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Abstract

We analyze the joint probability distribution on the lengths of the vectors
of hidden variables in different layers of a fully connected deep network,
when the weights and biases are chosen randomly according to Gaussian
distributions. We show that, if the activation function φ satisfies a minimal
set of assumptions, satisfied by all activation functions that we know that
are used in practice, then, as the width of the network gets large, the “length
process” converges in probability to a length map that is determined as a
simple function of the variances of the random weights and biases, and the
activation function φ. We also show that this convergence may fail for φ
that violate our assumptions. We show how to use this analysis to choose
the variance of weight initialization, depending on the activation function,
so that hidden variables maintain a consistent scale throughout the network.

Keywords: Initialization, theory, stability.

1 Introduction

The size of the weights of a deep network must be managed delicately. If they
are too large, signals blow up as they travel through the network, leading to
numerical problems, and if they are too small, the signals fade away. The practical
state of the art in deep learning made a significant step forward due to schemes
for initializing the weights that aimed in different ways at maintaining roughly
the same scale for the hidden variables before and after a layer (LeCun et al.,
1998; Glorot and Bengio, 2010). Later work (He et al., 2015; Poole et al., 2016;
Daniely et al., 2016) took into account the effect of the non-linearities on the length
dynamics of a deep network, informing initialization policies in a more refined way.

An influential theoretical analysis (Poole et al., 2016) considered whether sig-
nals tend to blow up or fade away as they propagate through a fully connected
network with the same activation function φ at each hidden node. For a given
input, they studied the probability distribution over the lengths of the vectors of
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hidden variables, when the weights between nodes are chosen from a zero-mean
Gaussian with variance σ2

w/N , and where the biases are chosen from a zero-mean
distribution with variance σ2

b . They argued that, in a fully-connected network,
as a width of the network approaches infinity, the (suitably normalized) lengths
of the hidden layers approach a sequence of values, one for each layer, and char-
acterized this length map as a function of φ, σw and σb. This analysis has since
been widely used (Schoenholz et al., 2016; Yang and Schoenholz, 2017; Pennington
et al., 2017; Lee et al., 2018; Xiao et al., 2018; Chen et al., 2018; Pennington et al.,
2018; Hayou et al., 2018).

Poole et al. (2016) claimed that their analysis holds for arbitrary non-linearities
φ. In contrast, we show that, for arbitrarily small positive σw, even if σb = 0, for
φ(z) = 1/z, the distribution of values of each of the hidden nodes in the second
layer diverges as N gets large. For finite N , each node has a Cauchy distribution,
which already has infinite variance, and as N gets large, the scale parameter of
the Cauchy distribution gets larger, leading to divergence. We also show that the
hidden variables in the second layer may not be independent, even for commonly
used φ like the ReLU, contradicting a claim that is part of the analysis of (Poole
et al., 2016).

These observations, together with the wide use of the length map from (Poole
et al., 2016), motivate the search for a new analysis. This note provides such an
analysis for activation functions φ that satisfy the following properties: (a) the
restriction of φ to any finite interval is bounded; (b) as z gets large,1 |φ(z)| ≤
exp(o(z2)), (c) φ is measurable. We refer to such φ as permissible. Note that
conditions (a) and (c) both hold for any non-decreasing φ.

We show that, for all permissible φ and all σw and σb, as N gets large, the
length process converges in probability to the length map described in (Poole
et al., 2016).

Section 5 describes some simulation experiments verifying some of the findings
of the paper, and illustrating the dependence among the values of the hidden
nodes.

Section 6 describes one way to use our analysis to choose the variance of the
weights depending on the activation function so that signals neither blow up nor
vanish as computation flows through a wide and deep network.

Our analysis of the convergence of the length map borrows ideas from (Daniely
et al., 2016), who studied the properties of the mapping from inputs to hidden
representations resulting from random Gaussian initialization. Their theory ap-
plies in the case of activation functions with certain smoothness properties, and
to a wide variety of architectures. Informally, they showed that, after random
initialization, for wide networks, it is likely that the kernel associated with feature
map computed by the network closely approximates a fixed kernel. Our analysis
treats a wider variety of values of σw and σb, and uses weaker assumptions on φ.
Motivated by Bayesian goals as in (Neal, 1996), Matthews et al. (2018) performed
an analysis in a related setting, characterizing the distribution of kernels arising

1Here o(z2) denotes any function of z that grows strictly more slowly than z2, such as z2−ε

for ε > 0.
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from a random initialization. Their analysis used a “linear envelope” condition on
φ that is stronger than the assumption used here. Alternative but related uses of
theory to guide the choice of weight variances may be found in (Schoenholz et al.,
2016; Pennington et al., 2017). Hanin (2018) studied the effect of the widths of
layers and the depth of a fully connected network on the size of the input-output
Jacobian in the case of ReLU activations.

