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Abstract

Generative algorithms for learning classifiers use training data to separately esti-
mate a probability model for each class. New items are classified by comparing their
probabilities under these models. In contrast, discriminative learning algorithms try
to find classifiers that perform well on all the training data.

We show that there is a learning problem that can be solved by a discriminative
learning algorithm, but not by any generative learning algorithm. This statement
is formalized using a framework inspired by previous work of Goldberg [4].
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1 Introduction

If objects and their classifications are generated randomly from a joint prob-
ability distribution, then the optimal way to predict the class y of an item x
is to maximize Pr[y|x]. Applying Bayes’ rule, this is equivalent to maximiz-
ing Pr[x|y] Pr[y]. This motivates what has become known as the generative
approach to learning a classifier, in which the training data is used to learn
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Pr[·|y] and Pr[y] for the different classes y, and the results are used to approx-
imate the behavior of the optimal predictor for the source (see [2,6]).

In the discriminative approach, the learning algorithm simply tries to find a
classifier that performs well on the training data [12,6,10,7]. Discriminative al-
gorithms can (and usually do) process examples from several classes together
at once, e.g. maximum margin algorithms use both positive and negative ex-
amples together to find a large margin hypothesis separating the two classes.

The main result of this paper is a separation between generative and discrim-
inative learning. We describe a learning problem and prove that it has the
following property: a discriminative algorithm can solve the problem, but no
generative learning algorithm can.

Our analysis demonstrates the possible cost of largely processing the examples
from different classes separately, as generative methods do. Goldberg [4,5] was
the first to study the effect of this limitation. He studied a modification of the
PAC model in which

• the examples belonging to each class are analyzed separately,
• each analysis results in a scoring function for that class, and
• future class predictions are made by comparing the scores assigned by the

different scoring functions.

He designed algorithms that provably solve a number of concrete learning
problems despite the constraint of processing examples from different classes
separately, and identified conditions that allow a discriminative PAC learner
to be modified to work in the generative setting. The main open question
posed in [4] is whether there is a learning problem that can be solved by a
discriminative algorithm but cannot be solved by a generative algorithm. We
establish our main result in a framework closely related to the one proposed
in [4]. The main difference between our formulation and Goldberg’s is that
we define a learning problem to be a collection of possible joint probability
distributions over items and their classifications, whereas Goldberg defined a
learning problem to be a concept class as in the PAC model.

Related work. Aside from Goldberg’s paper, the most closely related work
known to us is due to Ng and Jordan [9]. They showed that Naive Bayes,
a generative algorithm, can converge to the large-sample limit of its accu-
racy much more quickly than a corresponding discriminative method. For
generative algorithms that work by performing maximum likelihood over re-
stricted classes of models, they also showed, given minimal assumptions, that
the large-sample limit of their accuracy is no better than a corresponding dis-
criminative method. Note that these results compare a particular generative
algorithm with a particular discriminative algorithm. In contrast, the anal-
ysis in this paper exposes a fundamental limitation faced by any generative
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learning algorithm, due to the fact that it processes the two classes separately.

Note. A preliminary version of this work [8] claimed a computational separa-
tion between discriminative and generative learning based on a cryptographic
construction, but the proof was flawed. The current note deals only with the
information-theoretic abilities and limitations of discriminative and generative
algorithms, i.e. we are only concerned with sample complexity and not with
the running time of learning algorithms.

Section 2 contains preliminaries including a detailed description and motiva-
tion of the learning model. In Section 3 we give our construction of a learning
problem that separates the two models. Section 4 gives the proof.

2 Definitions and main result

Given a domain X, we say that a source is a probability distribution P over
X × {−1, 1}, and a learning problem P is a set of sources.

2.1 Discriminative learning

The discriminative learning framework that we analyze is the Probably Ap-
proximately Bayes (PAB) [1] variant of the PAC [11] learning model. In the
PAB model, in a learning problem P a learning algorithm A is given a set of
m labeled examples drawn from an unknown source P ∈ P. The goal is to,
with probability 1 − δ, output a hypothesis function h : X → {−1, 1} which
satisfies Pr(x,y)∼P [h(x) 6= y] ≤ Bayes(P )+ ε, where Bayes(P ) is the least error
rate that can be achieved on P , i.e. the minimum, over all functions h, of
Pr(x,y)∼P [h(x) 6= y].

We say that P is PAB-learnable if for any ε, δ > 0 there is a number m =
m(ε, δ) of examples such that A achieves the above goal for any source P ∈ P.

2.2 Generative learning

Goldberg [4] defined a restricted “generative” variant of PAC learning. Our
analysis will concern a natural extension of his ideas to the PAB model.

