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Abstract. We have found one reason why AdaBoost tends not to perform well
on gene expression data, and identified simple modifications that improve its abil-
ity to find accurate class prediction rules. These modifications appear especially
to be needed when there is a strong association between expression profiles and
class designations. Cross-validation analysis of six microarray datasets with differ-
ent characteristics suggests that, suitably modified, boosting provides competitive
classification accuracy in general.

Sometimes the goal in a microarray analysis is to find a class prediction rule
that is not only accurate, but that depends on the level of expression of few genes.
Because boosting makes an effort to find genes that are complementary sources of
evidence of the correct classification of a tissue sample, it appears especially useful
for such gene-efficient class prediction. This appears particularly to be to be true
when there is a strong association between expression profiles and class designations,
which is often the case for example when comparing tumor and normal samples.

Keywords: Supervised learning, classification, boosting, gene expression data,
microarray data,bioinformatics.

1. Introduction

The emerging microarray technology allows scientists to simultaneously
measure the level of expression of many genes in a tissue sample. Often,
an important component of the analysis of a collection of microarray
experiments involves class prediction, in which an algorithm uses the re-
sults of these experiments to derive a rule for predicting properties of a
tissue sample based on its expression profile. While boosting (Schapire,
1990; Freund, 1995; Freund and Schapire, 1997; Freund and Schapire,
1996) works well on a variety of different types of data, it has appeared
that it is not well-suited to expression data (see (Dudoit et al., 2002)).
In this paper, we describe one reason why AdaBoost (Freund and
Schapire, 1997; Freund and Schapire, 1996), the best-known boosting
algorithm, does not perform well on such data, and describe slight
modifications that substantially improve its performance.

The idea in boosting algorithms is to combine a number of rough
“rules-of-thumb” into a more accurate aggregate class prediction rule
(Freund and Schapire, 1999). They work by repeatedly applying a
subalgorithm, often called a base learner, to a dataset. Before each
application, the examples are reweighted to increase the importance of
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the examples often classified incorrectly by rules returned by previous
applications of the base learner. After a specified number of rounds,
all of the class prediction rules returned in the various iterations are
aggregated by voting: each rule is assigned a weight, and a tissue is
predicted e.g. to be tumor if the total weight of the class prediction
rules “voting” for a tumor designation is greater than the total weight
of the rules voting for normal.

In this work, as in (Ben-Dor et al., 2000), we consider boosting
algorithms in which the base learner outputs the decision stump (Iba
and Langley, 1992) with minimum weighted error on the training data.
A decision stump bases its prediction on whether a single attribute, in
this case the level of expression of a given gene, is above or below a
certain threshold: an example would be “predict ALL if 17 > 3, oth-
erwise predict AML”, where 17 is the level of expression of some gene.
Pseudocode for AdaBoost, the standard boosting algorithm, applied in
conjunction with decision stumps, is given in Figure 1.

If the base learner outputs a class prediction rule that correctly
classifies all of the training data, AdaBoost halts and returns it. For
certain expression profile classification problems, like discriminating
tumor from normal samples, this happens fairly frequently. Since mi-
croarray data often concerns many genes, and relatively few training
examples, decision stumps that perform perfectly on the training data
often do not perform particularly well on independent test data. On the
other hand, many genes in an expression profile provide complemen-
tary sources of evidence of the correct classification of a tissue sample.
As a result, only paying attention to one such source of evidence can
harm performance. These cases account for much of the substandard
performance of AdaBoost on microarray data.

We found that adding five artificial random examples, with random
class assignments and random expression profiles, to the training data
substantially improved the test-set accuracy of AdaBoost: the most
natural explanation is that this was primarily due to the effect of
reducing the chance that any decision stump perfectly fit the training
data. However, it generally tends to increase the training set error, most
significantly for stumps that are highly accurate on the training data;
this results in the weights with which those stumps vote being brought
closer to the weights for the other stumps.

While the performance of the above algorithm that adds noise before
applying AdaBoost is interesting, this algorithm is not a satisfactory
engineering solution; for one thing, its behavior is too unstable. In
this paper, we describe research into the design of algorithms related
to AdaBoost that overcome the same problem, but in a more practical
way. We have found that a number of small and simple modifications to
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AdaBoost lead to algorithms that are practically useful for the analysis
of microarray data.

