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Abstract

We investigate the PAC learnability of classes of {0, ...,n}-valued functions (n < oo). For
n = 1 it is known that the finiteness of the Vapnik-Chervonenkis dimension is necessary and
sufficient for learning. For n > 1 several generalizations of the VC-dimension, each yielding
a distinct characterization of learnability, have been proposed by a number of researchers.
In this paper we present a general scheme for extending the VC-dimension to the case n > 1.
Our scheme defines a wide variety of notions of dimension in which all these variants of
the VC-dimension, previously introduced in the context of learning, appear as special cases.
Our main result is a simple condition characterizing the set of notions of dimension whose
finiteness is necessary and sufficient for learning. This provides a variety of new tools for
determining the learnability of a class of multi-valued functions. Our characterization is also
shown to hold in the “robust” variant of PAC model and for any “reasonable” loss function.



1 Introduction

A central task in Computational Learning Theory is to provide simple mathematical charac-
terizations of what is learnable under natural formal models of learning. An example along
these lines is the characterization of those classes of binary functions that are learnable in
Valiant’s PAC model in terms of the Vapnik-Chervonenkis dimension! proved by Blumer,
Ehrenfeucht, Haussler, and Warmuth [4]. A natural way to extend the PAC model is to
consider the learning of general multi-valued (instead of just binary) functions. Natarajan
[10] introduced a generalization of the Vapnik-Chervonenkis dimension, and showed that his
notion of dimension characterized the learnability of classes of {0, ..., n}-valued functions for
all fixed n > 1.

Intuitively, we can reduce the problem of learning any multi-valued function f to the
problem of learning a related set of binary functions by providing a binary encoding of
f’s range. For example, a function f : X — {0,...,n} in some class F can be learnt
by learning the [log(n + 1)| binary functions f; € F;, where f;(z) is the ith bit of f(z).
However, checking the learnability of each F; might result in a much harder task than directly
inspecting the class F. In this paper we offer several simple combinatorial properties of the
class F itself each characterizing the learnability of F. More precisely, we present a general
scheme for extending the VC-dimension to classes of {0,...,n}-valued functions for any
positive integer n. Our scheme defines a wide family of notions of dimension including as
special cases the Natarajan dimension [10], the Graph dimension [5, 10|, Pollard’s pseudo-
dimension [12, 13, 7], and a generalization proposed by Vapnik (see, e.g. [18]).

In extending Valiant’s PAC model, we assume (see also [10]) that a “target” function
is chosen from a given class of multi-valued functions and the learner is to select from the
same class a function that yields a good approximation of the target. The class is said to
be learnable if for any target function and for any probability distribution on the domain an
arbitrarily accurate approximation can be obtained with high probability with respect to a
random sample of finite size.

Our main result is a simple combinatorial condition characterizing the set of notions of
dimension (from among those generated by our scheme) whose finiteness is necessary and
sufficient for learning (Theorem 16). This provides a variety of new tools for determining
the learnability of a given class F of multi-valued functions and, furthermore, establishes
the equivalence between the learnability of F and the learnability of the classes (of binary
functions) generated by any reasonable binary encoding of F’s range. As a side effect we
establish the equivalence between PAC-learnability and the property of uniform convergence
of frequencies to probabilities over an associated class of binary “loss functions.” Another
interesting side effect (Corollary 6 and Theorem 10) is that the ratio of (1) the dimension of
a set F of {0, ...,n}-valued functions as measured by any of the previously studied notions
of dimensions listed above, and (2) F’s dimension as measured by any other of those notions
of dimension, is at most 4.671og,(n + 1). In fact, this relationship can be seen to hold
for any pair of the notions of dimension in our scheme, each of who’s finiteness provides a
characterization of learnability. Thus, one may use whichever of these notions of dimension
is most convenient for analyzing a given class of functions, and have a good estimate for all

!Defined by Vapnik and Chervonenkis [19)].



of them.

A further extension to Valiant’s learning framework can be obtained within the more
general pattern recognition model studied by Vapnik [17]. This framework, often called the
“robust” or “agnostic” PAC model, was discussed in an appendix of [4] and studied in a more
general setting in [7]. In the robust PAC model the learner’s task is to generate (with high
probability) a nearly optimal deterministic approximation of a stochastic relationship using
hypotheses chosen from a given class of functions. The finiteness of each of the dimensions
defined by our condition is shown to be sufficient for robust learning and necessary for
the weaker non-robust learning. Therefore they characterize learnability in both models.
Moreover, this double characterization is also shown not to depend on which particular
bounded nonnegative function is used to measure the loss.

In Section 2 we prove some combinatorial properties of our family of generalizations.
The applications of these properties to learning are described in Section 3. In Section 4
we show how our results can be extended to robust learning models and to more general
loss functions. We also show how sample size bounds can be computed using the results of
Section 2. Finally, Section 5 is devoted to open problems and conclusions.

2 Generalizations of the VC-dimension

We begin by introducing a general scheme for extending the VC-dimension.

The results presented in this section can be stated more easily if we define the VC-
dimension and its generalizations as dimensions of subsets of {0,...,n}™ for any positive
integer m. In Section 3 we will extend these definitions and demonstrate their relevance to
the learnability of classes of {0,...,n}-valued functions on arbitrary domains.

Let N be the positive integers. Choose m,n € N and let S C {0,...,n}™.

For each k-tuple 7 = (i1, ..., i) of indices from the set {1, ..., m}, define the 7-projection
of Sin {0,...,n}* by

St =A{(si1,--,8i,) 1 (51,-..,5m) € S}.

Suppose for a moment that n = 1. In such a case we say that S C {0,1}™ VC-shatters
a k-tuple 7 = (i1, ..., %) of indices if and only if

S, =A0, 1}k-

The VC-dimension of S is the length of the longest sequence of indices VC-shattered by S.2
Now let us return to the more general case in which n > 1. A natural way to extend the
above definition of shattering is to say that S shatters the k-tuple 7 = (i1,. .., ) if and only
if
S.={0,...,n}*

and define a notion of dimension as we did with the VC-dimension. This definition of
shattering was investigated in [1, 9, 15, 2]. Unfortunately, using this extension, if n > 1, the
set {0,1}™, which has 2™ elements, has dimension 0. This fact prevents the finiteness of

2Notice that this definition is equivalent to that we would obtain if we insisted that the shattered indices
satisfy 1 < 41 < 42 < --- < i < m, which is perhaps the easiest way to think of this and the following
definitions of shattering.



such a notion of dimension from being a characterization of learnability in the model studied
here [4].

