
By Theorems 24 and 26,
b 1 2b
< < .
In(14+b) ~ Ina ~ In(1+0b)

Combining this with (5) completes the proof. O

3.5 Fibonacci numbers

By considering the special case in which mistakes of one sort are twice as expensive as
mistakes of the other, we obtain a cute example for the tools of this section and of Section 2.

Here, without loss of generality, we set G = [1 2] In this case, by Lemma 12, LF g (v)
is the unique function from R to Z_ satisfying

e LFg(v)=1forv <0
e LFg(v) =2for 0 <v <1, and
e LF;(v) = LFg(v —1) + LFg(v — 2) for v > 1.

One may readily recognize this as the recurrence defining the fibonacci numbers. Thus, for
all v > 0, we have that LF[; 9)(v) = a|y|42, Where ag = 1,a1 = 1,a2 = 2,a3 = 3,a4 =5, ...
are the fibonacci numbers. Note also that the positive solution to ! + a2 = 1 is the
golden ratio, (1 ++/5)/2.

3.6 Relationships between various constraint satisfying algorithms

The following results describe how optimal algorithms for certain constraints can be used
to obtain nearly optimal algorithms for other constraints. Let LIN) (v) denote the con-

straint ([a b] ,v) and let RECT(v1,v2) denote the constraint ([(1) (1)], [Z; }) We look

at algorithms SCS(LIN (4 4)(v), F') and SCS(RECT (v1, v2), F) for various choices of the pa-
rameters. The following theorem shows that either of these types of algorithms can be used

27

to substitute for the other, or for SCS applied to any other satisfiable linear constraint
predicate, if one chooses parameters appropriately and is willing to relax the constraint by
doubling the constraint limits given in the vector ¥. (The case where the components of 7
are not all strictly positive, which is excluded from the following theorem, is dealt with in
Corollary 30.)

Theorem 28 Suppose (G,7V) € Cr, and r is the number of rows in G. Let @ be the first

column of G, and b be the second column of G. Suppose further that v; >0 fori=1,...,r
Let A =max{,...,3*} and let B = max{z—l, e g—T} For any target class F,

(a) EGuar((G,7),F) = SAT(SC’S(RECT(%) F), (G,27),F).
(b) EGuar((G,%), F) = SAT(SCS(LIN (4 p(2), F), (G, 27), F).
Before proving this theorem, we prove a lemma we will use in the proof of the theorem.

Lemma 29 Under the assumptions of Theorem 28, EGuar((G,7),F) implies both
EGuar(RECT (%, 5), F) and EGuar(LIN 4 p(2), F).

Proof Since (G,7) € C,, A >0 and B > 0. For any M, M_ > 0 we have

SAT((G, 17) M+,M)
:>G[byl] <47

:>CI,ZM+—|-I)M_<’UZ forizl,...,r
:>M+<—andM SF

This implies both SAT(RECT (%,), M4, M_) and SAT(LIN 4 5)(2), M4, M_). Thus

EGuar((G,?), F)

— SAT(SCS((G, %), F), (G, %), F)
= SAT(SCS((G,7), F),RECT(%, 5), F)
= EGuar(RECT(%) F),
and similarly EGuar((G, ?), F') = EGuar(LIN 4 py(2), F). -

Proof of Theorem 28
Note that for: =1,...,r,

1 1 a; b
R < = - .
SAT(RECT(,), My, M_) = aiMy + biM_ < — + = < 2u;
Thus
SAT(RECT(l 1) M, M)= G| M+ | <27
AB” T [M-]—”
Thus

EGuar(RECT(%, 5), F)

which, combined with Lemma 29, gives part (a).
For part (b) we note that

SAT(LIN (4 5)(2), My, M)
— AM, +BM_ <2
= a;M, +bM_ <vAM, +v;BM_ <2y, fori=1,...,7r.

Thus
SAT(LIN (4 p(2), My, M_) = G[My] < 27.
Thus
EGU&I‘(LIN(A,B) (2), F) — SAT(SCS(LIN(A,B) (2), F), (G, 2’1_)'), F)
which, combined with Lemma 29, gives part (b). O

The following corollary generalizes Theorem 28 to the case where some components of
¥ may be 0.

Corollary 30 Suppose (G,¥) € C, represents a satisfiable constraint. Let r be the number
of rows in G, let @ be the first column of G, and let b be the second column of G. Construct

vy
:] as follows: For each i, if v; > 0 set v = v;. If v; =0 and a; =0

a vector ¥ = [
!

v"‘
set vi = bj/4. If v; =0 and b; = 0, set v} = a;/4. Otherwise, set vi = min(a;,b;)/4. Let

A= ma,x{Z—,i, cen Z—Z} and let B = ma,x{z—i, ey Z—Z} For any target class F,

(a) EGuar((G,%), F) = SAT(SCS(RECT (%, %), F), (G,27), F).
(b) EGuar((G,%),F) = SAT(SCS(LIN 4 5)(2), F), (G, 27), F).

Proof In each case, v > 0 and a; My + b;M_ < v} if and only if a; My + b;M_ < v;.
Furthermore, a; M +b;M_ < 2v} if and only if a; M +b;M_ < 2v;. Thus (G, ?") represents
that same constraint as (G,) and (G, 2¢") represents that same constraint as (G, 27). Thus
we obtain the corollary by applying Theorem 28 to (G, 7). O

Corollary 31 For a,b > 0,
ECuar(LIN 4 (v), F) = SAT(SCS(RECT(%, %), F),LIN(,) (20), F).