The measures proposed in this paper appear to be needed when there
is a strong association between the expression profiles and the class des-
ignations. For some classification problems involving microarray data,
this is not the case. However, it is often the case when distinguishing
for example between tumor and normal samples.

When there is a strong association between expression profiles and
class designations, finding an accurate class prediction rule is easy.
However, rules that are accurate and also depend on the level of ex-
pression of few genes are particularly useful for several reasons (Weston
et al., 2000; Guyon et al., 2002; Xing et al., 2001; Li et al., 2002).
First, the genes in the classifiers that they output are likely to be
particularly important in defining the class designations. It is often
reasonable to prioritize these genes for further, more intensive, wet
lab research. Also, in the case in which the classes are diseased and
normal tissues, the genes found might be hypothesized to play roles
analogous to jugular veins in the molecular process driving the diseases;
this property is desirable of drug targets. Finally, class prediction rules
depending on few genes can result in cheaper diagnostics by enabling
antibody-based techniques like ELISA (Parker, 1990) to be employed.
Our cross-validation study suggests that, where there is a strong asso-
ciation between expression profiles and class designations, boosting is
a particularly valuable tool to identify accurate class prediction rules
that depend on the level of expression of few genes.

2. Practical Variants of AdaBoost for Expression Data

In this section, we describe several boosting algorithms customized for
expression data. Recall that, for comparison, pseudo-code for AdaBoost
is given in Figure 1.

2.1. ApaBoosT-VC

We view AdaBoost-VC as the most theoretically principled variant of
AdaBoost that we propose.

Our design of AdaBoost-VC is guided by the following commonly
adopted point of view (Vapnik and Chervonenkis, 1971; Vapnik, 1982;
Valiant, 1984; Vapnik, 1989; Haussler, 1992; Vapnik, 1995; Vapnik,
1998). We assume that a probability distribution over instance/class
pairs is used to generate the training data. We further assume that
after the algorithm comes up with the classification rule, the instances
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on which it must be applied, together with their correct classifications,
are also generated according to the same distribution. In the below
discussion, it will be useful to consider a collection of random variables,
one for each decision stump s, that indicate whether, for a random
instance/class pair (z,y), it is the case that s(z) # y. We will refer to
each such random variable as an error random wvariable, or an error for
short.

Due to the reweighting of the examples, the classification rules
returned by different invocations of the base learner tend to have neg-
atively associated errors, say in the sense of (Dubhashi and Ranjan,
1998). Negative association formalizes the idea that a collection of
random variables tend to behave differently. Boosting promotes this
property in the error random variables by weighting the examples so
that examples on which previous decision stumps were incorrect are
more important, and thus tend not to be errors for future decision
stumps.

When the errors of the decision stumps output by boosting are
negatively associated, all else being equal, adding more voters improves
the accuracy of the aggregate classifier by reducing the variance of the
fraction of voters that correctly classify a random instance, making
the correct fraction less likely to dip below 1/2 (this is for a similar
reason that adding more independent coin flips reduces the variance of
the fraction coming up heads — negative association accentuates this
effect (Dubhashi and Ranjan, 1998)). However, when the errors of the
individual voting classification rules are unequal, there is a balance to
be struck, informally, between the diversity of opinion and its quality.
In the case in which the errors are exactly independent, one can work
out how optimally to strike this balance (Duda and Hart, 1973): it
involves assigning weights to the voters as a function of their accuracy,
and taking a weighted vote. To a first approximation, the weighting of
the voters computed by AdaBoost might be viewed as akin to this, but
taking some account of what dependence there is among the errors.

Intuitively, one would like the errors of the voting classification rules
to be negatively associated with respect to the underlying distribution
generating the test data. However, some theory (Schapire and Singer,
1999; Kivinen and Warmuth, 1999) suggests that the tendency of the
voters in the output of AdaBoost to have negatively associated errors
is a byproduct of the more direct effect that the voting classification
rules tend to have negatively associated errors with respect to the
distribution that assigns equal weight to each of the training examples.

