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Abstract

We show that the class Fgy of [0, 1]-valued functions with total variation at most
1 can be agnostically learned with respect to the absolute loss in polynomial time
from O (% log ;) examples, matching a known lower bound to within a constant
factor. We establish a bound of O (%) on the expected error of a polynomial-time
algorithm for learning Fpyv in the prediction model, also matching a known lower
bound to within a constant factor. Applying a known algorithm transformation to
our prediction algorithm, we obtain a polynomial-time PAC learning algorithm for
Fgyv with a sample complexity bound of O (% log%); this also matches a known
lower bound to within a constant factor.

Key words: Statistical learning theory, computational learning theory, sample
complexity, bounded variation, nonparametric regression.

1 Introduction

The total variation of a function can be viewed as the overall tendency for
similar inputs to yield similar outputs. In this paper, we present polynomial-
time algorithms for learning arbitrary members of the class Fgy of [0, 1]-
valued functions with total variation at most 1 according to three theoretical
models of the learning problem. The number of examples needed by each of
the algorithms is within a constant factor of optimal. Throughout, we will
measure the error of a prediction ¢ of a real-valued quantity y with |§ — y|.

In the agnostic learning model [8,13], random examples (z1,¥1), ---, (Zm, Ym)
are drawn from an arbitrary joint distribution P, and the goal of the learning
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algorithm is to output a function A such that the expected value of |h(x) — y|
for another pair (z,y) drawn according to P is nearly as small as that for the
best function in F.

We show that an algorithm, given O (6% log %) examples, outputs a hypothesis
with error at most € worst than the best in Fgy with probability at least 1 —4.
This analysis uses a technique called Chaining (see [19,20]) from Empirical
Process Theory. In [17], we applied this technique to obtain improved bounds
for agnostic concept learning in a drifting environment. Please refer to that
paper and [19] for high-level descriptions of Chaining.

A packing number for a class of functions measures the number of significantly
different behaviors that functions in the class can have on a certain number of
domain elements. While packing bounds for Fgy were known [1,4,3], we needed
new bounds for our application (the difference is described immediately after
the proof of Lemma 3).

Our agnostic learning bound improves on the bound of O (6% (% + log %)) that
is obtained by combining packing bounds from [3] with the most commonly
applied uniform convergence bounds in terms of packing numbers (see [19,8]).
Straightforward application of Simon’s [23] techniques yields a lower bound
that matches our upper bound to within a constant factor (see Proposition 2).

Lee, Bartlett and Williamson [15] proved a bound of O(d/e) on the sample
complexity of agnostically learning any convex class F of functions with re-
spect to the quadratic loss, where d is the pseudo-dimension [19] of F. One can
apply a bound implicit in this analysis (in terms of packing numbers for F)
together with known packing bounds [1,4,3] to get bounds on the sample com-
plexity of agnostically learning Fgy with respect to the quadratic loss similar
to the bounds we present in this paper for the absolute loss.! However, the
bounds of [15] for learning convex classes with respect to the quadratic loss
do not appear to have a counterpart when the absolute loss is used. The class
of all constant functions has pseudo-dimension 1 and is convex, but, again,
straightforward application of Simon’s [23] techniques yields a lower bound of
Q(}z) on the sample complexity of agnostically learning this class with respect
to the absolute loss (see Proposition 2). Our analysis does not use the convex-
ity of Fgv: the same bound holds for any function class with a packing bound
like that we prove for Fgy.

Our sample complexity bound holds for any algorithm that outputs a hypoth-

esis that minimizes the error on the examples. We show how to achieve this
in polynomial time using linear programming.

1 We thank Peter Bartlett for pointing this out.



In the prediction model [10], an algorithm is given examples

(xlv f(xl))a ) (xm—lv f(xm—l))

of the behavior of an unknown function f chosen from a known class F, and
outputs a hypothesis h. A learning algorithm is evaluated by the expectation,
over i, ..., T,, drawn independently at random from a fixed, arbitrary proba-
bility distribution, of |h(zy,) — f(zm)|. We prove a L + ﬁ upper bound
on the expected error of a polynomial-time algorithm for learning Fgv in this
model, improving on the best previously known bound of O (lﬂgmﬂ) [21], and

matching a known lower bound [21] of ;= to within a constant factor. Our
algorithm is new, but one can modify our proof to establish an upper bound
of 2 for the nearest-neighbor algorithm.