Corollary 32 If vy > 0 and vo > 0 then

EGuar(RECT (v1,v2), F') = SAT(SCS(LIN L 1,(2), F), RECT (2v1,2v), F).

v1 vy

29

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

[BF72] J. M. Barzdin and R. V. Freivald. On the prediction of general recursive functions.
Soviet Mathematics-Doklady, 13:1224-1228, 1972.

[GRS89] S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and
total orders. Proceedings of the 30th Annual Symposium on the Foundations of
Computer Science, 1989.

[HLL] D. P. Helmbold, N. Littlestone, and P. M. Long. Apple tasting. Submitted.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

[Lit89] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algo-
rithms. PhD thesis, UC Santa Cruz, 1989.

[MT89] W. Maass and G. Turdn. On the complexity of learning from counterexamples.
Proceedings of the 30th Annual Symposium on the Foundations of Computer Sci-
ence, pages 262-267, 1989.

[MT90] W. Maass and G. Turdn. On the complexity of learning from counterexamples
and membership queries. Proceedings of the 31st Annual Symposium on the Foun-
dations of Computer Science, 1990.

[Vov90] V. Vovk. Aggregating strategies. In Proceedings of the 3nd Workshop on Compu-
tational Learning Theory, pages 371-383. Morgan Kaufmann, 1990.

A Appendix

A.1 Verification that Vovk’s algorithm satisfies hypotheses of Lemma 13
To see this, first note that since a=%+a~? = 1 we have a®~%+1 = o and a®~%+1 = a®. Thus

b
alny > a®nyg iff Z—(l] > o~ b iff ”0:—0”1 >14a%0 =t iff (”OTT—O”I) > a®. Also, a®n; > a®ng

ni

a b a
iff @b > M0 ff ob > metm g geb (M) . This implies (M) > (M) iff
ni n1 ni no

b b a
(%0”1) > a® and thus a®n; > a®ng iff ("07;';"1) > (”07;"1"1) , so Vovk’s prediction rule

is equivalent to the rule of predicting 1 if and only if a’n; > a%ny.
Next we show that using this prediction rule yields an algorithm that satisfies the

hypotheses of Lemma 13 with h(v) = «". Note that h(v — G[(1)]) = a’ % and

1
of the theorem.
We show that the remaining requirements on the predictions are satisfied using induction
on t. Assume |F'| < h(¥). We take for an induction hypothesis that if n;; = |F; N VAL;(z¢)|
for i € {0,1},t € Z4, then

h(v— G[0]) = a7’ Since a®+ % = 1 it is easy to see that h satisfies the requirements

30

1. ‘Ft‘ < h(’Ut).

2. if ny0,me,1 > 0, then on trial ¢ Vovk’s algorithm predicts 0 if ny g > h(vy — G[(1)])

and 1 ifnt,l Z h(Ut—G[(1)])

For the base case, in which ¢ = 1, by assumption |Fi| = |F| < h(v) = h(v1). Further if

nl,OZh(U—G[é]):a” ¢ then niy = |F|—nmig<a’—a’"%=a" —b, Thusan11<

anig so the algorlthm predicts 0 as required. Similarly, if ni; > h(v — []) = "7t

then n1 9 < ¥~® and the algorithm predicts 1 as required.

For the induction step, choose ¢ > 1, and assume that the induction hypothesis holds
for all s < t. By Lemma 13, |F;| < h(d}). If nyg > h(v, — G[(1)]) = a”~% then ny; =
—¢ — "% Thus abnt,l < ang so the algorithm predicts 0 as

0
1

|Fy| — o < o — a®
required. Similarly, if nyq > h(v; — G[]) = a”7? then nip < a¥*~® and the algorithm

predicts 1 as required.
This shows that Vovk’s algorithm satisfies the requirements of Lemma 13.
A.2 Vovk’s algorithm is not within a constant factor of optimal

Here we show that the dependence of the loss bound of Vovk’s algorithm on b and n is not
within a constant factor of the best possible, by constructing a case in which the two grow
together.

For a given trial ¢, if n; = |F; N VALy(x¢)|, and ng = |F; N VALy(z;)|, then Vovk’s
algorithm predicts 1 exactly when

(’n,() +7’L1)b > (’no + nl)a
no 1
Suppose a =1 and b= [(n — 1) Inn]. In this case, by Theorem 18,

LCqp(n) = O(n).

We show that Vovk’s algorithm’s loss behaves for SVAR,, in this case, like Q(nInn). Con-
sider the first trial. Suppose ng =n — 1,n; = 1 (possible for SVAR,,). We have

= [(n—1)Inn]
< (n—1)lnn
< npln(1 4+ ng)
In(1 + no)
b S 1/n0
In(1 + no)
b S AT 1/ng)
bln(1+1/ny) < In(1+ng)

(14 1/ng)° 1+ ng
(no-l-m)b (no-l-nl)“
o ni

and Vovk’s algorithm predicts 0, incurring a loss of [(n — 1) Inn].

IN

IA

32