The above viewpoint that AdaBoost approximates finding a set of
classification rules with negatively associated errors and then weighting
them optimally also suggests that the weights assigned to the voters
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should be a function of their accuracy with respect to the underlying
distribution. A special case of this is the observation mentioned in the
introduction that a voter that is perfect on the training data should not
vote with infinitely large weight, as is done in the standard AdaBoost.

In AdaBoost, the weight assigned to a voting classifier, and the
reweighting of the examples after it is chosen, is based on the (weighted)
error of the voter on the training data. We propose to instead use an
estimate of the error with respect to a probability distribution over the
entire domain. The probability distribution can be obtained

— starting with the original underlying distribution,

— reweighting every possible instance/class pair according to the
number of previously chosen voters that got it wrong in the
analogous way as is done by AdaBoost on the training data, and

— normalizing the result so that it is a probability distribution

(i.e., the distribution used in “boosting-by-filtering” (Freund, 1995)).
How to obtain such an estimate? For an individual voter, the
weighted error on the training data can be viewed as an estimate of the
error according to the reweighted underlying distribution. However, the
estimate is biased by the fact that the voter was chosen to minimize this
weighted error. Vapnik (1982) proposed to counteract biases like this
with a penalty term obtained though a theoretical analysis (Vapnik
and Chervonenkis, 1971; Vapnik, 1982). Informally, in this case, this
analysis provides bounds on the difference between the observed error
rate of the best decision stump and the true error rate with respect
to the underlying distribution that hold with high probability for any
distribution on the instance/class pairs; Vapnik proposed to adjust the
estimate by adding this bound. Kearns, et al (2002) proposed a variant
based on a guess of what the result of the tightest possible analysis
would be. In our context, if m is the number of examples, n is the
number of genes, and €*™P is the (weighted) training error, the estimate

obtained is
1 emp
6emp+ﬂ<1+ 1+6 m) (1)
m

Inn

(The fact that the estimate is based on a weighted sample weakens the
link between their recommendation and this application; if the weight
is concentrated in a few examples, the effective number of examples is
less than m. Coping with this in a principled way is a potential topic
for future research.) The following expression matches theory a little
more closely (Vapnik, 1982; Haussler et al., 1994; Talagrand, 1994; Li
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et al., 2001)

1 emp
emp 4 — <1nm /14 E m) . (2)
m Inn

(In short, it has been shown that the Inm term is necessary in the
theoretical bounds on how accurate the best decision stump can be.)

Another issue must be confronted: what to do if a classifier returned
by the base learner correctly classifies all of the data. Even if (1) or
(2) is used, since no errors are made, none of the weights of any of
the examples will change, and the base learner will return the same
classification rule again the next time it is called, and so on for the
remaining number of rounds. We get around this by requiring that a
given gene can be used in only one decision stump.

When we began experimentation with an algorithm that used (2)
together with only allowing each gene to appear once, it became im-
mediately obvious that the penalty term in (2) was too severe: the
estimates were immediately far above 1/2. However, (2) is based on an
analysis concerning a worst-case probability distribution. In practice,
the “effective” number of genes will be much less. In microarray data,
this could be because many genes

— have expression profiles similar to other genes, or

— are completely unassociated with the class label, and therefore
present substantially less of a threat to be in decision stumps that
fit the data well by chance.

One could imagine estimating the effective number of genes, for exam-
ple by clustering genes based on their expression profiles and counting
the number of clusters with members that correlate significantly with
the class label. Instead of incurring the resulting expense in system
complexity and computation time, we use the following expression

d emp
eemp—f——(lnm—l— 14 < m) (3)

m d

with d as an adjustable parameter. In our experiments, we chose d
from among {0,...,3} to minimize five-fold cross-validation error on
the training set. In case of a tie, the geometric mean of the values of d
attaining the minimum was used.

