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Abstract. We extend the boosting paradigm to the realistic setting of
agnostic learning, that is, to a setting where the training sample is gen-
erated by an arbitrary (unknown) probability distribution over examples
and labels. We define a 8-weak agnostic learner with respect to a hypoth-
esis class F as follows: given a distribution P it outputs some hypothesis
h € F whose error is at most erp(F') + 3, where erp(F’) is the minimal
error of an hypothesis from F under the distribution P (note that for
some distributions the bound may exceed a half).

We show a boosting algorithm that using the weak agnostic learner com-
putes a hypothesis whose error is at most max{c;(8)er(F)°2(®) ¢}, in
time polynomial in 1/e. While this generalization guarantee is signif-
icantly weaker than the one resulting from the known PAC boosting
algorithms, one should note that the assumption required for S-weak ag-
nostic learner is much weaker. In fact, an important virtue of the notion
of weak agnostic learning is that in many cases such learning is achieved
by efficient algorithms.

1 Introduction

Boosting has proven itself as a powerful tool both from a theoretical and a prac-
tical perspective of Machine Learning [11]. From a theoretical perspective, it
gives a very clean and elegant model in which one can develop new algorith-
mic ideas and even hope to analyze some existing heuristics. From a practical
perspective, although the weak learning assumption can rarely be proven, the
boosting algorithms have had a dramatic impact on practitioners. In a sense,



this work can be viewed as a step towards providing a theoretical explanation to
this phenomenon. We prove that under certain conceivable conditions, boosting
has some nontrivial performance guarantees even when no weak learners exist.

The Probably Approximately Correct (PAC) model [12] developed two sepa-
rate models. The first one assumes that the target function belongs to the class
studied, which was the original PAC assumption, and tries to drive the error
as close to zero as possible. The second allows an arbitrary target function, but
rather than shooting for absolute success, compares the error of the learner’s
hypothesis to that of the best predictor in some pre-specified comparison class
of predictors. This model is also known as agnostic learning [8]. When one tries
to consider which model is more realistic, it has to be the case that the agnostic
model wins. We rarely know if there is a clear target function, let alone if it
belongs to some simple class of hypotheses.

The aim of this paper is to study the boosting question in an agnostic setting.
The first step has to be to define an analogue of the weak learning assumption. In
the original formulation, a fixed but unknown target function generated labels,
and a weak learner was assumed to achieve error less than 1/2 — v for any
distribution over the instances.

We define a [-weak agnostic learner with respect to a hypothesis class F'
as follows: given any distribution P over instance-label pairs it outputs some
hypothesis h € F' whose error is at most erp(F) 4+ 3. Since error of 1/2 can be
trivially achieved (let us assume that every concept class we consider contains
both the constant 1 and the constant 0 functions), this implies that in order for
the answer of the weak learner to convey interesting information it has to be the
case that erp(F) is less than 1/2 — §.

Note that the S-weak agnostic learner assumption is only an assumption
about the learner and not about the hypothesis class F, that is, such learners
exist for every hypothesis class, even if we take 8 = 0. The interesting aspect of
such weak learners is their complexity (both sample complexity and computa-
tional complexity).

The search for a ‘strong’ hypothesis in the agnostic setting is NP hard. More
precisely, there are no known learning algorithm that, for a non-trivial hypothesis
class F, finds in time polynomial in 1/€ a hypothesis in F' that has error below
erp(F) + €. Furthermore, for many interesting classes F, for small enough 3 (in
the order of 0.005), unless P=NP there exist no 3-weak agnostic learner ( [2], [3]).
However, no currently known result rules out the existence of agnostic S-weak
learners for these classes once f is sufficiently large (say, § > 0.1). Furthermore,
the hardness results cited above rule out only the existence of efficient finders
of good hypothesis within a class F'. Since the output of a boosting algorithm
is a member of a larger class of functions - the convex hull of F, all currently
known hardness results are consistent with the existence of efficient algorithms
that solve the agnostic learning task for non-trivial classes via boosting.

The question is what can one hope to achieve under the [-weak agnostic
learner assumption. It seems unreasonable to expect that agnostic weak learners
can be always transformed into strong learners, as weak learners exist also for



trivial classes, say F' that includes only a single hypothesis. On the other hand,
clearly we can find a hypothesis whose error is er p(F) + 3, but can we do better?

In this paper we answer this question in the affirmative. We show that given a
parameter €, there is an efficient algorithm that, using a S-weak agnostic learner
as an oracle, can construct a predictor whose error is at most

ci(B)erp(F)2) ¢,

where c3(8) = 2(1/2 — 3)?/In(1/8 — 1), and ¢1(B) is a constant which depends
only on (. Note that for small values of erp(F’) we outperform the naive bound.