To define a generalization that yields bounds on |S| for sets S of a given dimension that
are polynomial in m and therefore sufficiently strong for learning in our model, we look
for a “translation” of multi-valued vectors into binary vectors. This is done by considering
mappings ¢ from the set {0,...,n} to {0,1, x} (* will be thought of as a null element).

More formally, let ¥ be a family of mappings ¢ from {0,...,n} to {0,1,*}. For mw €
{0,...,n}™ and ¢ = (¢1,...,%n) € U™ denote (1(u1),-..,Ym(um)) by ¥(u). For a set
U C{0,...,n}™, define Y(U) = {4(u) : uwe U}.

We say 7= (iy,...,1) is U-shattered by S if there exists 1) € U* such that

In the case in which there exists such a v, which in addition has 1), = 5 = - -- = 1, we say
that 7 is uniformly W-shattered by S.

Let the W-dimension of S (denoted by ¥-dim(S)) be the maximum d for which there exists
a d-tuple7 € {1,...,m}¢ of indices U-shattered by S and let the uniform ¥-dimension of S
(denoted by W-dimy(S)) be the corresponding definition for uniform shattering.

By choosing different subsets ¥ of the set of all functions from {0,...,n} to {0, 1, *},
we obtain a whole family of notions of dimension. In Section 2.2 we will investigate some
properties of this family that will prove useful for showing results about learnability.

2.1 Previously known examples

Several previously defined notions of dimension correspond to particular choices of the set
¥ of mappings. Some of them are listed below.

e Pollard’s pseudo-dimension [13, 7] is the U p-dimension, where Up = {¢p : 0 < k < n}
and Ypy, is defined by

1 ifa>k

0 otherwise.

Vpx(a) = {

e Vapnik’s dimension [18] is the uniform ¥ p-dimension, where U p is defined above.

e The Graph dimension [5, 10] is the ¥-dimension, where ¥ = {tYgx : k € {0,...,n}}
and g is defined by

1 ifa=k

0 otherwise.

Yex(a) = {

e The Natarajan dimension [10] is the Wy-dimension, where Uy = {¢Yny; @ k,l €
{0,...,n},k # 1} and ¢, is defined by

1 ifa=k
wN,k,l(a') = 0 lf a = l
*  otherwise.



Let ¥ be the set of all mappings from {0,...,n} to {0,1} and define the ¥g-dimension
accordingly.

Note that the Graph dimension, the Natarajan dimension, and the ¥ p-dimension do not
make use of the natural ordering on {0, ...,n} and could just as easily be defined for abstract
finite sets.

2.2 Elementary Properties

We may define an order C on the set of all subsets of {0, 1,*}{%"} in the following way:
U C @ iff for all m € N and S C {0,...,n}™, S W-shatters 7 C {1,...,m} implies S
d-shatters 7 C {1,...,m}.

It can be shown that for m > 2, n > 3, this order is partial.
Theorem 1 If m = 2,n = 3, there exists S C {0,...,n}™ that Vg-shatters (1,2) and
doesn’t W p-shatter it, and there exists T C {0,...,n}™ that Vp-shatters (1,2) and doesn’t
W s-shatter it. Hence Vp and Vg are incomparable.

Proof: In Appendix A. O

Lemma 2 Let W, ® be classes of mappings from {0,...,n} to {0,1,*} such that ¥ C .
Then for all S C {0,...,n}™

U-dim(S) < &-dim(S)
Proof: Follows directly from the definitions. O

The next lemma gives a sufficient condition for ¥ C & for families ¥ and ¢ of mappings
from {0,...,n} to {0, 1, x}.
Lemma 3 Let U, ® be classes of mappings from {0,...,n} to {0,1,*} such that for all
W € VU there exists ¢ € ® such that ~1(0) C ¢ (b) and (1) C ¢ *(1 — b) holds for b
either 0 or 1. Then ¥ C &,
Proof: Assume that for all 1) € U there is a ¢ € ® such that ¢)~1(0) C ¢~1(0) and ¥ ~*(1) C
&7 (). (The case in which for all p € ¥ there is a ¢ € ® such that 1/1 L(0) C ¢~ ( ) and

dze

¥~1(1) C ¢71(0) can be handled analogously.) Choose S C {0,...,n}™ an {1,...,m}*
such that S W-shatters 7. Choose 1) € U* such that

For each j,1 < j < k, let ¢; be such that 1;'(0) C ¢;'(0) and ¢;'(1) C ¢;'(1). Let
b= (b1, k) B ~

We claim that {0,1}* C ¢(S).). Choose b = (b,...,b;) € {0,1}*. Let 7 € S| be such
that () = b. Choose j € {1,...,k}. Since ¢;'(0) C ¢;'(0), ¢;'(1) C ¢;'(1), and
b; € {0,1}, ¢;(r;) = ;(r;). Since j was chosen arbitrarily, ¢(7) = ¢(7) = b. Therefore,
since b was chosen arbitrarily,

{0, 1}k - a(sh)

Thus S ®-shatters 7. The uniform case follows analogously. O

Finally, we have the following simple observation.
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Lemma 4 For any set ¥ of mappings from {0,...,n} to {0,1,%} and any S C {0,...,n}™,
U-dimy (S) < U-dim(S).

2.3 Distinguishers

Let ¥ be a family of mappings from {0, ..., n} to {0, 1, x}. We say that a pair a, b of distinct
elements in {0,...,n} is W-distinguishable if there exists ) € ¥ such that ¥ (a) = 0 and
¥(b) = 1 or vice versa. We call ¥ a distinguisher if each pair a,b of distinct elements in
{0,...,n} is ¥-distinguishable.

All the examples of notions of dimension given in Section 2.1 are easily seen to correspond
to distinguishers. It is also immediate to see that if n = 1, for any distinguisher ¥ the
definitions of the W-dimension and the uniform ¥-dimension are equivalent to the definition
of the VC-dimension.