Pseudo-code for AdaBoost-VC is in Figure 2.
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2.2. ADABOOST-NR (“NO REPEAT”)

This algorithm is like AdaBoost, with two changes. First, as in
AdaBoost-VC, each gene is constrained to be in at most one decision
stump. Second, if a decision stump correctly classifies all of the training
data, its weight is set as if its weighted error on the training data was
0.1/m, where m is the number of samples. This is instead of the infinite
weight given to such a stump by AdaBoost. The choice of 0.1/m is
intended to have the effect, in most cases, of ensuring that the decision
stump has the largest weight of those chosen.

We evaluated this algorithm to gain insight into the share of the
improvement seen by AdaBoost-VC that could be attributed to using
each gene at most once. However, it appears to be a useful algorithm
in its own right.

2.3. ADABOOST-PL (“PIECEWISE LINEAR”)

This algorithm is an instantiation of AdaBoost with “confidence-rated”
predictions (Schapire and Singer, 1999). The classes are designated by
1 and —1, and the base classifiers are functions from expression profiles
to the continuous interval [—1,1]. When a base classifier h is applied
to an expression profile z, the sign of h(z) is interpreted as its class
prediction, and the magnitude of h(z) is interpreted as its confidence
in that prediction.

The base classifiers used in our implementation of AdaBoost-PL are
piecewise-linear generalizations of decision stumps. Note that a decision
stump that predicts 1 exactly when z; > 6 can be written as outputting
sign(z; — 6;). This is replaced with 7 (;91), where

Zi
co;

1 ifu>1
w(u) =¢ -1 ifu< -1

u  otherwise,

— 7 is defined by

— 0y is the standard deviation of feature x; on the training data, and

— ¢ is an adjustable parameter, chosen to minimize five-fold
cross-validation error on the training set (the values in
{0.05,0.1,0.2,0.5,1.0,2.0} were tried, and the geometric mean of
the values resulting in the minimum error was used).

Similarly, sign(—z; — 6;) is replaced by 7 (%:al)
The base classifier h; of round ¢ is chosen in minimize Y, |h(z;) —

yi|D¢(7), where the weights D;(i) of the examples are updated as in
(Schapire and Singer, 1999).
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2.4. ARC-x4-RW (“RE-WEIGHT”) AND ARC-Xx4-RW-NR

Since the main problem with AdaBoost on expression data appears to
be concentrating too much weight on the predictions of decision stumps
that do well on the training data, an anonymous referee asked whether
an algorithm like Arc-x4 (Breiman, 1998) might be well-suited to such
data. Arc-x4-RW is like boosting, except,

— all base classifiers in the final class prediction rule vote with equal
weight, and

— the weight of example ¢ in round ¢ is proportional to 1+ cit, where
ci ¢ is the number of base classifiers prior to round ¢ that classified
example ¢ incorrectly.

The difference between Arc-x4-RW and Arc-x4 is that, instead of min-
imizing the weighted training error as in Arc-x4-RW, Arc-x4 resamples
from the training set m times with probabilities proportional to the
weights, and minimizes the error on the result.

Arc-x4-RW-NR, is like Arc-x4-RW, except with the added constraint
that each gene appears in at most one decision stump.

3. Support Vector Machine Algorithms

For comparison, we also evaluated two algorithms that use Support
Vector Machines.

3.1. WILCOXON/SVM

This algorithm

— chooses the N genes identified as differentially expressed between
the two types of tissues according to the Wilcoxon-Mann-Whitney
test with the highest confidence (using the training data), and

— applies SVM with a linear kernel and soft margin with the cost
parameter C.

The parameter C is chosen to minimize the five-fold cross-validation
error on the training set of the entire inductive process including fea-
ture selection — the optimization was done using a simple successive
refinement algorithm.
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3.2. SVM-RFE

The final algorithm is our implementation of SVM with Recursive
Feature Elimination (Guyon et al., 2002). It has a parameter N, the
number of genes used.

The data is first rescaled and translated so that each attribute has
mean 0 and variance 1 over the training data (the parameters are chosen
using the training data, and any test data is rescaled and translated
in the same way). Training proceeds in a number of iterations. In each
iteration,

— a separating hyperplane is trained using SVM with a linear kernel
and the default value of C' from SVMlight (Joachims, 1998) (some
cross-validation experiments suggested that this performed better
than the value C' = 100 used in (Guyon et al., 2002)),

— the features (in this case genes) are ranked by the absolute
magnitude of their corresponding weights in this hyperplane, and

— the bottom ranking half are deleted.