Applying a known algorithm transformation [9] to our prediction algorithm,
one gets a bound of O(% log %) on the sample complexity of learning Fgy in
the PAC model; i.e., given O(% log %) independent examples of the behavior of
any f € Fgy, the resulting algorithm, with probability at least 1 — §, outputs
a hypothesis h such that the expectation of |h(z) — f(z)| is at most e. This
improves on the best previously known bound of O (% (log% + log %)) [24],

and matches a known lower bound [24] to within a constant factor.

2 Preliminaries

Denote the reals by R, the rationals by Q and the positive integers by N. Let
Y =QnJo,1].

Define an erxample to be an element of Q X Y, and a sample to be a finite
sequence of examples. A learning algorithm takes a sample as input, and out-
puts a hypothesis, which is a function from Q to Y. We will refer to a learning
algorithm and the corresponding mapping from inputs to outputs interchange-
ably.

Choose a set X. For a metric p on X, ¢ > 0 and S C X, define M(p,¢,S)
to be the size of the largest subset of S whose elements are pairwise at a
distance greater than e, as measured by p. Define N'(p, ¢, S) to be the size
of the smallest set T C X such that each element of S is within distance €
(as measured by p) of some element of 7. We will use the following general
inequalities [14]:

M(p,2¢,5) < N(p,e,5) < M(p, e, 5). (1)



For d,p € N, ¥,w € R%, define

If P is a probability distribution, denote by P™ the distribution obtained by
sampling m times independently from P.

Let Fgv be the set of all functions f from Q to Y for which for all z; < ... < z,,,
Ezn;ll |f(zi) = fzigr)] < 1.

3 Agnostic learning

We begin by studying Fgy in the agnostic learning model [8]. For a probability
distribution P over Q x Y and a function f from Q to Y, the error of f is
defined by erp(f) = [|f(z) — y| dP(z,y). For ¢,6 > 0, and m € N, we
say a class F of functions from Q to Y is (e, d)-agnostically learnable from
m examples if there is a learning algorithm A such that, for all probability
distributions P on Q x Y, if a sample S is obtained by drawing m times
independently at random according to P, and is passed to algorithm A, then,
with probability at least 1—4, the resulting output A(S) satisfies erp(A(S)) <

€ +infrererp(f).

The algorithm that we will consider minimizes the total absolute loss on the
examples from among hypotheses in Fgy. As usual [6,8], our analysis of this
algorithm will proceed by showing that uniformly good estimates of the errors
of the hypotheses in Fgy can be obtained.

Choose a countable set Z.

Lemma 1 (see [19]) Choose a set G of functions from Z to [0,1], € > 0,
m € N for which m > 3/€?, and a probability distribution D over Z. Then if
U is the uniform distribution over {—1,1}™, we have

> e}

> 6/2}.

Dm{é':flgég,

(égg(aﬂ —Z/g(Z) dD(z)

<2 sup U{&:ngg,

Z‘GZZm

3 o) = o)

Lemma 2 (see [19]) Let Y,...,Y,, be independent random variables taking



values in [ay, b1, ..., [am, b] Tespectively. Then
m m _2,'72
Pr(|(X%) - (B >n) <260 (=t ).
i=1 i=1 im1(bi — ai)

The following lemma, which is proved using a chaining argument (see [20] and
[16] for descriptions of Chaining), is the main part of our analysis.

Lemma 3 Choose m € N and G C [—1,1]™. If there is a constant k > 1
such that for all 0 < a < 1/2,

«

and if U is the uniform distribution over {—1,1}™, then for all m > 288k/n?,

1m
ULcd:qg€ G, |— i9i
{0 g ,mzog

=1

> 77} < 4e—M'™/288

Proof: Construct a sequence Gy, (G4, ... of approximations to G as follows. Let
Go = 0, and for each j € N, construct G, by initializing it to G;_1, and as
long as there is a g € G that has ¢, distance greater than 2% from each element
of G, choosing such a g and adding it to G;.