Theorem 5 For any distinguisher W,
Uy C UL Upg.

Proof: Follows immediately from Lemma 3 and the definition of a distinguisher. O
Theorem 5 trivially yields the following corollary about the W-dimension and the uniform
W-dimension for various ¥’s.

Corollary 6 Choose a distinguisher ¥ and S C {0,...,n}™.

Uy-dim(S) < U-dim(S) < Ug-dim(S)
\IIN—dimU(S) S \Il—dsz(S) S \IIB—dsz(S)
We now turn to the proof of some combinatorial bounds about distinguishers that will be

used in the next section. First, we establish the following bound on the uniform ¥-dimension
of S in terms of its (non-uniform) ¥-dimension for any V.

Theorem 7 Choose a set ¥ of mappings from {0,...,n} to {0,1,*} and choose a subset S
of {0,...,n}™. Then
U-dim(S) < |¥|(¥-dimy(S)).

Proof: Let d = U-dimy(S). Suppose that the W-dimension d' of S is greater than d|¥|. Let
7= (i1,...,i4) be a sequence shattered by S and let ) = (¢1,...,%s) be such that

{0,1}* CH(S,)-

By the pigeonhole principle, since d' > d|¥|, there exists a subsequence (ij,,...,%;,,,) of 7
such that for all 1 < k,1 < d+1, ;, = 9;,. Therefore, S uniformly W-shatters (i, ..., ;,,,),
contradicting the assumption that ¥-dimy (S) = d. O

We next show that this bound is the best possible in terms of d and |¥|.

Theorem 8 Choose positive integers d and r. Then if m and n are large enough, there is a
family ¥ of functions from {0,...,n} to {0,1,*}, and S C {0,...,n}™ for which

7



1. |V =r,
2. U-dimy(S) =d,
3. U-dim(S) = dr.
Proof: In Appendix B. O

We will make use of the following result which bounds from above the cardinality of a
set S C {0,...,n}™ in terms of its Natarajan dimension.?

Theorem 9 ([8]) Choose S € {0,...,n}™. Then if Un-dim(S) < d,

S0 = ()

We apply this theorem to obtain an upper bound on the W¥g-dimension of a given class
in terms of its Natarajan (¥y) dimension. Recall that Corollary 6 established that the
Natarajan dimension of a class is at most its ¥ g-dimension.

Theorem 10 Let S C {0,...,n}™. Let dy = Vy-dim(S) and dg = Vp-dim(S). Then
dp < 4.67dylog,(n + 1).

Proof: Let 7 = (iy,...,1%a,) be a sequence of indices ¥ p-shattered by S. Let T' = S|.. Since
there exists 1) € Wp such that

{0,1}% C %(T),
we have that |T'| > 2¢%. From Theorem 9, we may conclude that |T| < (%) ~. Thus,
d
dBe(n + 1)2 " > 2dB'
2dy -

Using the approximation Inz < zy — In(ey) (see [14]), which holds for any pair z,y of real
positive numbers, we derive the following chain of implications for all y < In 2,

9d8 < (dBe(n + 1)2>dN

2dn
2
— dBanSlelnd—B—i-lnM]
dy 2
d 1)2
— dpln2 < dy [—By — In(ey) + In M]
dn 2
12
—s dBangdBerlen(”;y)
d 1)?
— N (n+ ).

dpg < |
B_an—yn 2y

3 A looser bound was proved by Natarajan [10]. We apparently need the stronger bound to prove Theo-
rem 10.



If we assume further that y < 1/2, we obtain the following

2dyIn(n + 1) — dy In(2y)
In2—1y
(2In2)dy logy(n + 1) — dy In(2y)
In2—y

(2In2) — In(2y)
( In2—y
_ (In2-Iny
N ( In2 —y

dp

) dylogy(n + 1) (since n > 1,y < 1/2)

) dylogy(n+1).

In 10
In2—-1/5

Choosing y = 1/5 and verifying that < 4.67 completes the proof. O

Finally, we show that the bound of Theorem 10 is within a constant factor of the best
possible in terms of dy and n.

Theorem 11 Choose a positive integer d. Then if m = d[logy(n + 1)], there exists S C
{0,...,n}™ for which

[ ] \IIN—dzm(S) S d.
o Up-dim(S) = d|logy(n+1)].
Proof: In Appendix C. O

3 Applications to learning

We move on to apply the results of Sections 2.2 and 2.3 to a natural extension of the
PAC learning model. We describe a number of characterizations of learnability for classes
of {0,...,n}-valued functions proving, in particular, that for any distinguisher ¥, a class
is learnable if and only if its W-dimension is finite. After Vapnik [18], we will adopt a
naive attitude toward measurability, assuming that every set encountered in our proofs is
measurable. If one prefers, one may assume that the domain of any probability space we
describe is countable, although considerably weaker assumptions, similar to those used in
[4, 7], suffice. If X is a set, P is a probability distribution over X, and f maps X to R, let
E.cp[f(z)] denote the expectation of f with respect to P.

Choose a set X, a positive integer n, and a family F of {0, ..., n}-valued functions defined
on X. For a probability measure D over X and a function f € F we define the error of a
function h with respect to D and f, denoted by errorp f(h), to be

D{z € X : f(z) # h(z)}.

A learning strategy for F is a mapping from finite sequences of elements of X x {0,...,n}
to F.

Intuitively, our definition of learnability requires the existence of a learning strategy able
to yield an arbitrarily good approximation of any target function in the class with high
probability with respect to a random sample of finite size.
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More formally, we say that F is learnable if there exists a learning strategy A (not
necessarily computable) and an integer-valued function m = m(e, d) such that for any €, >
0, for any probability measure D over X, and for any f € F the event

errorp,;(A(7)) > €

occurs with probability at most § for random sequences T = ((z1, f(21)),- -, (Tm, f(Tm))),
where (x1,...,2Z,) € X™ is drawn according to D™.

This definition of learnability is essentially that studied in [10], which in turn was based
on Valiant’s PAC model [16]. As we discuss in Section 4, the characterizations of learnability
we present here also hold for more general and perhaps more realistic “loss functions.” For
instance, the “loss” on z can be allowed to depend on the extent the target’s value f(x)
differs from the value h(x) of the learner’s hypothesis.