Roughly speaking, in the generative model studied in this paper, the algorithm
first uses only positive examples to construct a “positive scoring function”
h+ : X → R that assigns a “positiveness” score to each example in the
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input domain. It then uses only negative examples to construct (using the
same algorithm) a “negative scoring function” h− : X → R that assigns a
“negativeness” score to each example. The classifier output by the algorithm
is the following: given example x, output 1 or −1 according to whether or not
h+(x) > h−(x).

We now give a precise description of our learning framework. In our model

• A sample S = (x1, y1),...,(xm, ym) is drawn from the unknown source P ;
• An algorithm A is given a filtered version of S in which
· examples (xt, yt) for which yt = 1 are replaced with xt, and
· examples (xt, yt) for which yt = −1 are replaced with �
and A outputs h+ : X → R.

• Next, the same algorithm A is given a filtered version of S in which
· examples (xt, yt) for which yt = 1 are replaced with �, and
· examples (xt, yt) for which yt = −1 are replaced with xt

and A outputs h− : X → R.
• Finally, let h : X → {−1, 1} be defined as h(x) = sgn(h+(x) − h−(x)). If

h+(x) = h−(x) then we view h(x) as outputting ⊥ (undefined).

Algorithm A is said to be a generative PAB learning algorithm for P if for all
P ∈ P, for all 0 < ε < 1

2
, 0 < δ < 1, there is a sample size m = m(ε, δ) such

that, given m examples, the hypothesis h obtained as above, with probability
at least 1 − δ, satisfies Pr(x,y)∼P [h(x) 6= y] ≤ Bayes(P ) + ε.

It is easy to see that any learning problem that can be PAB learned in the
generative framework we have described can also be learned in the standard
PAB framework.

2.3 Main result

With these definitions in place we can state our main result:

Theorem 2.1 There is a learning problem P that is learnable in the PAB
model, but not in the generative PAB model.

3 The construction

The domain is X = {0, 1}∗ × {1, 2, 3}. With every n ≥ 1 and every r, s ∈
{0, 1}n, we associate a source Pr,s with support contained in {0, 1}n×{1, 2, 3}
and given as follows:
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• It assigns probability 1/3 to the pair ((r, 1), 1) (that is, item (r, 1) and class
1).

• It assigns probability 1/3 to the pair ((s, 2),−1) (item (s, 2) and class −1).
• It assigns probability 1

3n
to each ((ei, 3), (−1)ri⊕si), where ei ∈ {0, 1}n is the

vector that has a 1 in the ith coordinate and zeroes everywhere else. Here
ri ⊕ si denotes the exclusive-or of the i-th components of r and s.

The problem P witnessing the separation of Theorem 2.1 consists of all such
Pr,s. Note that for any source Pr,s the error rate of the Bayes optimal predictor
is 0.

4 Proof of Theorem 2.1

Because r and s “give everything away,” a discriminative algorithm can suc-
ceed easily.

Lemma 4.1 Problem P can be solved using at most 2 log 2
δ

examples.

Proof. If (r, 1) and (s, 2) are both in the training data, a discriminative algo-
rithm can determine the classifications of all remaining elements of the domain,
as the correct classification of (ei, 3) is (−1)ri⊕si. Consider an algorithm that
does this, and behaves arbitrarily if it has not seen both (r, 1) and (s, 2). The
probability that at least one of (r, 1), (s, 2) is not present in a sample of m
examples is at most 2 × (2/3)m. Solving for m completes the proof.

Now we show that generative algorithms must fail. Our argument uses the
probabilistic method as in [3]. We will show that any algorithm A must perform
poorly on a randomly chosen source. This implies that there is a source on
which A performs poorly.

Lemma 4.2 Fix a generative learning algorithm A. For any n ≥ 2, if

• r and s are chosen uniformly at random from {0, 1}n,
• m ≤ n examples are chosen according to Pr,s,
• the positive and negative examples are separately passed to A as in the def-

inition of the generative PAB learning framework, and
• the invocations of A output h+ and h−,

then with probability at least 1/40 (over the random draw of r, s and the ran-
dom draw of the m-element sample from Pr,s,) the source Pr,s puts weight at
least 1/40 on pairs (x, y) for which sgn(h+(x) − h−(x)) 6= y.
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Proof. Suppose that r, s ∈ {0, 1}n are chosen randomly, and that

(x1, y1), ..., (xm, ym), (x, y)

are chosen independently at random according to Pr,s.

The proof proceeds by first lower bounding the conditional probability that
the hypotheses h+, h− output by A collaborate to predict the class y of x
incorrectly, given that a particular event E occurs. The proof is completed by
lower bounding the probability of E.