Note that Gy C G; C .... For each ¢ € G and j € N, choose an element
1;(g) of G from among those that minimize the ¢, distance to g; note that
l5(g,;(9)) <1/21. Let H, = G;. For each j > 1, define H; by

H; ={g9—v;-1(9) : g € G,}.

Note that since for all ¢ € G, fa(g,v;-1(g)) < 1/297%, for each h € H;,
moh<m/4t

By induction, for each n € N, for each g € G,,, there exist hy1 € Hy, ..., hg, €
H, such that g = 377, hy ;. Let G, = UpGy. Since G1, G, ... form arbitrary
fine covers of GG, G, is dense in G with respect to ¢5. Thus, for each ¢ € G and
each n € N, there exist hy1 € Hi,...,hyn € Hy, such that £o(g, 37, hy;) <

1/2". Therefore, there exist hy1 € Hy, hgp € Ho, ... such that g = 352, hy ;.

Let
sz{c?:EIgEG, >n}

1 m
— Zaigi
m;




denote the quantity we wish to upper bound. Since G, is dense in G,

1 m
Ezﬁigi > 77}

i=1

sz{E:ElgeG*,

Expressing g as >-72, hy;, we get

L8 (Sma) -

Pulling out the sum over j, we get

p:U{ﬁ:ﬂgeG*,

i}
=2},

which, applying the triangle inequality, implies that
For each j € N, let n; = (1/6),/j/27~'. Then >332, n; < n, and therefore

>77j}.

Replacing the disjunction over j with a sum, we get

SZU{EHQEG*, Zo-z g,] >77]}
7j=1

Z Zaz 9.7

j= 1

p:U{&:EgGG*,

Sl

pSU{&':EIgEG*,Z

j=1

m

1
p<U {5’ :dg € G4,7 €N, {E Zai(hg,j)i

=1

Since each hy ; € Hj, we have

§ZU{5’:3h€Hj,
7j=1

1 m
E;O’,h

i >77j}-

Choose j € N. Since for each h € H;, Y7 h? < m/47~!, applying Lemma 2,

1=1"%
U{&

1 m
— zaihi
m—

> m} < 2e MM,



Thus

x .
p < Z Q\Hj|e_”?4]‘1m/2’
j=1

and substituting the definition of n; yields

p< i Q‘Hj|€fn2j2jm/144.
j=1

By construction, each pair of elements of G; have ¢, distance more than 1/27.
By the assumed bounds on M(fs, G, -),

|H;| < |Gy| < e

?

which implies, twice using the bound m > 288k /n?, that

p<2 i e(k—n2m/144)j2j

j=1
x -
<9 Z e~ (°m/288)527
j=1
(e}
<9 Z e~ (1°m/288)j
J=1
e~ 1°m/288

1 — e—n?m/288
—n?m/288
< 4emT /88

completing the proof. O

Packing bounds for Fgy are known [1,4,3], but to apply Lemma 3 we need
bounds for /5 that are independent of m, and we are not aware of previously
known bounds of this type.

For each m € N, define

Ap={ade€[0,1]":a; < ... <ap}

and

Co ={C€[0,1]" 1 ¢c1 = ... = e}



For each z1 < ... < x,,, each

Fe{(f(@), - flam) : f € Fav}

has di,ds € A,, and ¢ € C,, such that

f=é+a —i,

(see [22]), so we will work on A, (C,, is easy).

As in [3], we will make use of an approximation to A, by a class of piece-
wise constant functions.? For x > 0, construct Ay m by dividing the indices
{1,...,m} into bins, putting roughly the first km indices into the first bin,
the next km indices into the second bin, and so on, then letting A, ,, be the
subset of A,, for which the components in each bin are equal. Specifically,

Aem ={d € A, Vi, 4, |3/ (km)] = |j/(km)] = a; = a;}.
First, we bound how well A, ,, approximates A,,.