When the last step would reduce the number of genes to less than N,
then instead genes are removed from the bottom of the list until N
remain.

This is the less computation-intensive of the algorithms proposed
by Guyon, et al. It appeared impractical to evaluate the more
computation-intensive algorithm in a similar way. It also appeared
impractical to choose C' using cross-validation on the training set.

4. Experiments

Six datasets were used in our experiments.

— In the well-known ALL-AML dataset (Golub et al., 1999), the task
is to determine whether a given gene expression profile belongs
to an Acute Lymphoblastic Leukemia (ALL) tissue or an Acute
Myeloid Leukemia (AML) tissue. It contains 72 samples (47 ALL,
25 AML), each with expression profiles concerning 7129 genes.

— In a soon-to-be-published dataset on liver cancer (HCC) generated
by our colleagues at the Genome Institute of Singapore, there are
76 samples (38 tumor and 38 normal) with expression profiles
concerning 9050 genes measured with a cDNA microarray. Ratios
against a universal human reference containing a mixture of tissues
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types were measured, a log transform was applied, and the data
was normalized so that the average log ratio for each array was 0.
This data will be made public on the web in the future.

— Another dataset concerns colon cancer (Alon et al., 1999): again,
it contains expression profiles for tumor and normal samples.

— The next two datasets analyze expression profiles of breast cancer
samples (West et al., 2001) with classes defined by

e whether the gene responsible for estrogen response is being
expressed (ER), and

e whether the tumor has spread to the lymph nodes (LN).

— The final dataset (Pomeroy et al., 2002) involves predicting
whether a patient with a brain tumor survives after treatment.

Aside from the HCC dataset, on which we applied standard prepro-
cessing steps, we used all datasets exactly as we found them.

We evaluated all of the algorithms with two constraints N on the
number of genes that they used, 10 and 100. For the boosting-based
algorithms, this was achieved by limiting the number of rounds of
boosting to IN. The use of N in the algorithms used by SVM was
described in Section 3.

For each algorithm and each dataset, we performed the following
steps 100 times and averaged the results: (a) randomly split into a
training set with 2/3 of the examples and a test set with 1/3 of the
examples, (b) apply the algorithm on the training set, (c) calculate
the error rate on the test set. This is similar to what was done by
Dudoit, et al (2002) ; they argued persuasively that this is preferable
to more standard techniques like k-fold cross-validation and leave-one-
out cross-validation when the goal is to compare the performance of
different algorithms, since it reduces the variance of the estimates of
the generalization error rates. We subjected all of the algorithms to
the same training/test splits, eliminating one source of variance in the
estimates of the differences between their average training set errors.

It is worth emphasizing that feature selection was redone using only
the training data after each training-test split. Doing cross-validation
after feature selection can optimistically bias the resulting error es-
timates dramatically (Ambroise and McLachlan, 2002; Miller et al.,
2002). Also, whenever an algorithm had parameters to set, these were
chosen separately for each training-test split, by doing cross-validation
on the training set only.

Our results are summarized in Table I.
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Table I. Comparison of cross-validation estimates of generalization error percentage
of eight algorithms on six microarray datasets.

