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Abstract

This paper is about two generalizations of the mistake bound model to online multiclass
classification. In the standard model, the learner receives the correct classification at
the end of each round, and in the bandit model, the learner only finds out whether its
prediction was correct or not. For a set F of multiclass classifiers, let optstd(F) and
optbandit(F) be the optimal bounds for learning F according to these two models. We
show that an

optbandit(F) ≤ (1 + o(1))(|Y | ln |Y |)optstd(F)

bound is the best possible up to the leading constant, closing a Θ(log |Y |) factor gap.
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1. Introduction

There are two natural ways to generalize the mistake-bound model [17] to multi-
class classification [5].

In the standard model, for a set F of functions from some set X to a finite set Y , for
an arbitrary f ∈ F that is unknown to the algorithm, learning proceeds in rounds, and
in round t, the algorithm

• receives xt ∈ X,

• predicts ŷt ∈ Y , and

• gets f (xt).

The goal is to bound the number of prediction mistakes in the worst case, over all
possible f ∈ F and x1, x2, ... ∈ X.

The bandit model [12, 11, 14] (called “weak reinforcement” in [5, 4]) is like the
standard model, except that, at the end of each round, the algorithm only finds out
whether ŷt = f (xt) or not.

Obviously, optstd(F) ≤ optbandit(F). It is known [4] that, for all F,

optbandit(F) ≤ (2.01 + o(1)) (|Y | ln |Y |) optstd(F), (1)
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and that, for any k and M, there is a set F of functions from a set X to a set Y of size k
such that optstd(F) = M and

optbandit(F) ≥ (|Y | − 1) optstd(F),

so that (1) cannot be improved by more than a log factor.
This note shows that, for all M > 1 and infinitely many k, there is a set F of

functions from a set X to a set Y of size k such that optstd(F) = M and

optbandit(F) ≥ (1 − o(1)) (|Y | ln |Y |) optstd(F), (2)

and that an
optbandit(F) ≤ (1 + o(1)) (|Y | ln |Y |) optstd(F) (3)

bound holds for all F.
Previous work. In addition to the bounds described above, on-line learning with

bandit feedback, side-information and adversarially chosen examples has been heavily
studied (see [15, 3, 1, 2, 16, 10, 8, 11]). Daniely and Halbertal [13] studied the price
of bandit feedback in the agnostic on-line model, where there is not necessarily an
f ∈ F that always provides the correct classification, and the online learning algorithm
is evaluated by comparing its number of mistakes with the best mistake count possible
in hindsight obtained by repeatedly applying a classifier in F. The proof of (2) uses
analytical tools that were previously used for experimental design [21, 22], and hash-
ing, derandomization and cryptography [9, 19]. The proof of (3) uses tools based on
the Weighted Majority algorithm [18, 4].

2. Preliminaries and main results

2.1. Definitions

Define optbs(k,M) to be the best possible bound on optbandit(F) in terms of M =

optstd(F) and k = |Y |. In other words, optbs(k,M) is the maximum, over sets X and sets
F of functions from X to {0, ..., k − 1} such that optstd(F) = M, of optbandit(F).

We denote the limit supremum by lim.

2.2. Result

The following is our main result.

Theorem 1.
limM→∞limk→∞

optbs(k,M)
kM ln k

= 1.

2.3. The extremal case

For any prime p, let FL(p, n) be the set of all linear functions from {0, ..., p − 1}n to
{0, ..., p − 1}, where operations are done with respect the finite field GF(p).

In other words, for each a ∈ {0, ..., p − 1}n, let fa : {0, ..., p − 1}n → {0, ..., p − 1} be
defined by

fa(x) = (a · x) mod p
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and let FL(p, n) = { fa : a ∈ {0, ..., p − 1}n}.
The fact that

optstd(FL(p, n)) = n (4)

for all primes p ≥ 2 is essentially known (see [23, 5, 6]). (An algorithm can achieve a
mistake bound of n by exploiting the linearity of the target function to always predict
correctly whenever xt is in the span of previously seen examples. An adversary can
force mistakes on any linearly independent set of the domain by answering whichever
of 0 or 1 is different from the algorithm’s prediction.)

3. Lower bounds

Our lower bound proof will use an adversary that maintains a version space [20],
a subset of FL(p, n) that could still be the target. To keep the version space large no
matter what the algorithm predicts, the adversary chooses a xt for round t that divides
it evenly. The first lemma analyzes its ability to do this.

Lemma 1. For any S ⊆ {1, ..., p − 1}n, there is a u such that for all z ∈ {0, ..., p − 1},

|{s ∈ S : s · u = z mod p}| ≤ |S |/p + 2
√
|S |.

Lemma 1 is similar to analyses of hashing (see [7]).
Lemma 1 is proved using the probabilistic method. The next two lemmas about

the distribution of splits for random domain elements may already be known; see e.g.
[19, 7] for proofs of some closely related statements. We included proofs in appendices
because we do not know a reference with proofs for exactly the statements needed here.

Lemma 2. Assume n ≥ 1. For u chosen uniformly at random from {0, ..., p − 1}n, for
any s ∈ {0, ..., p − 1}n − {0} for any z ∈ {0, ..., p − 1}, we have

Pr(s · u = z mod p) = 1/p.

Proof: See Appendix A. �

Lemma 3. Assume n ≥ 2. For u chosen uniformly at random from {0, ..., p − 1}n, for
any s, t ∈ {1, ..., p − 1}n such that s , t, and for any z ∈ {0, ..., p − 1}, we have

Pr(t · u = z mod p | s · u = z mod p) = 1/p.