In order to apply the results of the previous section, we now extend the notion of the
dimension of a set of vectors to sets of functions.

For a finite sequence T = (x1,...,zx) of elements of X define the Z-restriction of F by

Fio = {(f@),--, f@) : f € F).

For a class ¥ of mappings from {0,...,n} to {0, 1, %} define the ¥-dimension of F (denoted
by ¥-dim(F)) to be the maximum over all positive integers k and all T € X* of the U-
dimension of its Z-restriction, if such a maximum exists, and infinity otherwise. Define the
uniform W-dimension of F analogously.

As a first step, we mention the following result showing that the finiteness of the Natara-
jan dimension is necessary for learning.

Theorem 12 ([6, 10]) If ¥ y-dim(F) = oo then F is not learnable.

The next theorem follows relatively straightforwardly from the results obtained in the
previous section.

Theorem 13 Choose distinguishers W and ®. Then the following are equivalent:
1. U-dim(F) = oo.
2. ©-dim(F) = oc.
3. W-dimy (F) = oo.
4. ©-dimy(F) = 0.

Proof: (1. = 2.): Assume for contradiction that ¥-dim(F) = oo and ®-dim(F) is finite.
Let d = U-dim(F). Let my and T = (21, ..., %m,) be such that that

@-dim(F_) = d.

Let mo and ¥ = (y1, - - -, Ym,) be such that

V-dim(F) = [1+ 4.67dlogy(n + 1)].

10



Let Z = (o1,..., Ty, Y1, - - -, Ymy)- Let S = F_. Trivially, ®-dim(S) = d and
U-dim(S) > 4.67dlog,(n + 1).
Applying Corollary 6 we have that
U p-dim(S) > 4.67¥ y-dim(S) log,(n + 1),

but by Theorem 10 this is a contradiction.
(2. = 1.): This follows from (1. = 2.) by symmetry.
(1. = 3.): Assume for contradiction that U-dim(F) = oo and ¥-dimy (F) is finite. Let
d = U-dimy(F). Let m; and T = (z1,...,%,,) be such that
U-dimg (F.) = d.

Let mg and ¥ = (y1, ..., Ym,) be such that
U-dim(F,) > |¥|d.

Let Z = (@1,.. ., Tms Y1,-- > Ymo)- Let S = F_. Again, trivially, U-dimy(S) = d and
U-dim(S) > |¥|d, which contradicts Theorem 7.

(2. = 4.): This follows immediately from (1. = 3.).

Finally, (3. = 1.) and (4. = 2.) follow immediately from Lemma 4. This completes the
proof. O

Combining Theorem 12 with Theorem 13, we can show that the finiteness of any dimen-
sion defined by a distinguisher is necessary for learning.

Corollary 14 Let ¥ be a distinguisher. If ¥-dim(F) = oo, then F is not learnable.

We now turn to the definition of a class of {0, 1}-valued “loss functions” for F, whose
combinatorial and statistical properties are related to the learnability of F in a way that
will be shown later.

Define the 0-1 loss function ly_; from {0,...,n}* to {0,1} by

1 ifa#b
0 otherwise.

lo_1(a, b) = {

For any function f from X to {0,...,n} define the function ly_; ; from X x {0,...,n} to
{0, 1} by l()_l,f(ﬂi, CL) = l()_l(f(ﬂ?), a). Finally, define the class l()_l,]: = {l()_l,f . f < F} of 0-1

loss functions induced by F.
Lemma 15 The VC-dimension of ly_1 7 equals the Graph dimension of F.

Proof: Suppose the sequence z1,...,x; of elements of X are Wg-shattered by F. Then
there exist 11, ...,9 € Vg such that

{@(f (@), -, (W (f (@)} = {0, 1}

11



Let ai,...,a; € {0,...,n} be such that for all j,1 < j <k, 1, is defined by

1 lf b = CI,j
0 otherwise.

50 =

Such a sequence ay, ..., a, exists due to the definition of Vs-shattering. We claim that the
sequence (1,a1), - .., (zk, a) of elements of X x{0,...,n} is VC-shattered by ly_1 ». Choose
b e {0,1}*. Let f € F be such that

b= (1—¢i(f(z1)),---, 1 — (S (zk))).

Since, by definition, for all 5,1 < j <k, lo_1,f(z;,a;) =1 —¢;(f(x;)), we have

b= (lo—1,p(21,01), . .-, lo—r,p (T, ar)).

Since b was chosen arbitrarily, ly_; # shatters (z1,a1), ..., (2, ax). Thus the VC-dimension
of lo_1 r is at least the Graph dimension of F.
Now assume that a sequence (z1,a1), ..., (zk, ax) of elements of X x{0, ..., n} is shattered

by lo—1,7. We claim that zq, ...,z is ¥g-shattered by F. Define 94, ..., € ¥g, by

1 lf b = O,j
0 otherwise.

50 ={

Applying the fact that for all j,1 < j <k, lo_1 s(z;,a;) =1 —1;(f(x;)), in a similar manner
to the above verifies that zi,...,z; is Wg-shattered by F, and therefore that the Graph
dimension of F is at least the VC-dimension of /y_; . This completes the proof. O

Next we define a statistical property of lo_; » that in the next theorem will be shown
equivalent to learning. We say that ly_i r is uniformly convergent if there exists an integer-
valued function m = m(e) such that for all ¢ > 0 and for all probability measures P over
X x{0,...,n},if ((z1,01),...,(Zm, am)) is chosen according to P™, the event

1 m
feF: ‘R > lo-1,1(w5,a5) = Bgayerllo-,s(z, a)]| > €

=1

occurs with probability at most €. Since we require that the same m be sufficient for all
distributions P, this is sometimes called distribution free uniform convergence.

Now we are ready for our main result which shows a variety of ways in which learnability
can be characterized.

Theorem 16 For any distinguisher ¥ the following are equivalent:
1. U-dim(F) is finite.
2. U-dimy (F) is finite.
3. ly_1,7 is uniformly convergent.

4. The VC-dimension of ly_1 7 is finite.

12



5. F 1s learnable.

Proof: Theorem 13 implies that (1. < 2.). Corollary 14 implies that (5. = 1.). Lemma 15
and Theorem 13 imply that (1. < 4.). The implication (4. = 3.) is an immediate consequence
of the results in [19] and the implication (3. = 5.) is a special case of [7, Lemma 1]|. This
completes the proof. O

We remark that a result essentially equivalent to implication (4. = 5.) was also shown
in [11, Theorem 5.4, p. 114].