Lemma 4 For all k > 0, for each @ € A,,, there is an @' € A, such that

£2(67 61) S \/E

Proof: For each j,let B; = {i : [i/(km)]| = j} be the jth bin. Choose @ € A,,.
Define @’ by, for each bin Bj;, for each index ¢ € Bj, setting a; to be the average
of the components of @ whose indices are in B;; i.e., a; = ﬁ YieB; G- (See
Figure 1.) Then

1
Laad)= =3 > (a-

m

\ i ’iEBj
g\%zz Irelaxaz mmaz))
= —Z|B| maxaz) (rlellig?az))

\/ Z leelaica, mlnaz))
=V [ g (g’

2 Kearns and Schapire [12] described an algorithm for learning monotone p-concepts
using piecewise constant hypotheses.



Fig. 1. A plot of an example of @ (pictured using circles) and the corresponding @’
(pictured using squares) from the proof of Lemma 4. The bin boundaries are shown
using dotted lines.

< \/E;((?el%f a;) — ({21191]1 a;))
<Vk,
since d € A,,, completing the proof. O

Choose m € N. Say that G C R™ shatters a sequence (i1,71), ..., (ig, 7q) Of
elements of {1,...,m} x R if for each be {0,1}¢, there is a g € G such that
for all j € {1,...,d}, b; =1 & g;; > r;. The pseudo-dimension [19] of G is the
length of the longest sequence shattered by G.

Lemma 5 ([11]) If V C R is finite and G C V™ has pseudo-dimension d,
then |G| < (em|V]/d).

Let Augom = Aegn N {B, ..., B11/58]}™.
Lemma 6 The pseudo-dimension of A g is at most |1/3].

Proof: Suppose (i1,71), ..., (14, 7a) With i1 < ... < i4 is shattered by A, gm.
Since each component of each element of A, g, is a positive multiple of S,
we may assume without loss of generality that each of ri,...,74 is a positive
multiple of 3.

We claim that r; < ... < r4. Assume for contradiction that there was a k such
that 7y > 7441. The definition of shattering implies that there is a @ € A, gm
such that such that a;; > r; and a;;,, < rj;1, which then implies that a;; >
ai;,,- But since i; < 4;,1, this contradicts that fact that @ € Asgm C Ap.



Since r1 < ... < 1q, each of them are multiples of 3, and they are all in (0, 1],
d < |1/3], completing the proof. O

Lemma 7 For any z1 < ... <z, and any 0 < o < 1/8, if

F={(f(z1), ..., f(zm)) : f € Fav},

then

11 1
N(ly, o, F) < exp (—O In —)

« 4o

Proof: Let 8 = a/8, k = &?/64. Lemmas 5 and 6 imply that

[ A pam| < (em)!HPL (2)

Recall that in the definition of A g, the indices 1,...,m are divided into
[1/k] bins, and all elements of A, 3., are constrained to have the same value
in components whose indices are in the same bin (see Figure 1). Thus, by
replacing each bin with a single component, elements of A, 3, can be put in
1-1 correspondence with elements of A;/y1/] 8,71/+]- Therefore (2) implies that

| Arpml = |Avre gym | < (e[ 1/6])H/P.

Each fE F has ¢ € C,,,d,ds € A, such that f— ¢+ d; — dy [22]. Thus, if
C,, is an a/2 cover of C,,, and A,, is an a/4-cover of A,,, then {¢+ d; — ds :
ceCp, e A m} is an a-cover of F'. This implies that

N(ly, o, F) < N (by, /2, Con)N (£, /4, An)?. (3)

By Lemma 4,

N(£2a\/g+ BaAm) S |An y

Substituting the definitions of 5 and k, we get

N(£27 a/4aAm) S |Ali,ﬂ,m|:

and plugging into (3), we get

N(£27a7 F) < N(£27a/270m)|f4n ,

10



Since a < 1/8, substituting the values of 8 and k and carrying out simple
calculations shows that

N (b, 0, F) < 2/ (e[1/w]) /7!

completing the proof. O

Lemma 8 ([18]) For any (z1,y1), -, (Tm,Ym) € R % [0,1], for any set F of
functions from R to [0, 1],

N (o, {([f(21) = wnl,oos [f (#m) = ym|) : f € F})
<N (o, @, {(f(21)s ooy f(z)) : [ € F}).

Lemma 9 For any G C [0, 1]*™,

N(€27aa {(gl - gm+la ey m — ng) g € G})
< N(ly,a/2,Q).