Our algorithm simply runs AdaBoost [6] for a certain number of pre-specified
steps. The interesting part is to show that one can exhibit a significant gain in
the accuracy this way. By no means do we think that this is the ultimate answer.
A major open problem of this research is whether one can achieve a bound of
O(erp(F) + ¢€) using a S-weak agnostic learner.

To motivate our results and model we consider agnostic learning of a general
hypothesis class of VC dimension d. Assume that the error-minimization task -
finding a member of the class that minimizes the error over a sample of size m -
is performed in 7'(m) time. The naive way to produce a hypothesis h such that
erp(h) < erp(F) + ¢, is to sample m = O(d/e?) examples, and try to find the
best hypothesis from our class. The running time of such a learner is therefore of
order T(e%). Our approach would be to create S-weak agnostic learner, for some

fixed 8. For that purpose we need to sample only m' = O(d), and the running

time of the minimization is T(0(d)), independent of €. Applying our boosting
result we get a learner that runs in time T'(O(d)) x poly(1/e) for some polynomial
poly(), and finds a hypothesis such that erp(h) < c;(8)erp(F)*®) 4 e. The
main benefit is that the running time depends fairly weakly on e. This benefit
becomes apparent as erp(F') approaches zero. (A similar result, for the case of
erp(F) = 0, is implicit in [10,5]. While they consider the sample complexity,
their ideas can be used also for the computational complexity.)

2 Preliminaries

Fix a set X. An ezample is an element of X x {—1,1} and a sample is a finite
sequence of examples. A hypothesis is a function from X to {—1,1}. For a
hypothesis h, and a probability distribution P over X x {—1,1}, define the error
of h with respect to P, to be

erp(h) = E(; y~p(h(z) #¥))-

Similarly, for a sample S, let erg(h) be the fraction of examples (z,y) in S for
which h(z) # y. For a set F' of functions from X to {—1,1}, define erp(F) =
infhep erp(h).

A learning strategy is a mapping from samples to hypotheses; If it is com-
putable, then it is a learning algorithm.



For some domain X and a comparison class F' of functions from X to {—1,1},
a B-weak agnostic learning oracle, given as input an oracle for sampling according
to some probability distribution P over X x {—1,1}, returns a hypothesis h such
that
erp(h) < erp(F)+ .

The following definition places a mild requirement that is satisfied by most
common concept, classes.

Definition 1. Let F' be a class of functions from some domain X to {—1,1}.

— The F-consistency problem is defined as follows:
Input: A finite labeled sample S.
Output: A hypothesis h € F such that ers(h) = 0, if such h exists, and
NO otherwise.
— We say that o class F is con-decidable if the F' - consistency problem is
decidable.

—plogy(p) —

Notation: Let H2(p) be the binary entropy function, i.e. Ha(p) =
< 9Hz(k/n)n_

(1 —p)log(l — p). It is well known that for k < n/2, Ef:o (")

3 Existence of Efficient Agnostic Weak Learners

It should be clear from the definition that, for every hypothesis class F' of finite
VC-dimension, for every fixed 5, a -weak agnostic learning strategy always
exists — simply chose h to minimize erg(h) for a sufficiently large sample S drawn
independently at random according to P. The interesting question that arises in
this context is the computational complexity of weak learning algorithms.

Theorem 1. Let F be a con-decidable class with VC-dim(F) = d < co. Then,
for every B > 0 there exist a - weak learner for F' that succeeds with probability
>1—46 and runs in time

1
(0] (tp(s(ﬂ,d)) x exp (Ha(erp(F) + 5/2)s(8,d)) 1n(5)> ,
where tp : N — N is the running time of an algorithm for the consistency
problem for the class F', and s(8,d) = cﬁ%, for some constant c.

Proof. Let d denote the VC-dimension of the class F'. Having access to an oracle
sampling according to a distribution P, the weak learner starts by asking for
a sample S of size s(8,d). By the standard VC-dimension uniform convergence
bounds, such sample size guarantees that with probability exceeding 1/2, for
every h € F, lerg(h) — erp(h)| < /2.

Next, the weak learner performs an exhaustive search for Argmin{erg(h) :
h € F'}. One way of carrying out such a search is as follows:

Given a sample S of size m, the algorithm considers all subsets 7' C S in
order of their size, breaking ties arbitrarily. Once it finds a hypothesis h € F that



classifies all the examples in S — T correctly, it returns this h. It follows that the
running time of the algorithm can be bounded by tz(|S|) x exp(Hs(erp(F) +
B/2)|S])- Finally, using a standard ‘test and re-sample’ trick, for a multiplicative
factor of order In(1/4), the confidence parameter can be boosted from 1/2to 1—§
(see e.g., [10]). |

Corollary 1. If F is s con-decidable class having a constant VC-dimension,
then, for every 8 > 0 there exist a B - weak agnostic learner for F that runs in
time O(In(1/0)) and succeeds with probability > 1 — 4.