The concept of distinguisher is a kind of metacharacterization, as it characterizes those
W which in turn characterize learnability both through the finiteness of the W-dimension and
through the finiteness of the uniform W-dimension. To see this, all that remains is to show
that for any family ¥ of mappings from {0,...,n} to {0, 1, *x} which is not a distinguisher
neither the W-dimension nor the uniform ¥-dimension characterizes learnability.

Lemma 17 If ¥ is a family of mappings from {0,...,n} to {0,1, *} which is not a distin-
guisher and if X is infinite, then there is a family F of functions from X to {0,...,n} which
has V-dimension 0 and has uniform V-dimension 0, but which is not learnable.

Proof: Suppose V fails to distinguish a1, ay € {0,...,n}. Then the set of all functions from
X to {a1,as} trivially has W-dimension and uniform ¥-dimension 0. However, this class is
isomorphic to the set of all {0, 1}-valued functions defined on X, which was shown in [4] to
not be PAC-learnable if X is infinite. O

Say that a family ¥ of mappings from {0,...,n} to {0, 1, *} provides a characterization
of learnability if and only if for any family F of {0, ..., n}-valued functions the learnability
of F is equivalent to the finiteness of either its W-dimension or its uniform W-dimension.
Then Theorem 16 and Lemma 17 yield the following result.

Theorem 18 A family U of mappings from {0,...,n} to {0,1,*} provides a characteriza-
tion of learnability if and only if V is a distinguisher.

3.1 Reductions between learning problems

We now show a different way in which distinguishers can be used to characterize learnability.
A natural approach to learning many-valued functions is to represent them by sets of {0, 1}-
valued functions. For example, a function f : X — {0,...,n} can be represented by [log(n+
1)] binary functions f;, where f;(x) is the ith bit of f(z). The problem of learning f can
then be reduced to the problem of learning each function f; for i =1,..., [log(n+1)]. More
generally speaking, reductions between learning problems can be built by representing sets
of multi-valued functions through sets of {0, 1, x}-valued functions. This is done using some
set ¥ of mappings from {0,...,n} to {0,1,*} whereby we represent each f in a class F
of {0,...,n}-valued functions through a set of {0, 1, x}-valued functions. In this section we
show that whenever a set ¥ of such mappings is a distinguisher, then its representation of
F preserves learnability. More precisely, the learnability of a class F is equivalent to the
learnability of each set of {0, 1, *}-valued functions in the collection representing F through
the distinguisher W.
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We begin by introducing a few preliminary definitions. For all f : X — {0,...,n}
and all ¢ : {0,...,n} — {0,1,*} let ¥; be the function from X to {0,1,+} defined by
Yr(z) = ¢(f(x)). Moreover, for any class F of such functions f let ¢vr = {¢y : f € F}.

The definition of VC-shattering (and therefore the associated notion of VC-dimension)
can be trivially generalized to classes of {0, 1, *}-valued functions by insisting that a sequence
T be VC-shattered if and only if 7_ = {0, 1} (as usual, *’s do not contribute to shattering).
In the rest of the section we will use the above slightly extended definition of VC-dimension.

The next lemma relates the notions of uniform W¥-dimension and VC-dimension.

Lemma 19 For all sets U of mappings from {0,...,n} to {0,1, x},
U-dimy (F) = max {VC-dim(yx) : ¢ € ¥}.

Proof. Immediate from the definitions. O

We then obtain the following characterization.

Theorem 20 For all distinguishers U, F is learnable if and only if ¥ is learnable for all
Y e v,

Proof. Choose a distinguisher ¥. By Theorem 16, F is learnable if and only if the uniform
P-dimension of F is finite. By Lemma 19, this is equivalent to the finiteness of the VC-
dimension of ¢z for all ¢ € U. By the results of [4], for each 1) € ¥, ¥+ is learnable exactly
when it has finite VC-dimension. This completes the proof. 0O

As a final remark to this section we point out that Theorem 16, as most of the results
presented in this paper, holds also if we use a more general definition of distinguisher where
each mapping ¢ depends on both the domain and the range of the functions in F. More
formally, in this framework a distinguisher is a set ¥ of mappings % from X x {0,...,n} to
{0,1,%}. A sequence T on X (say of length d) is ¥-shattered by F whenever there exists a
sequence (¢¥q,...,¢,) € ¥ such that for any b € {0,1}¢ there exists a f € F for which

(#1221, f@1), - Walea, f(24))) = .

Accordingly, the ¥-dimension of F is the length of the longest sequence T W¥-shattered by
F.

4 Further applications

In this section we describe how our results can be applied to more general and perhaps
more realistic learning problems. We also apply the bounds of Section 2 to the derivation of
sample complexities, that is, sample sizes sufficient for learning in our framework.

4.1 Robust learning

For practical learning tasks one might want to relax the hypothesis that the pairs (z,a) €
X x {0,...,n} in the sample are generated according to a function belonging to some
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known class, or even that there exists a functional relationship between the z’s and a’s.
A more realistic assumption might be to require the existence of a probability distribution
on X x {0,...,n} from which all pairs in the sample are independently drawn. In such
learning settings, which are usually called “robust”, the learner’s goal might be to find a
good approximation, according to a proper criterion, of the unknown distribution within the
class F of hypotheses. In this section we prove that learnability and robust learnability are
in fact equivalent properties of classes of {0, ...,n}-valued functions.

In the robust variant of our learning model, the error of a function A € F is defined with
respect to a distribution P over the set X x {0,...,n} by

errorp(h) = P{(z,a) : f(z) # a}.

We say that a class F of {0,...,n}-valued functions is robustly learnable if there exists
a learning strategy A (again not necessarily computable) and an integer-valued function
m = m(e, §) such that for any €, > 0 and for any probability measure P over X x{0,...,n},
the event

errorp(A(v)) > }relﬁ errorp(f) + €

occurs with probability at most § over all samples 7 € (X x {0,...,n})™ drawn according
to P™ (the m-fold product measure derived from P).