2 Preliminaries

2.1 Notation

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. If T is a n ×m × p tensor,
then, for i ∈ [n], let Ti,:,: be the matrix A such that Aj,k = Ti,j,k, and define Ti,j,:,
etc., analogously.

2.2 The finite case

Consider a deep fully connected width-N network with D layers. Let W ∈
RD×N×N . An activation function φ maps R to R; we will also use φ to denote the
function from RN to RN obtained by applying φ componentwise. Computation of
the neural activity vectors x0,:, ..., xD,: ∈ RN and preactivations h1,:, ..., hD,: ∈ RN

proceeds in the standard way as follows:

h`,: = W`,:,:x`−1,: + b`,: x`,: = φ(h`,:), for ` = 1, . . . , D.

We will study the process arising from fixing an arbitrary input x0,: ∈ RN and
choosing the parameters independently at random: the entries of W are sampled

from Gauss
(

0, σ
2
w

N

)
, and the entries of b from Gauss (0, σ2

b ). For each ` ∈ {0, ..., D},
define q` = 1

N

∑N
i=1 h

2
`,i.

Note that for all ` ≥ 1, all the components of h`,: and x`,: are identically
distributed.

2.3 The wide-network limit

For the purpose of defining a limit, assume that, for a fixed, arbitrary function
χ : N → R, for finite N , we have x0,: = (χ(1), ..., χ(N)). We also assume that
limN→∞

1
N

∑∞
i=1 χ(i)2 exists and is nonzero. For ` > 0, let x` be a random variable

whose distribution is the limit of the distribution of x`,1 as N goes to infinity, if
this limit exists (in the sense of “convergence in distribution”). Define h` and q

`
similarly.

2.4 Total variation distance

If P and Q are probability distributions, then dTV (P,Q) = supE P (E) − Q(E),
and if p and q are their densities, dTV (P,Q) = 1

2

∫
|p(x)− q(x)| dx.
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2.5 Permissible activation functions

Definition 1 An activation function φ is permissible if,

• the restriction of φ to any finite interval is bounded

• |φ(x)| = exp(o(x2)) as |x| gets large.2, and

• φ is measurable.

Conditions (b) and (c) ensure that a key integral can be computed. The proof
of Lemma 1 is in Appendix A.

Lemma 1 If φ is permissible, then, for all positive constants c, the function g
defined by g(x) = φ(cx)2 exp(−x2/2) is integrable.

2.6 Length map

Next we recall the definition of a length map from (Poole et al., 2016); we will
prove that the the length process converges to this length map. Define q̃1, ..., q̃D
and r̃0, ..., r̃D recursively as follows. First r̃0 = limN→∞

1
N

∑N
i=1 x

2
0,i. Then, for

` > 0,
q̃` = σ2

wr̃`−1 + σ2
b

and
r̃` = Ez∈Gauss(0,1)[φ(

√
q̃`z)2].

If φ is permissible, then, since φ(cz)2 exp(−z2/2) is integrable for all c, we have
that q̃0, ..., q̃D, r̃0, ..., r̃D are well-defined finite real numbers.

3 Some surprising behaviors

In this section, we show that, for some activation functions, the probability dis-
tribution of hidden nodes can have some surprising properties.

3.1 Failure to converge

In this subsection, we will show that the probability distribution of the hidden
variables may not converge. Our proof will refer to the Cauchy distribution.

Definition 2 A distribution over the reals that, for x0 ∈ R and γ > 0, has a
density f given by f(x) = 1

πγ
[
1+(x−x0γ )

2
] is a Cauchy distribution, denoted by

Cauchy(x0, γ). Cauchy(0, 1) is the standard Cauchy distribution.

Lemma 2 ((Hazewinkel, 2013)) If X1, ..., Xn are i.i.d. random variables with
a Cauchy distribution, then 1

n

∑n
i=1Xi has the same distribution.

2 This condition may be expanded as follows, limsupx→∞
log |φ(x)|

x2 = 0 and

limsupx→−∞
log |φ(x)|

x2 = 0.
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Lemma 3 ((Lupton, 1993)) If U and V are zero-mean normally distributed
random variables with the same variance, then U/V has the standard Cauchy
distribution.