4 Agnostic Boosting

In this section we prove our main theorem about boosting using S-weak agnostic
learner. Theorem 1 above essentially states that for classes of finite VC dimension
there are learning algorithms that run in time exponential in a parameter 8 (and
some other parameters) and outputs a hypothesis whose expected error is within
an additive factor 8 from the best hypothesis in the class. The boosting results
of this section show that, as long as the additive approximation factor 3 (or, as it
is commonly denoted, €) is above some threshold, there are learning algorithms
whose running time is only polynomial in e. The threshold for which we can
prove these results is a function only of erp(F) and goes to zero as erp(F)
does.

The algorithm that we analyze is a slight variant of AdaBoost [6]. It uses
the oracle for sampling according to P to generate oracles for sampling under a
sequence Dy, Do, ... of filtered distributions, and passes these to the weak learner,
which in response returns a sequence hq, ha, ... of weak hypotheses.

The main intuition is as follows. The generalization guarantee that the algo-
rithm has to achieve is sufficiently weak as to allow a trivial hypothesis for input
probability distributions that drive the error rate of a weak learner close to 1/2.
Consequently, we only have to address input distributions relative to which a (-
weak agnostic learner is guaranteed to have small error. In order to carry out the
usual analysis of boosting, we have to make sure that this assumption remains
valid for the new distributions that are generated by the boosting algorithm. We
therefore work out an upper bound on the rate at which the boosting distribu-
tions may change. We can keep iterating the boosting steps as long as we do not
generate distributions that are too far from the input sample distribution. The
final step of our analysis is a calculation of the amount of progress that boosting
can achieve under this constraint.

Theorem 2. Fiz a domain X, and a class F of functions from X to {—1,1}.
There is an algorithm A such that, for any probability distribution P over X X
{=1,1}, if A is given access to a B-weak agnostic learning oracle for F, and a
source of random examples of P, then for any € > 0, in polynomial in 1/e time,
with probability at least 1/2, algorithm A returns a hypothesis h such that

erp(h) < c1(B)erp(F)¥) 4 ¢,



where ca(B8) = 2(1/2 — B)?/In(1/8 — 1), and c1(B) is a constant which depends
only on B.

Proof. We will begin by assuming that the algorithm is also given erp(F) as
input. We will discuss how to remove this assumption at the end of the proof
(in short, standard guessing and hypothesis testing techniques suffice).

We now spell out algorithm A, which is simply AdaBoost [6], with some of
the parameters fixed. Let

S { Fn((l{f(l_/g)ze;)P(F) w , [(1/21_ o In ﬂ } .

and
mi = (1/2—B) — (1/B — 1)’erp(F).
This implies that n; > 0 for ¢ < T'. Also

1. 1/24n

L e
A S VP

which implies that

e = 71/2+771 < l -1
1/2—m = B

Algorithm A starts by setting Do to be P, then for t = 0,...,T, it

— passes D, to the weak learning algorithm,
— gets h; in return
— generates Dy y1 in two steps by first, for each (z,y) € X x {—1,1}, setting

o [eDumy) k() £y
Diyi(z,y) = { e~ Dy(z,y) otherwise

then normalizing by setting Ze1 = 3, ) Digai(2,y) and Diya(z,y) =
Dy (z,y)/Zs

Finally, it outputs a function h obtained through a majority vote over hq, ..., Ar.
Note that

Zy> Y e Dya(a,y) > e
(z,y)

This implies that for any (z,y), Diy1(z,y) < e2%Dy(x,y). By induction, for
eacht < T,

Dy(z,y) < €’ 2izo Y P(z,y)

Since, by assumption, erp, (h;) < erp, (F) + 8, this implies that

erp, (h) < ¢ Lico%erp(F) + B < 1/2 .



and A achieves an edge of at least 1; in round ¢. The performance of AdaBoost
[6] guarantees that
T
erp(h) <e? 2ico™
Recall that,

2

T
Z[——ﬂ 1 Vierp(F)

i=0 =0 B
L _ T+ _ g
- ppr - - prere(n) T2
B
1 \2(T+1) _
+er§3(F)(ﬂ D !

T-12-1
= (5 — BT +¢(6)

where the last identity uses the fact that (1/8 — 1)T < (1/2 — B)/erp(F). In
the case that T' = [W In %-‘ , then erp(h) < €, completing the proof. In the

_ | In((1/2-B)/erp(F)
case that T' = {Tﬁ-‘, then

In((3 — B)/erp(F) _ 2115:3_)12
In(1/8 - 1) ) = c1(B) (erp(F)) "3~V

for some constant ¢;(3) which depends only on S.
It is easy to see how to simulate the distributions Dy, ..., Dy, given access
to a source of examples for P, in polynomial time, using the rejection method

[9], since always e Y > (1/8 —1)~T/2. Therefore, since T is bounded by
a logarithm in 1/¢, the time for Algorithm A is polynomially bounded.