This definition of learnability is a restriction of that studied in [17, 7] and we refer the
interested reader to these sources for additional motivation. Using the results of previous
sections we can quickly prove the following theorem.

Theorem 21 F is learnable if and only if F is robustly learnable.

Proof. The implication (3. = 5.) in Theorem 16 holds also in the robust learning model.
For the other direction just observe that learnability is clearly implied by robust learnability.
O

Note that the equivalence between learnability and robust learnability could have been
more directly demonstrated by combining Natarajan’s [10] and Haussler’s [7] results.

4.2 General loss functions

A more general error model than that of Section 3 can be considered. A natural choice
could be a model in which certain errors are more serious than others. Call any function [
from {0,...,n}? to the nonnegative reals such that for any a € {0,...,n}, l(a,a) = 0 a loss
function. Let the error of a function h with respect to a loss function [, a distribution D
over X, and a function f be

erroryp,f(h) = Egep[l(f(2), h(z))].

We then say that F is learnable w.r.t. a loss function | if F is learnable according to the
definition of learnability given in Section 3 with errorp s replaced by error; p r. Notice that
the learnability of F is equivalent to the learnability of F w.r.t. the loss function [y ; defined
in Section 3.
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Theorem 22 F is learnable if and only if F is learnable w.r.t. all loss functions.

Proof. Since F is learnable if and only if F is learnable w.r.t. ly_;, the “if” direction is
trivial. For the other direction assume F is learnable w.r.t. lo_; and choose a loss function
[. Let M be the maximum value taken by [ on its (finite) domain. Then for any f,g € F

errory,p,f(g) < M - errorp ¢(g).

Therefore, for any e > 0, distribution D and functions f,g € F, errorp s(g) < 57 implies
error; p,r(g) < e. The theorem is proven. O

The proof of the “only if” part in Theorem 22 is analogous to the proof of [11, Theorem
5.6, p. 121], where a similar statement is proven for classes of real-valued functions using the
notion of a metric instead of the more general notion of loss.

In Section 3 we introduced the class lp_1,# of 0-1 loss functions induced by F. This
notation can be extended to any loss function [ as follows. Let /; be the function on X x
{0,...,n} defined by

U (@,a) = (f(x), )
and let I = {l; : f € F}. Notice that Ix is a class of functions with finite range. Notice
further that the definition of the ¥p dimension given in Section 2.1 can be extended to
classes of real-valued functions, the union of whose ranges contains nonintegral values as

follows.
For each real x define ¢p,, : R — {0,1} by

1 ifa>k
0 otherwise.

wP,n (G,) -

We then say that the sequence (zi,...,7;) € X* is Up-shattered by F iff there exists
K1,..., K such that

{0, 1} C{(¥pw (f (1)), - - ¥p (f(xk))) : | € F}

and define the ¥ p-dimension of F to be the length of the longest sequence W p-shattered by
F.
We now extend Theorem 22 to robust learning. A preliminary lemma is needed.

Lemma 23 For all classes F and loss functions | the Vp-dimension of lx is at most the
U g-dimension of F.

Proof. To prove the lemma is sufficient to show that for all positive integers d and all
zZ € (X x{0,...,n})% if I Up-shatters Z = (z1,a1),..., (74, aq), then F Up-shatters
T = (Z1,...,24). Assuming that Z is Up-shattered by Iz amounts to saying that there is a
sequence T of d positive reals such that for all b € {0, 1}? there is some f € F satisfying

l(f(x,),az) >r, = b=1 for i = 1,...,d. (1)
For each i = 1,...,d, define the mapping v; with domain {0,...,n} by

Yi(c) = {

1 ifl(c,a;) >r;
0 otherwise.
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Since for 1 < ¢ < d, ¢; maps {0,...,n} to {0,1}, it belongs to the distinguisher ¥p, since
Up contains all such mappings. Therefore, condition (1) implies

Vi(f(z:) =1 <= I(f(x5),a;) > 13 fori=1,...,d.

Since such a set of 1; can be found in ¥y for all choices of Z and 7, the lemma is proven. O

We will also use the following result.
Theorem 24 ([7]) If the ¥p dimension of lF is finite then F is robustly learnable.
Now we are ready for the main result of this section.

Theorem 25 F s robustly learnable if and only if F is robustly learnable w.r.t. all loss
functions.

Proof. It is easily verified that the robust learnability of F is equivalent to the robust
learnability of F w.r.t. ly_;, and this proves the “if” part. For the other direction if F is
robustly learnable, then F is learnable as well. Since ¥p is a distinguisher, by Theorem 16
the Wpg-dimension of F is finite. Choose a loss function /. By Lemma 23, the ¥ p-dimension
of [ is finite. By Theorem 24, this implies the robust learnability of F w.r.t. [. O

4.3 Sample size bounds

The definition of learnability for a class F of functions calls for the existence of both a
learning strategy and an integer-valued function m = m(e, d) satisfying the given learning
criterion. The term PAC learning sample complexity is often used to denote the slowest
growing function m for which such a learning strategy exists. By generalizing results from
[4], we now prove upper bounds on the PAC learning sample complexity for the multi-valued
case.

Theorem 26 The PAC learning sample complexity of a class F of {0,...,n}-valued func-
tions 1s at most

1 1 1
where dg is the Graph dimension of F.

Proof. Choose a class F of functions from X to {0,...,n} and let dg be its Graph dimension.
Choose a distribution D on X and a target function f € F. Let P be the distribution induced
on X x{0,...,n} by D and f. By Lemma 15, the VC-dimension of the class l_1 + of 0-1 loss
functions on X x {0,...,n} induced by F equals the Graph dimension of F. Now observe
that the problem of learning the target function f € F to within accuracy € > 0 reduces to
the problem of identifying any f € F for which Pr(ly_1,; = 1) < e. By the results of [4], a
sample size of order as specified in formula (2) is sufficient to ensure that, with probability
at least 1 — J, any hypothesis h for which lo_; 4(z,a) = 0 for all pairs (z,a) in the sample
achieves this goal. O

We can generalize Theorem 26 and obtain a similar bound in terms of the ¥-dimension
and the uniform W-dimension of F for each distinguisher W.
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Theorem 27 Choose a class F of {0,...,n}-valued functions and a distinguisher V. Then
the PAC learning sample complexity of F is at most

@) (%(d(log n) log % + log %)) (3)

where d is the V-dimension of F and at most

O (%(u|\11|(logn) log% +log§)) (4)

where u is the uniform V-dimension of F.