Proof. See Appendix B. �
Armed with Lemmas 2 and 3, we are ready for the proof of Lemma 1.

Proof (of Lemma 1): Let S be an arbitrary subset of {1, ..., p − 1}n. Choose u
uniformly at random from {0, ..., p − 1}n. For each z ∈ {0, ..., p − 1}, let S z be the
(random) set of s ∈ S such that s · u = z mod p. Lemma 2 implies that, for all z,

E(|S z|) = |S |/p
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and, since Lemmas 2 and 3 imply that the events that s ·u = z are pairwise independent,

Var(|S z|) = Var(1s·u=z)|S | = (1/p)(1 − 1/p)|S | < |S |/p.

Using Chebyshev’s inequality,

Pr(|S z| ≥ |S |/p + 2
√
|S |) ≤

1
4p
.

Applying a union bound, with probability at least 3/4,

∀z, |S z| ≤ |S |/p + 2
√

S ,

completing the proof. �
Now we are ready for the learning lower bound.

Lemma 4.
limn→∞limp→∞

optbandit(FL(p, n))
pn ln p

≥ 1. (5)

Proof: Choose n ≥ 3 and p ≥ 5. Consider an adversary that maintains a list Ft of
members of

{ fa : a ∈ {1, ..., p − 1}n} ⊆ FL(p, n)

that are consistent with its previous answers, always answers “no”, and picks xt for
round t that splits Ft as evenly as possible; that is, xt minimizes the maximum, over
potential values of ŷt, of |Ft ∩ { f : f (xt) = ŷt}|. As long as |Ft | ≥ p2 ln p, Lemma 1
implies that,

|Ft+1| ≥ |Ft | −
|Ft |

p
− 2
√
|Ft |

≥ |Ft | −
|Ft |

p
−

2|Ft |

p
√

ln p

=

1 − 1 + 2/
√

ln p
p

 |Ft |.

Thus, by induction, we have

|Ft | ≥

1 − 1 + 2/
√

ln p
p

t−1

(p − 1)n.

The adversary can force m mistakes before |Ft | < p2 ln p if1 − 1 + 2/
√

ln p
p

m−1

(p − 1)n ≥ p2 ln p

which is true for m = (1 − o(1))np ln p, proving (5). �
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4. Upper bound

The upper bound proof closely follows the arguments in [18, 4].

Lemma 5. For any set F of functions from some set X to {0, ..., k − 1},

optbandit(F) ≤ (1 + o(1))(k ln k)optstd(F).

Proof: Consider an algorithm Ab for the bandit model, which uses an algorithm As for
the standard model as a subroutine, defined as follows. Algorithm Ab maintains a list
of copies of algorithm As that have been given different inputs. For α = 1

k ln k , each copy
of As is given a weight: if it has made m mistakes, its weight is αm. In each round, Ab

uses these weights to make its prediction by taking a weighted vote over the predictions
made by the copies of As.

Algorithm Ab starts with a single copy. Whenever it makes a mistake, all copies
of As that made a prediction that was not used by Ab “forget” the round – their state
is rewound as if the round did not happen. Each copy of As that voted for the winner
is cloned, including its state, to make k − 1 copies, and each copy is given a different
“guess” of f (xt).

Let Wt be the total weight of all of the copies of As before round t. Since one copy
of As always gets correct information, for all t, we have

Wt ≥ α
optstd(F). (6)

On the other hand, after each round t in which Ab makes a mistake, copies of As

whose total weight is at least Wt/k are cloned to make k − 1 copies, each with weight
α < 1/(k − 1) times its old weight. Thus

Wt+1 ≤ (1 − 1/k)Wt + (1/k)(α(k − 1)Wt) < (1 − 1/k)Wt + αWt

and, after Ab has made m mistakes,

Wt < (1 − 1/k + α)m < e−(1/k−α)m.

Combining with (6) yields

e−(1/k−α)m > αoptstd(F)

which implies m ≤ ln(1/α)optstd(F)
1/k−α and substituting the value of α completes the proof. �

5. Putting it together

Theorem 1 follows from (4), Lemma 4, and Lemma 5.

6. Two open problems

Can the analysis of FL(p, n) improve our understanding of the cost of bandit feed-
back in the agnostic case?

It is not hard to see that optbs(k, 1) = k− 1 = Θ(k), and the proofs of Lemmas 4 and
5 imply that optbs(k, 3) = Θ(k log k). What about optbs(k, 2)?
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Appendix A. Proof of Lemma 2

Pick i such that si , 0. We have

Pr(u · s = z mod p) = Pr(uisi = z −
∑
j,i

u js j mod p)

= Pr(ui =

z −∑
j,i

u js j

 s−1
i mod p)

= 1/p,

completing the proof.

Appendix B. Proof of Lemma 3

Let i be one component such that si , ti. Let s′, t′ and u′ be the projections of s, t
and u onto the indices other than i.

Lemma 2 implies that s′ ·u′ mod p is distributed uniformly on {0, ..., p− 1}. Thus,
after conditioning on the event that s · u = z mod p, ui is uniform over {0, ..., p − 1},
which implies

Pr(t · u = z mod p | s · u = z mod p)
= Pr(ui(ti − si) = (s′ − t′) · u′ mod p | s · u = z mod p)
= 1/p,

completing the proof.
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