Event E is defined as follows: a draw of r, s, (x1, y1), ..., (xm, ym), (x, y) satisfies
event E if there is some i such that x = (ei, 3) and none of x1, . . . , xm is (ei, 3).

Suppose that event E occurs. Let i be the value in {1, ..., n} such that x =
(ei, 3) and none of x1, . . . , xm is (ei, 3). Consider any fixed setting of values for
all components of r except for ri, and all components of s except si. Similarly
consider any fixed setting of values for (x1, y1), ..., (xm, ym) such that xt 6=
(ei, 3) for all t ∈ {1, ..., m}. (Note that if xj is set to (r, 1) or (s, 2) then the
i-th component is not yet fixed.) Let us denote this more specific event by E ′.

Now consider the probability distribution obtained by conditioning on E ′;
note that the only remaining randomness is the choice of ri, si ∈ {0, 1}. Ac-
cording to this distribution, each of the four possible pairs of values for ri, si

are equally likely, and, in each case, the corresponding class designation for
x is (−1)ri⊕si. However, after conditioning on E ′, the scoring function h+ is
completely determined by the value of ri (recall that when algorithm A con-
structs h+ it may well receive the example (r, 1) but it does not receive the
example (s, 2)). This implies that the value h+(x) is completely determined
by the value of the bit ri. Similarly, the value h−(x) is completely determined
by the value of the bit si. Consequently, sgn(h+(x) − h−(x)) is a function of
(ri, si) ∈ {0, 1}2; further, since ri and si only affect h+(x) and h−(x) respec-
tively, sgn(h+(x)−h−(x)) is in fact a linear threshold function of the variables
ri and si. It is well known that a linear threshold function cannot compute
a parity over two boolean variables. Therefore, given event E ′, there must be
at least one combination of values for ri and si such that A predicts (−1)ri⊕si

incorrectly. Since all combinations of values for ri and si are equally likely, the
conditional probability that A predicts x incorrectly given E ′ is at least 1/4.
It follows that the conditional probability that A predicts x incorrectly given
event E is at least 1/4.

It is straightforward to lower bound (in fact, exactly compute) the probability
of event E. Since all pairs (xi, yi) are drawn independently, the probability of
event E is easily seen to be

1

3
×

(

1 −
1

3n

)m

.
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If m ≤ n, this probability is at least

1

3
×

(

1 −
1

3n

)n

≥
1

5
.

Thus, the overall probability that sgn(h+(x) − h−(x)) 6= y is at least 1/20.
This easily yields the lemma.

From this we can easily establish the following which proves Theorem 2.1:

Lemma 4.3 P is not learnable in the generative PAB model.

Proof. Fix algorithm A. Suppose, in Lemma 4.2, we first choose r and s from
{0, 1}n, and then choose the random examples from Pr,s. Then the expectation,
over r and s, of

Pr
(x1,y1),...,(xm,ym)

[Pr,s puts weight at least 1/40 on (x, y) such that

sgn(h+(x) − h−(x)) 6= y]

is at least 1/40. This means that there is a particular choice of r and s for
which

Pr
(x1,y1),...,(xm,ym)

[Pr,s puts weight at least 1/40 on (x, y) such that

sgn(h+(x) − h−(x)) 6= y] > 1/40.

Thus, at least n examples are needed to learn Pr,s whenever ε and δ are each
at most 1/40. By fixing ε and δ at 1/40, and choosing n arbitrarily large, we
can see that there is no fixed sample size, as a function of ε and δ, that suffices
to PAB-learn arbitrary members of P to accuracy ε with probability 1 − δ.

Note that the proof does not depend on the fact that the same algorithm was
applied to the positive and negative examples. Furthermore, a straightforward
extension of the proof generalizes Lemma 4.2 to generative learning algorithms
that are probabilistic. 2 Thus, we get the following for free.

Theorem 4.4 Suppose the generative PAB learning model is relaxed so that
separate (and possibly probabilistic) algorithms can be applied to the positive
and negative examples. Then it remains true that there is a learning problem
that can be solved in the standard PAB model, but not in the generative PAB
model.

2 Include a fixed choice of the learner’s random bits into the restricted event E ′.
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5 Conclusions and Future Work

We presented a learning problem in the Probably Approximately Bayes frame-
work which has the property that a discriminative algorithm can solve the
problem, but no generative algorithm can solve the problem. One drawback
of our construction is that it is arguably somewhat artificial and contrived.
While it nevertheless serves to separate the two learning models, it would be
interesting to come up with a more natural construction that also successfully
separates the models.

A goal for future work is to extend our separation to the Probably Approx-
imately Correct (PAC) learning model. Another goal is to explore computa-
tional separations between discriminative and generative learning.
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