| Algorithm | Gene limit || ALL-AML | HCC | ER | Colon | LN | Brain |

| Adaboost | 10 || 62 | 78 | 199 253 |404 | 423 |
| Adaboost-VC | 10 | 39 | 56 |181 | 244 |438 | 411 |
| Adaboost-NR. | 10 | 35 | 60 |195| 251 |42.7 | 412 |
| Adaboost-PL | 10 | 70 | 72 |206| 234 |365 | 419 |
| Arcx4-RW | 10 | 65 | 82 |19.8]| 250 |39.1 | 414 |
| Arcx4-RW-NR | 10 || 33 | 55 | 178 | 247 |421 | 407 |
| SVM-RFE | 10 | 134 | 86 |209| 192 |484 | 392 |
| Wilcoxon/SVM | 10 | 64 | 67 |232]| 243 | 354 | 393 |
| Adaboost | 100 || 52 | 69 |161| 234 |354 | 382 |
| Adaboost-VC | 100 | 28 | 48 |138| 226 |428 | 382 |
| Adaboost-NR | 100 || 27 | 49 |132| 219 |406 | 365 |
| Adaboost-PL | 100 | 50 | 54 |17.2| 232 [362 | 386 |
| ArexaRW | 100 | 54 | 74 | 166 | 237 | 369 | 380 |
| Arcx4-RW-NR | 100 | 26 | 48 |128| 216 |41.1 | 361 |
| SVM-RFE | 100 | 65 | 67 |126 | 207 | 481 | 357 |
| Wilcoxon/SVM | 100 || 33 | 41 | 175 | 236 | 404 | 37.8 |

The first observation is that, on the ALL-AML and HCC datasets,
where there is a strong association between expression profiles and
class designations, AdaBoost-VC, AdaBoost-NR, and Arc-x4-RW-NR
all substantially improved on the performance of raw AdaBoost. These
algorithms also compare well with the two algorithms using SVM on
the ALL-AML and HCC datasets, and to a lesser extent on the ER
dataset, especially when only 10 genes are used.

Generally, it appears that as the association between expression
profiles and class designations grows weaker, the relative performance
of the algorithms using SVM improves.
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Arc-x4-RW-NR appears to substantially improve on Arc-x4-RW
overall. The additional inductive bias in favor of weighting genes equally
appears to be being rewarded. Note that while AdaBoost-VC reduces
the weight associated with stumps that perform well on the training
data, which has the effect of evening out the weights among the stumps,
it also reduces the weights of stumps that perform moderately well on
the training data, in some cases reducing them to nearly zero. Thus,
overall, the effect of AdaBoost-VC is not necessarily to even out the
weights among the voters.

Arc-x4-RW-NR appears to perform the best overall, though its per-
formance on the ALL-AML and HCC datasets is nearly indistiguishable
from the performance of AdaBoost-VC and AdaBoost-NR.

The code used in these experiments is available on the web at

http://giscompute.gis.nus.edu.sg/boost_microarray

5. Related Work

Despite the fact that our use of a penalty term calls to mind reg-
ularization, AdaBoost-VC appears to be quite different from what
have been called “regularized boosting algorithms” (Mason et al.,
2000; Ratsch et al., 2001). These algorithms are designed based on
a theoretical analysis of generalization in ensemble methods (Schapire
et al., 1998; Panchenko and Koltchinskii, 2002). This analysis involves
two quantities,

— the margin by which a certain fraction of the training data is cor-
rectly classified by the aggregate rule, i.e. the minimum difference
between the total weight of the correct voters and the total weight
of the incorrect voters on any of these examples (after the weights
have been normalized to sum to 1), and

— the size of the portion of training data classified with that margin.

As the number of rounds of boosting grows large, the original AdaBoost
can be thought of as trying to correctly classify all the examples with a
large margin; regularized boosting algorithms are willing to get some of
the examples wrong in exchange for a larger margin on the remaining
examples, and try to balance these effectively.

When one decision stump can correctly classify all of the data,
then an ensemble consisting of only that stump classifies all the data
correctly with the largest possible margin, so would be chosen by
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these algorithms. Since these cases are the most problematic for Ada-
Boost, this shows that regularized boosting is not addressing the same
limitation as our proposed modifications.

6. Conclusion

In this paper, we have shown how boosting can be adapted to work
well on gene expression data, and showed that, appropriately modified,
boosting is a useful tool to find small collections of genes that can
be used to discriminate between different types of tissues, particularly
when there is a strong association between the expression profiles and
the class designations.

These encouraging initial results motivate further research into
boosting applied to microarray data.