Proof: Choose g, h € [0, 1]*™.

lo((91 = Gm+1s - Gm — Gom), (M1 — g1y ooy Py — Pgy))

- %i((gi — Gmsr) = (hs = hs))?

IN

1
\ m iz
20,
Thus, an «/2-cover for G can be used to construct an a-cover for {(g; —
Im+15 - 9m — me) 1g € G} O
Theorem 10 Fyy is (¢,0)-agnostically learnable from O (6% In %) examples.

Proof: For any function f: Q — Y, define Ly : Q XY — Q by Ly(z,y) =
f(z) =yl

11



Choose 0 < o < 1/2. Applying Lemmas 8, 9, and 7 together with (1), for all
(1‘13 yl)a teny (x2ma me) € Q X Ya

M(£2: «, {(Lf(xla yl) - Lf(xm-i-lv ym+1)7 23 Lf(xma ym) - Lf($2m7 y?m))
: f € Fov}) (4)
< exp (4;& In i) .

Assume without loss of generality that e < 1/2. Let m = L% (126720 + 288 1In %)-‘ )
Applying Lemmas 1 and 3, and (4),
1 m
(—Zwt)) ~ [ Lsw) dP(w)
mi

Pm{g: if € Fnyv, > 6/2} <. (5)

Consider some algorithm A that outputs an element of Fgy which minimizes
error on the examples. Then, for any f, € Fgy, the triangle inequality and
(5) imply that

pmlz. / Lacs(u) dP(u) — / Ly (u) dP(u) > € $ < &
QxY QxY

completing the proof. O

Theorem 10 provides a sample complexity bound for any algorithm that out-
puts a hypothesis in gy minimizing the error on the sample. Here, using stan-
dard techniques, we describe such an algorithm that uses linear programming.
Applying efficient linear programming algorithms (e.g. [26]), this algorithm
takes time polynomial in the size of its input, where rationals are represented
by writing their numerators and denominators in binary.

Suppose the input sample is (z1,91), ..., (Tm, Ym) and that the x;’s have been
sorted as a preprocessing step. Then yy, ..., ¥, are treated as constants in the
following linear program:

m

minimize Ze;’ +e;

i=1
subject to
yi—pi=¢€ —e ,V1<i<m (6)
pir1—pi=df —di V1 <i<m-—1 (7)
m—1
Y odf+d <1 (8)

i=1

12



pi = pj, Vi, j such that z; = z; 9)
el e, d, d7 > 0,Vi. (10)

PR Rl S el

Algorithm A" defines its output hypothesis h as follows: for some z, if x;
is the closest element of {z1, ..., z,,} (with ties broken in favor of the smaller
neighbor), then h(z) = p;. The constraints in (9) ensure that A is well-defined.

Proposition 1 For any input (21,91), ..., (Tm,Ym), Algorithm A outputs
h € Fgy that minimizes Y i |h(z;) — yil.

Proof: Fix (z1,y1), -, (Tm, Ym) with z; < ... < z,, and fix the values of the
variables in the linear program used by A'Y at their optimal values.

First, we claim that A*’s hypothesis A is in Fgy. Choose u; < ... < u,. Then
the triangle inequality implies that

3

D |h(uk) — h(uk—1)| <D i — pical-
k=2 ;

S
/|
N

Since the constraints in (10) ensure that the d;’s and d;’s are nonnegative,
the constraints in (7), together with the previous inequality, imply that

3

S o) = hley)] < 3 ma{d ;)

S
||
I\

which in turn implies that

3 |h(ug) = hlug—1)| < Y. dif +di <1,
k=2 ;

I
N

because of (8). Thus h € Fgy.

Now, choose some f € Fgy. Define an alternative setting of the variables in
the linear program of A as follows. For i = 1, ...,m, define p; = f(z;), and
define e = max{0,y; — p;} and e; = max{0, p; — y;}. For i=1,...m—1,
define d = max{0, pis1—pi} and di = max{0, p;—pis1}. It is straightforward
to verigthat this is a feasible solution to A*"’s linear program, and therefore

DoIf(m) —wil =D e +¢f

i=1 =1

m
>N ef +e;
i=1

13



>3 loi—ul  (see (10) and (6))

completing the proof. O

4 The prediction model

In this section, we consider the prediction model of learning.