The following shows that there is a φ such that the limiting h2 is not defined.
It contradicts a claim made on line 7 of Section A.1 of (Poole et al., 2016).

Proposition 4 For any input function χ with range {−1, 1}, there is an activa-
tion function φ such that, for every σw > 0, if σb = 0, then (a) for finite N , h2,1
has infinite variance, and (b) h2,1 diverges as N goes to infinity.

Proof: Consider φ defined by

φ(y) =

{
1/y if y 6= 0
0 if y = 0.

Fix a value of N and σw > 0, and take σb = 0. Each component of h1,: is a sum
of zero-mean Gaussians with variance σ2

w/N ; thus, for all i, h1,i ∼ Gauss(0, σ2
w).

Now, almost surely,

h2,1 =
N∑
j=1

W2,1,jφ(h1,j) =
N∑
j=1

W2,1,j/h1,j.

By Lemma 3, for each j, W2,1,j/h1,j has a Cauchy distribution, and since

(NW2,1,1), ..., (NW2,1,N) ∼ Gauss(0, Nσ2
w),

recalling that h1,1, ..., h1,N ∼ Gauss(0, σ2
w), we have that

NW2,1,1/h1,1, ..., NW2,1,N/h1,N

are i.i.d. Cauchy(0,
√
N). Applying Lemma 2,

h2,1 =
N∑
j=1

W2,1,jφ(h2,j) =
1

N

N∑
j=1

NW2,1,jφ(h1,j)

is also Cauchy(0,
√
N).

So, for all N , h2,1 is Cauchy(0,
√
N). Suppose that h2,1 converged in distri-

bution to some distribution P . Since the cdf of P can have at most countably
many discontinuities, we can cover the real line by a countable set of finite-length
intervals [a1, b1], [a2, b2], ... whose endpoints are points of continuity for P . Since
Cauchy(0,

√
N) converges to P in distribution, for any i,

P ([ai, bi]) ≤ lim
N→∞

|bi − ai|
π
√
N

= 0.

Thus, the probability assigned by P to the entire real line is 0, a contradiction.
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3.2 Independence

The following contradicts a claim made on line 8 of Section A.1 of (Poole et al.,
2016).

Theorem 5 If φ is either the ReLU or the Heaviside function, then, for every
σw > 0, σb ≥ 0, and N ≥ 2, (h2,1, ..., h2,N) are not independent.

Proof: We will show that E[h22,1h
2
2,2] 6= E[h22,1]E[h22,2], which will imply that h2,1

and h2,2 are not independent.
As mentioned earlier, because each component of h1,: is the dot product of

x0,: with an independent row of W1,:,: plus an independent component of b1,:, the
components of h1,: are independent, and since x1,: = φ(h1,:), this implies that the
components of x1,: are independent. Since each row of W1,:,: and each component
of the bias vector has the same distribution, x1,: is i.i.d.

We have

E[h22,1] = E

∑
i∈[N ]

W2,1,ix1,i

+ b2,1

2
=

∑
(i,j)∈[N ]2

E [W2,1,iW2,1,jx1,ix1,j] + 2
∑
i∈[N ]

E [W2,1,ix1,ib2,1] + E
[
b22,1
]
.

The components of W2,:,: and x1,:, along with b2,1, are mutually independent,
so terms in the double sum with i 6= j have zero expectation, and E[h22,1] =(∑

i∈[N ] E
[
W 2

2,1,i

]
E
[
x21,i
])

+ E[b22,1]. For a random variable x with the same dis-

tribution as the components of x1,:, this implies

E[h22,1] = σ2
wE
[
x2
]

+ σ2
b . (1)
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Similarly,

E[h22,1h
2
2,2]

= E

∑
i∈[N ]

W2,1,ix1,i + b2,1

2 ∑
i∈[N ]

W2,2,ix1,i + b2,2

2
=

∑
(i,j,r,s)∈[N ]4

E[W2,1,iW2,1,jW2,2,rW2,2,sx1,ix1,jx1,rx1,s]

+ 2
∑

(i,j,r)∈[N ]3

E[W2,1,iW2,1,jW2,2,rx1,ix1,jx1,rb2,2]

+ 2
∑

(i,r,s)∈[N ]3

E[W2,1,iW2,2,rW2,2,sx1,ix1,rx1,sb2,1]