Recall that we assumed that Algorithm A “knew” erp(F'). One can con-
struct an algorithm that does not need to know erp(F) from A as follows.
Note that Algorithm A can use an upper bound b on erp(F), and achieve
erp(h) < c1(B)b2® + 4 in poly(1/v) time. Define ¢ : [0,1] = [0,c¢1(B)] by
#(z) = c1(B)z2®). Consider the Algorithm B that uses as guesses for b all val-
ues of ¢~1(z) for multiples z of €/4, sets v = €/4, calls Algorithm A for each
of these values, then uses hypothesis testing as in [7] to estimate which of those
roughly 4/e hypotheses is the best. One of the poly(1/e) runs would produce
a hypothesis with error at most c;(8)erp(F)°>() + ¢/2, and hypothesis testing
can be applied to find from among a set of hypothesis with one such good one a
hypothesis with error at most ¢y (8)erp(F)%25) 4. ]

erp(t) < exp (-2(5 -

We can now apply the bound of Theorem 1 on the time complexity of weak
learners to the above boosting result to obtain:

Corollary 2. Let F be a con-decidable class so that VC-dim(F) = d < oo. For
every 8 > 0, there is an algorithm A such that, for any probability distribution



P over X x {—1,1}, if A is given access to a source of random examples of P,
A runs in time

1 1
s m)) X exp(HQ(erp(F) +B/2)8(,8, d, m) X ln(l/e))
(where tp : N — N is the running time of an algorithm for the consistency
problem for the class F, and 5(8,d,6) = %> (d+1n(5)), for some constant c).
Also, with probability at least 1/2, algorithm A returns a hypothesis h such
that

O(tF(s(ﬂa d

erp(h) < c1(B)erp(F)=#) 4+ ¢,

where cy(B) = 2(1/2 — B)2/In(1/8 — 1), and ¢1(B) is a constant which depends
only on (.

Proof Sketch. We apply the boosting algorithm to the agnostic weak learning
algorithm of Theorem 1. However, one has to make sure that the success proba-
bility of the weak learner is high enough to endure the T' many iterations required
by the boosting algorithm. For that purpose, we have to chose the § of the weak
learner to be of order (In(In(1/€)))~!. O

Corollary 3. Let F' be a con-decidable class of functions from some domain X
to {—1,1}. If the VC dimension of F is finite then, for every § > 0, there is
an algorithm A such that, for any probability distribution P over X x {—1,1},
if A is given access to a source of random examples of P, then for any € > 0,
in polynomial in 1/e time, with probability at least 1/2, algorithm A returns a
hypothesis h such that

erp(h) < c1(B)erp(F)¥ + ¢,

where ca(B8) = 2(1/2 — B)?/In(1/8 — 1), and c1(B) is a constant which depends
only on B.

5 Learning with large-margin half-spaces

As a first application of the above results we briefly present a learning algorithm
for learning with margin half-spaces. In this learning problem the instance space
is the n-dimensional Euclidean unit ball and the learner is assessed by compari-
son with the best half-space, but where examples falling within a given distance
v of a separating hyper-plane in the comparison class are counted as wrong.

The motivation for such learning is that, as agnostically learning with half-
spaces is computationally infeasible (see [3]), a hypothesis half-space that is
computed an efficient learner is bound to make more mistakes that the best
possible hyper-plane. However, it may be argued that making mistakes near the
boundary of a separating hyper-plane is less costly than erring on points that
are classified with large margins. The margin half-space learning model can be
viewed as a model that adopts this view by ignoring mistakes on points that are
within v margins of a comparison half-space.



Previous work [4] provided an algorithm for this problem whose hypothesis
h satisfies erp(h) < erp(H.,) + € in (1/€)°/7") time.

Using the basic margin generalization bound (see [1]) it is not difficult to
prove the following weak learner result.

Let B™ be the unit ball in R™ and, for a probability distribution P over
B" x {—1,1}, let erp(H, ) denote the minimal P- expected error of any half-
space in R™, when points that have margin less than « to the half-space are
counted as errors.

Theorem 3. Choose v,€ > 0. There is a polynomial-time learning algorithm A
and a polynomial p such that, for any natural number n, any § > 0, and any
probability distribution P over B™ x {—1,1} (where B™ is the unit ball in R™),
if p(n,1/6) examples are drawn according to P and passed to algorithm A, then
with probability at least 1 — §, the output h of algorithm A satisfies

erp(h) <er(H,,)+e.
We can now apply our boosting technique, namely Theorem 2, to obtain:

Theorem 4. Choose v > 0. There is a learning algorithm that runs in time
2

poly(c?(l/’y ),l/e) time, while achieving erp(h) < cperp(H, ) + €, where c1,

¢y and c3 are constants.
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