For a learning algorithm A, a function f from Q to Y, a distribution D over
Q, and a number m of domain elements, define

M(A, £,D,m) = [ |(hasa(@n) = f(@n)] dD" (@),
Q’m

where

hz,ja = A((z1, f(21)), s (Tm1, f(Tm-1)))-

That is, M (A, f, D, m) is the expected absolute error of A’s hypothesis, given
m—1 random examples of f at domain elements independently drawn accord-
ing to D. Then, for a set F of functions from Q to Y, define

M(A,F,m)= sup M(A, f,D,m).
feF,D

Define A* to be the algorithm that, given (z1,v1), ---, (Tm—1, Ym—1), constructs
its hypothesis h by first sorting (z1,¥1), ---, (Tm—1,Ym—1) by the z;’s, yielding
(U1, 1)y ey (U1, Vm—1)- If 2 € {uy, ..., um—_1}, f(x) is known, so it sets h(x) =
f(z). For z < wuy, it sets h(z) = vy, and for x > u,, it sets h(z) = vp.

Finally, if z € (uj, uit1), it sets h(z) = —5v;+ (1 - ﬁ) vit1. (See Figure 2.)

pro
Obviously, A* is a polynomial-time algorithm.

We will make use of the following lemma. While it is well known, we have
included a proof in an appendix for completeness.

14



Fig. 2. An example of a hypothesis h output by A*. The value of h(z) is a weighted
average of values of a target function at previously seen points on either side of z.
The point closer to the middle of the sample is weighted more. Loosely speaking,
this is so that each example has equal “influence” on the final hypothesis. (Note that
the examples on the ends completely determine the hypothesis’ value for domain
elements that fall to the left or the right of the sample respectively.)

Lemma 11 Choose m € N, a distribution D on Q, and a bounded ¢ : Q™ —
R. Let D' be any distribution on the set I' of permutations of {1,...,m}. Then

sup /qﬁ(xa(l), ey To(my ) D' (0).
T1yeeyEm ) EX™ i

| $(@dD™ (@ <
gm (

Proof: In Appendix A. O

For Z € Q™,j € {1,...,m}, define switch(Z, j) to be the result of exchanging
x; and z,,. The idea of analyzing a prediction algorithm by averaging over
permutations of the domain elements is from [10].

+ 1

m(m—1)"

Theorem 12 M(A*, Fgy,m) <

1
m
Proof: Fix an arbitrary f € Fgy and a distribution D over Q. Define error :
Q™ —= Y by

error(¥) = |h5g,f,,4* (Tm) — f(zm)]-

Applying Lemma 11 with the uniform distribution over permutations that

15



switch some element with the last, we get

1 m

/ error(Z) dD(Z) < sup — »_ error(switch(Z, 7)).
T1yeensTm TNV 5
Qm I*eey ]_1

Choose z1, ..., x, € Q. Let uq, ..., u,n be x4, ..., x,, in sorted order.

NE

error(switch(Z, 7))
1

| f(u1) — {(UQ).| + [f (Um-1) — f(Um)\.
+n§ (l_l fluizn) + (1— i )f(ui+1)> — f(us)

— \m—1 m—1
= |f(ur) = f(uz)| + [ f (um—1) — f(um)|
> [ ) = s + (1 -

< 1F ) — Fug)| + 1f (tns) — F ()|
mz 7 —1
—1

X (g = s+ (1

[

~

[y

1—1

) (i) - ()

_|_

| -

—

) 1) = f i)

m—1

= (14 77) T 19000 = Flwn)

which is at most 1 + —= since f € Fgy. O

5 The PAC model

In this section, we show that Theorem 12 implies an improved bound for
learning Fpy in the PAC model [27].

For some countable set X, and some class F of functions from X to [0, 1],
following [27], we say that a learning algorithm A (¢, d)-PAC learns F from
m examples for all probability distributions D on X and all f € F, if A is
given (x1, f(x1)), -y (Tm, f(zm)) for x1, ..., 2., generated according to D™, then
with probability at least 1 — J, A outputs a hypothesis A such the [y |h(z) —
f(2)] dD(z) <.