+ 4
∑

(i,r)∈[N ]2

E[W2,1,iW2,2,rx1,ix1,rb2,1b2,2]

+
∑

(i,j)∈[N ]2

E[W2,1,iW2,1,jx1,ix1,jb
2
2,2] +

∑
(r,s)∈[N ]2

E[W2,2,rW2,2,sx1,rx1,sb
2
2,1]

+ 2
∑
i∈[N ]

E[W2,1,ix1,ib2,1b
2
2,2] + 2

∑
r∈[N ]

E[W2,2,rx1,rb
2
2,1b2,2]

+ E[b22,1b
2
2,2]

=
∑

(i,r)∈[N ]2,i 6=r

E[W 2
2,1,iW

2
2,2,r]E[x21,i]E[x21,r] +

∑
i∈[N ]

E[W 2
2,1,iW

2
2,2,i]E[x41,i]

+
∑
i∈[N ]

E[W 2
2,1,i]E[x21,i]E[b22,2] +

∑
r∈[N ]

E[W 2
2,2,r]E[x21,r]E[b22,1]

+ E[b21,2b
2
2,2]

=
(N2 −N)σ4

wE[x2]2

N2
+
Nσ4

wE[x4]

N2
+

2Nσ2
wE[x2]σ2

b

N
+ σ4

b

= σ4
wE[x2]2 +

σ4
w(E[x4]− E[x2]2)

N
+ 2σ2

wσ
2
bE[x2] + σ4

b .

Putting this together with (1), we have

E[h22,1h
2
2,2]− E[h22,1]E[h22,2] =

σ4
w(E[x4]− E[x2]2)

N
. (2)

Now, we calculate the difference using (2) for the Heaviside and ReLU func-
tions.

Heaviside. Suppose φ is Heaviside function, i.e. φ(z) is the indicator function
for z > 0. In this case, since the components of h1,: are symmetric about 0, the
distribution of x1,: is uniform over {0, 1}N . Thus E[x4] = E[x2] = 1/2, and so (2)

gives E[h22,1h
2
2,2]− E[h22,1]E[h22,2] = 3σ4

w

4N
6= 0.

ReLU. Next, we consider the case that φ is the ReLU. Recalling that, for all

i, h1,i ∼ Gauss(0, σ2
w), we have E[x2] = 1√

2πσ2
w

∫∞
0
z2 exp

(
−z2
2σ2
w

)
dz. By symmetry
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this is 1
2
Ez∼Gauss(0,σ2

w)
[z2] = σ2

w/2. Similarly, E[x4] = 1
2
Ez∼Gauss(0,σ2

w)
[z4] = 3σ4

2
.

Plugging these into (2) we get that, in the case the φ is the ReLU, that

E[h22,1h
2
2,2]− E[h22,1]E[h22,2] =

σ4
w ((3/2)σ4

w − σ4
w/4)

N
=

5σ8
w

4N
> 0,

completing the proof.
Note that, informally, the degree of dependence between pairs of hidden nodes

established in the proof of Theorem 5 approaches 0 as N gets large. On the other
hand, the number of dependent pairs of hidden nodes is Ω(N2).

3.3 Undefined length map

Here, we show, informally, that for φ at the boundary of the second condition in
the definition of permissibility, the recursive formula defining the length map q̃`
breaks down. Roughly, this condition cannot be relaxed.

Proposition 6 For any α > 0, if φ is defined by φ(x) = exp(αx2), even if all
components of all inputs are in {−1, 1}, there exists a σw, σb s.t. q̃`, r̃` is undefined
for all ` ≥ 2.

Proof: Suppose σ2
w + σ2

b = 1
4α2 . Then q̃1 = 1

4α2 , so that

r̃1 =
1√
2π

∫ ∞
−∞

φ(
√
q̃1z) exp

(
−z

2

2

)
dz =

1√
2π

∫ ∞
−∞

exp(α
√
q̃1z

2) exp

(
−z

2

2

)
dz

=
1√
2π

∫ ∞
−∞

exp(z2/2) exp

(
−z

2

2

)
dz =∞,

and downsteam values of q̃` and r̃` are undefined.

4 Convergence in probability

In this section that the length process q0, ..., qD converges in probability to the
length map q̃0, ..., q̃D from (Poole et al., 2016).

Theorem 7 For any permissible φ, σw, σb ≥ 0, any depth D, and any ε, δ > 0,
there is an N0 such that, for all N ≥ N0, with probability 1 − δ, for all ` ∈ [D],
we have |q` − q̃`| ≤ ε.