Our modifications appear to be needed due to certain character-
istics of expression data: there are typically few examples and many
attributes, including a moderately large number that provide approxi-
mately independent sources of evidence regarding the class of a tissue.
Our modifications are constructed to improve the performance of
boosting on data with these characteristics. We have tried applying
AdaBoost-VC to two of the standard UC Irvine datasets (ionosphere
and promoters) and found, as we expected, that it performs essentially
the same as the unmodified AdaBoost. (Using the same evaluation
protocol as described in Section 4, on ionosphere, the average test set
error of AdaBoost was 10.2%, where AdaBoost-VC obtained 10.8%; on
promoters, the respective error rates were 10.2% and 10.7%.) However,
it is conceivable that algorithms like those proposed here can provide
improved performance for other data sources with the key characteris-
tics in common with microarray data. One potential class that we can
foresee is text classification problems in which there are few examples.
We have not yet looked into this.

It seems likely that combining the ideas of AdaBoost-VC with those
behind regularized boosting could lead to a learning algorithm that
performs better when the association between expression profiles and
class designations is weaker. Some of our initial attempts at this have
been unsuccessful, but research is ongoing.

Another potential direction for future work is to estimate the gen-
eralization of the decision stumps in a more refined way. One of many
possible avenues for this would be to take into account the margin by
which the decision stump correctly classifies the training data — previ-
ous theoretical work (Vapnik, 1998; Shawe-Taylor et al., 1998; Anthony
and Bartlett, 1999; Panchenko and Koltchinskii, 2002) is available to
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14 Long and Vega

guide such an estimate. The fact that it appears that spreading the
weight evenly among the voters to a greater extent than AdaBoost-VC
does appears to be advantageous suggests that the penalty imposed by
may be too severe in cases in which the decision stumps do not perform
well on the training data.

The penalty used in the estimates of the generalization of the deci-
sion stumps in AdaBoost-VC involves the number of examples in the
training set. However, if the boosting algorithm concentrates the weight
in a few examples, the effective number of examples used for training
in a given round might be much less than the original number. Another
possible way to refine AdaBoost-VC algorithm would be to take this
into account.
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Given (z1,%1), .-, (Zm,Ym) where each z; € R",y; € {-1,1},

— For each index 7 of an example, initialize D1 (i) = 1/m.

— For each round ¢ from 1 to T

choose a decision stump h; to minimize the weighted error
on the training data with respect to Dy, i.e. to minimize

Zi:ht(zi);éyi Dt(i),
calculate the error €, = 374, (5, £y; Di(8)
set the update factor 8; = /(1 — €),

update the distribution:
, v ooy [ BeDy(i) if hy(z;) =y
* for each i, set D, (i) = { Dy(i)  otherwise,
* mnormalize D}, to get Dy, 1, i.e. for each 7, set Dy11(i) =
D}y (3)
> i1 D ()

set the weight a; = In % with which decision stump ¢ votes
(if B¢ = 0, then oy = o0, and the algorithm can halt).

— Return the final classification rule:

—1 otherwise.

h(z) = { L 3 ny(a)=1 @ > Liny(a)=—1

Figure 1. Pseudo-code for AdaBoost applied with decision stumps (adapted from
(Freund and Schapire, 1996))
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Given (z1,91), -, (m,Ym) where each z; € R",y; € {-1,1}, and a
parameter d,

— For each index 7 of an example, initialize D;(i) = 1/m, and the
set A of available attributes to {1,...,n},

— For each round ¢ from 1 to T

e choose a decision stump h; from among those using attributes
in A to minimize the weighted error on the training data with
respect to Dy, i.e. to minimize 3 ;. (5,)2y; Di(4),

mp

e calculate the weighted empirical error €;
Dithi(as) £y Dt(1)s

emp
o set etzegmp—l-% (lnm—l— 1+¥),

e set the update factor 5; = €;/(1 — &),
e update the distribution:
Dy(i)  otherwise,

* mnormalize D}, to get D;,1, i.e. for each 7, set Dy11(7) =
D1 (8)
ST DG

e set the weight oy = In % with which decision stump ¢ votes,

* for each i, set Dj, (i) = {

e remove the attribute used in h; from the set A of available
attributes.

— Return the final classification rule:

—1 otherwise.

h(z) = { L P n(a)=1 ¥ > Tiny(a)=—1 %

Figure 2. Pseudo-code for AdaBoost-VC
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