This model is like the agnostic model studied in Section 3, except with the
added assumption that there is a function in F capable of perfect classification.

Lemma 13 ([9,10]) For any set F of functions from Q to Y, if there is a

16



polynomial-time algorithm A such that M (A, F,m) = O(1/m), then there is a
polynomial-time algorithm that (¢, 6)-PAC learns F from O (% log %) examples.

Combining this with Theorem 12 implies the following.

Theorem 14 There is a polynomial-time algorithm that (e,0)-PAC learns
Fgy from O (% log %) examples.

6 A lower bound

The following lemma follows from a lower bound of [25] (see [5,2]).

Lemma 15 There are constants ci,ca,c3 > 0 such that, for any 0 < 8 < ¢4,
if a coin with probability 1/2+ B of coming up heads is flipped m independent
times, the probability that it comes up heads fewer than m/2 times is at least
026_03ﬂ2m.

The following proof makes heavy use of Simon’s [23] ideas, and the result can
easily be generalized in many ways. Since we don’t know how to use a subset
of Simon’s proof to establish the result, we’ve included a proof here. It implies
an €} (6% log %) lower bound on the sample complexity of agnostically learning
the set of all constant functions on [0, 1], and therefore for Fgy.

Proposition 2 Choose a set F of functions from Q to Y such that there is an
x € Qand fo, f1 € F for which fo(x) =0 and f1(x) = 1. If for alle,§ > 0, F is
(e, 0)-agnostically learnable from m(e,d) examples, then m(e, ) = Q (6% In %)

Proof: Choose m and € > 0. Let Py and P; be the distributions over X x [0, 1]
such that

Po({(z,0)}) =1/2 + 2¢
Py({(z,1)}) =1/2 — 2¢
Pi({(z,0)})=1/2 — 2¢
Pi({(z,1)}) =1/2+2¢

Suppose b is chosen uniformly at random from {0, 1}, then m examples are
generated according to P, and passed to an algorithm, which outputs a hy-
pothesis h. The overall probability that erp, (k) —infscz erp,(f) > € is known
to be minimized by any algorithm that, for each input, minimizes the a pos-
teriori probability that this happens given the examples [7].

For any function A from Q to Y, and either b € {0,1},
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erp,(h)=(1/2+ 2¢)|h(x) — b| + (1/2 — 2¢)(1 — |h(z) — b])
(1/2 — 2€) + 4elh(z) — b|.

Thus, infsererp,(f) = 1/2 — 2¢, and, to ensure erp,(h) — infrererp (f) <e,
one needs |h(z) — b < 1/4.

Since the a posteriori probability that b = 1 given a sample (z,41), ..., (Z, Ym)
is at least 1/2 if and only if more than half of the y;’s are 1, an optimal
algorithm outputs some h with h(z) > 3/4 if this is the case, and otherwise
outputs some h with h(z) < 1/4. The probability that such an algorithm
has erp,(h) — infsererp (f) > € is then the probability that a coin with
bias 1/2 + 2¢ toward heads comes up heads fewer than m/2 times in m flips.
Applying Lemma 15, requiring that this probability is at most § and solving
for m completes the proof. O
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A Proof of Lemma 11

Fix a permutation o : {1,...,m} — {1, ..., m}. We have

[ 6@ 7@ = ¥ o110 = 3 6@ ([ D)) (a0
g

TeQm i=1 feQm i=1

Note that ¢ : @™ — Q™ defined by ¥(z1, ..., 2m) = (Z+(1), -+, Zo(m)) MAPS ONtO
Q™, and Y(To-1(1y, - To~1(m)) = (L1, -, Tr). Thus (A.1) implies

zeQm

O(Z) dD™(Z) = D d(To)s s To(m)) ﬁD(xi) (A.2)
Qm =1

because the each term of the RHS of (A.1) can be paired with an equal term
in the RHS of (A.2). By definition, (A.2) implies

So, for any set I of permutations on {1,...,m}, and any probability distribu-
tion D' over T,
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completing the proof.
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