Proof. Corollary 6 and Theorem 10 imply that for any class F of ¥-dimension d and ®-
dimension d’, where ¥ and ® are two distinguishers, d’ = O(dlogn) holds. Therefore, by
Theorem 26 the upper bound (3) holds whenever F has ¥-dimension d with respect to some
distinguisher ¥. Finally, the bound (4) is an immediate consequence of Theorem 7. O

Theorems 26 and 27 can both be easily extended to arbitrary loss functions by replacing
each 1/e with (max,(a,b))/e.

Regarding the second part of the above theorem, observe that the size of a distinguisher
can have very different rates of growth with respect to n. For instance, |¥p| is exponential
in n whereas |Wp| is linear. Also, there are distinguishers whose size is logarithmic in n: Let
U, be the set defined by

{thr - k < [logy(n + 1)1} (5)

where 1, ;(j) is the kth least significant bit in a binary encoding of j. Then ¥, has size
[log,(n + 1)] and is a distinguisher, as one can easily verify.

5 Conclusions and open problems

In this work we gave a general scheme for extending the VC-dimension to classes of multi-
valued functions and we proved a combinatorial condition characterizing those generaliza-
tions of the VC-dimension whose finiteness is necessary and sufficient for learning in a natural
extension of the PAC framework. We also provided further characterizations of learnability
for classes of multi-valued functions in terms of the VC-dimension and in terms of the uni-
form convergence property of a class of induced loss functions. We then proved equivalence
between learning and robust learning and independence of our notion of learnability on the
choice of the loss function. We finally showed applications of these results to the problem
of estimating the PAC learning sample complexity sufficient for learning with consistent
hypotheses.

A possible direction for future work is the investigation of the relationships of the re-
sults proven here to the real-valued case. In fact certain notions of dimension, such as the
Pollard’s V¥ p-dimension, are naturally extended to classes of real-valued functions taking
values in a bounded real interval (say [0, 1] for simplicity). A real-valued learning problem
can be reduced to the multi-valued case through a discretization of the range [0,1] into a
set {0,...,n} (see [8]). The number of discrete elements into which the continuous range
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is broken is proportional to %, where € is the required bound on the error of the hypoth-

esis. Also, the discretization does not increase the ¥p-dimension of the original class, so
the finiteness of either the Wp-dimension or Vapnik’s uniform W¥p-dimension are sufficient
for robust learning in the real-valued case. On the other hand, some properties true in the
discrete case are lost in the continuous one. For instance, while in the discrete case, the
finiteness of the V¥ p-dimension is equivalent to the finiteness of the uniform ¥p dimension,
the class of monotone increasing functions on [0, 1] has infinite ¥p-dimension but uniform
U p-dimension equal to 1.

Recent results [3] show that the equivalence between learning and robust learning does
not carry on to the real-valued case. Namely, there are classes of [0, 1]-valued functions which
are learnable but not in a robust way.
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A Proof of Theorem 1

Suppose

If ¥ = (Yg1,%e,1), then
E(S) = {(0’ 0)? (0’ 1)? (1, 1)? (1’ 0)} = {Oa 1}2:

and (1,2) is Wg-shattered by S.

Assume for contradiction that (1,2) is Wp-shattered by S. Then there exists ¢ =
(Ypk, ¥py) where k,l € {1,2,3} such that {0,1}*> C ¢(S). Assume as a first case that
k > 1. Since there is (u,v) € S such that (1,0) € ¥(S), u > k > | > v contradicting the
easily observed fact that u < v for all (u,v) € S. Assume as a second case that k < [.
Since there is (u,v) € S such that (0,1) € ¥(S), v > 1 > k > u contradicting another easily
observed fact: that v > v — 1 for all (u,v) € S. Therefore (1,2) is not ¥p-shattered by S.

If ¢ = (¢¥p2, ¥p2), then
E(T) = {(07 0)7 (0, 1)7 (17 1)7 (1, 0)} = {07 1}27

and (1,2) is Wp-shattered by 7.

Choose ¥ = (g, ¥a;) where (k,1) € T. Then for all £ € T for which 7 # (k,1),
P(t) = (0,0). If (k,1) € T, and ¥ = (g, %a,), then for no? € T is (f) = (1,1). Thus,
(1,2) is not ¥g-shattered by 7. This completes the proof. O

This result may trivially be extended to arbitrary m > 1,n > 2.

B Proof of Theorem 8

Let n=7r,m =dn, and ¥V = Up. Let
Jo={1,...,n}, i={n+1,....2n},...;Ju 1 ={(d—1)n+1,...,dn}.

Let S be the set of all 5 € {0,...,n}™ for which for all j € {0,...,d — 1}, for all u,v € J;,
if u < v, then s, < s,.

Notice that part 1 of Theorem 8 is satisfied by the assumption ¥ = Up. We now split
the proof of parts 2 and 3 into a number of lemmas.

Lemma 28 The uniform Vp-dimension of S is at least d.

Proof: We claim that (n,2n,...,dn) is uniformly ¥p-shattered by S. Choose b € {0, 1}
Define 5 € {0,...,n}™ by

0 if n doesn’t divide ¢, or if bj;/,) =0
S; = .
1 otherwise.
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Clearly 5 € S, and B
(Upi(sn), Upi(s2n)s---, Ypi(San)) = b-

Since b was chosen arbitrarily

{0, 13 C {(¥pi(sn), ¥pi(san)s - -, Upi(san)) : 5 € S}.
Thus (n,2n,...,dn) is uniformly W¥p-shattered by S, completing the proof. O

Lemma 29 Choose a positive integer q. If S uniformly Vp-shatters 7 € {1,...,m}4, then
for each 1 < j <d,
Ha:1<i<g}nJ;| <1

Proof: Assume the negation of the lemma for contradiction. Let 1 < k£ < n be such that
{0, 1Y C{(Yp(si), Yrr(si,), - - -, Ypr(ss,)) : 5 € S},

and let j be such that
Hij:1<j <g}nJ;|>1.

Let v and v be distinct elements of J; for which u < v. We have
{0,132 C {(¥px(su), Tpi(sy)) : 5 € S}
In particular,
(1, O) € {(\Ilp,k(su), \I/p’k(Sv)) NS S}

Thus,
Sy > k and s, < k,

which implies
Sy > Sy,

which, by the definition of S, is a contradiction since u,v € J; and u < v. This completes

the proof. O
Theorem 30 (Requirement (2.) from Theorem 8) The uniform Vp-dimension of S is
d.

Proof: Follows immediately from Lemmas 28 and 29. O

Corollary 31 The Vp-dimension of S 1s at most dn.
Proof: Follows immediately from Theorem 30 and Theorem 7. O

Lemma 32 The Vp-dimension of S is at least dn.
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Proof: We claim that (1,...,dn) is shattered. Define v by letting

Y = VP (i—n|(i-1)/n))-
fori=1,2,...,dn. Thus

w - (wP,la o 'aq/}P,naq/}P,la .. 'awP,na o ':wP,la e a¢P,n)-

Choose b € {0,1}9". Define 5 € {0,...,n} by

s,-:{ (i—1)—nl[@-1)/n] ifb=0

i—nl(i—-1)/n] otherwise.

Since s; < ¢ —n|(i —1)/n|, and s;41 > i —n|i/n|, if i and ¢ + 1 are both in J; for some
J, (1 —1)/n| = |i/n], and therefore s; < s;;1. Therefore s € S. Choose i € {1,...,dn}.
Then, by definition,

si>i—nl(i—1)/n|iff b; =1,
and therefore

Yi(8i) = ¥p,ion|(i-1)/n)) (i) = b;.

Since b was chosen arbitrarily, B
{0, 1} C %(S).
This completes the proof. O

Theorem 33 (Requirement (3.) from Theorem 8) The ¥p dimension of S is dn.

Proof: Follows from Corollary 31 and Lemma 32. O

C Proof of Theorem 11

Let Wy, be the set defined by

{torp 11 <k < [logy(n+1)]} (6)

where 1, ,(r) is the kth least significant bit in a binary encoding of r.

Define v : {0,...,n}¢ — {0,...,n}™ as follows. (Recall that m = d[log,(n + 1)].)

Suppose (z) = 5. Informally, 5 is formed by first writing the binary representation of z
using the alphabet {0, z;}, then writing the binary representation of z, using the alphabet
{0, 22}, and so on, and then “concatenating” the results. (If some z; = 0, we just put
[log,(n+1)] zero’s in its place.) Formally, for each 1 < i <m, if j = [(i—1)/[logy(n+1)]],
then

S = Zj+1¢L,t(Zj+1)

where ¢t = [log,(n + 1)] — ((¢ + 1)mod[log,(n + 1)]). Note that 7 is one-to-one. Let

S =~({0,...,n}9

23



be the range of v. For example, if n = 3,d = 2,

S = {(0,0,0,0), (0,0,0,1), (0,0,2,0), (0,0,3,3),
(07 17 OJ 0)7 (07 ]‘7 07 1)7 (OJ 17 25 0)7 (07 17 37 3)7
(2,0,0,0),(2,0,0,1), (2,0,2,0),(2,0,3,3),
(3,3,0,0),(3,3,0,1), (3,3,2,0),(3,3,3,3)}

Lemma 34 Choose a positive integer q. If S Uy-shatters 7 € {1,...,m}?, then for each
0<j<d-1,
{5+ LG — 1)/[logy(n+1)]] = j} < 1.
Proof: Assume the negation of the lemma for contradiction. Let 1) € U% be such that
{0,132 C9(S,)
and let j be such that

{5+ Liy — 1)/ Nogy(n + 1)1 = j} > 1.

Let 7, and %, be distinct elements of

{ij + [(éy — 1)/ [logy(n +1)]] = j}.
Let ky, Ly, ky, [, satisfy
Yy = UNputus Yo = UN oy
Assume without loss of generality that k, < [,, k, < l,. Let 3 € S be such that

(Yu(si,), o(si,)) = (1,1).
Let z = v71(3). Since

Si, = Zj41¥Lt, (2j11)
Siy = 2j11¥Lt, (Zj41)
where
tu = [logy(n +1)] — ((iy + 1)mod[logy(n + 1)])
and
ty = [logy(n+1)] — ((4, + 1)mod[logy(n + 1)]).
Also 1,1, > 0 (since 1, > ky, l, > k,), we have
Siy = by = Zj11
i, = ly = Zj+1
and I, = l, = zj41.
Let s € S be such that
(Vu(8, ) o(sz,)) = (0, 1).
Let z/ = v !(8'). Since ¢, (s),) # ¥u(s4), the binary representation of z;,; is not the same as

that of 27, ,, and therefore z;1 # 27 ,. But since 9,(s,) = 1, s;, > 0, and therefore s;, = 27,
and I, = zj, ;. Thus, we have

'
ly = 41 7é Zj+1 = Ly,

a contradiction. This completes the proof. O
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Corollary 35 The W y-dimension of S is at most d.
Theorem 36 The uniform VUp-dimension of S is at least d|log(n + 1)].
Proof: Assume first that (n + 1) is a power of 2. In this case

|logy(n +1)] = [logy(n + 1)] = logy(n + 1).

Choose b€ {0,1}™. Let z; be the number represented in binary by the first log,(n + 1) bits
of b, zo be the number represented by the next log,(n + 1) bits, and so on. Let 5 = ¥(Z).
Trivially,

(1/1P,1(81), SRR ¢P,1(Sm)) =b.
Since b was chosen arbitrarily,

{0, 13" € {(¥pa(s1), -, Ypa(sm)) : s € S},

completing the proof in this case.
If (n + 1) is not a power of two, then

|logy(n + 1)| = [logy(n+1)] — 1.
One may easily show in an analogous way that

(2,...,[logy(n+1)], [logy(n+1)] +2,...,2[logy(n + 1)],
(d=1)[logy(n +1)] +2,...,d[logy(n + 1)])

is uniformly W p-shattered by S, completing the proof. O
Corollary 37 The Vg-dimension of S is at least d|log(n +1)].

Proof: Follows directly from Lemma 4, Corollary 6, and Theorem 36. 0O
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