The rest of this section is devoted to proving Theorem 7. Our proof will use
the weak law of large numbers.

Lemma 8 ((Feller, 2008)) For any random variable X with a finite expectation,
and any ε, δ > 0, there is an N0 such that, for all N ≥ N0, if X1, ..., XN are i.i.d.
with the same distribution as X, then

Pr

(∣∣∣∣∣E[X]− 1

N

N∑
i=1

Xi

∣∣∣∣∣ > ε

)
≤ δ.
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In order to divide our analysis into cases, we need the following lemma, whose
proof is in Appendix B.

Lemma 9 If φ is permissible and not zero a.e., for all σw > 0, for all `, q̃` > 0
and r̃` > 0.

We will also need a lemma that shows that small changes in σ lead to small changes
in Gauss(0, σ2).

Lemma 10 (see (Klartag, 2007)) There is an absolute constant C such that,
for all σ1, σ2 > 0,

dTV (Gauss(0, σ2
1),Gauss(0, σ2

2)) ≤ C
|σ1 − σ2|

σ1
.

The following technical lemma, which shows that tail bounds hold uniformly over
different choices of q, is proved in Appendix C.

Lemma 11 If φ is permissible, for all 0 < r ≤ s, for all β > 0, there is
an a ≥ 0 such that, for all q ∈ [r, s],

∫∞
a
φ(
√
qz)2 exp(−z2/2) dz ≤ β and∫ −a

−∞ φ(
√
qz)2 exp(−z2/2) dz ≤ β.

Armed with these lemmas, we are ready to prove Theorem 7.
First, if φ is zero a.e., or if σw = 0, Theorem 7 follows directly from Lemma 8,

together with a union bound over the layers. Assume for the rest of the proof that
φ(x) is non-zero on a set of positive measure, and that σw > 0, so that q̃` > 0 and
r̃` > 0 for all `.

For each ` ∈ {0, ..., D}, define r` = 1
N

∑N
i=1 x

2
`,i.

Our proof of Theorem 7 is by induction. The inductive hypothesis is that, for
any ε, δ > 0 there is an N0 such that, if N ≥ N0, then, with probability 1− δ, for
all `′ ∈ {1, ..., `}, |q`′ − q̃`′| ≤ ε and, for all `′ ∈ {0, ..., `}, and |r`′ − r̃`′| ≤ ε.

The base case, where ` = 0, holds because r̃0 is definied to be the limit of r0
as N goes to infinity.

Now for the induction step; choose ` > 0, 0 < ε < min{q̃`/4, r̃`} and 0 <
δ ≤ 1/2. (Note that these choices are without loss of generality.) Let ε′ ∈ (0, ε)
take a value that will be described later, using quantities from the analysis. By
the inductive hypothesis, whatever the value of ε′, there is an N ′0 such that, if
N ≥ N ′0, then, with probability 1− δ/2, for all `′ ≤ `− 1, we have |q`′ − q̃`′ | ≤ ε′

and |r`′ − r̃`′ | ≤ ε′. Thus, to establish the inductive step, it suffices to show that,
after conditioning on the random choices before the `th layer, if |r`−1− r̃`−1| ≤ ε′,
there is an N` such that, if N ≥ N`, then with probability at least 1 − δ/2
with respect only to the random choices of W`,:,: and b`,:, that |q` − q̃`| ≤ ε and
|r` − r̃`| ≤ ε. Given such an N`, the inductive step can be satisfied by letting N0

be the maximum of N ′0 and N`.
Let us do that. To simplify the notation, for the rest of the proof of the induc-

tive step, let us condition on outcomes of the layers before layer `; all expectations
and probabilities will concern the randomness only in the `th layer. Let us further
assume that |r`−1 − r̃`−1| ≤ ε′.
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Recall that q` = 1
N

∑N
i=1 h

2
`,i. Since the values of h`−1,1, ..., h`−1,N have been

fixed by conditioning, each component of h`,i is obtained by taking the dot-product
of x`−1,: = φ(h`−1,:) with W`,i,: and adding an independent b`,i. Thus, conditioned
on h`−1,1, ..., h`−1,N , we have that h`,1, ..., h`,N are independent. Also, since x`−1,:
is fixed by conditioning, each h`,i has an identical Gaussian distribution.

Since each component of W and b has zero mean, each h`,i has zero mean.
Choose an arbitrary i ∈ [N ]. Since x`−1,: is fixed by conditioning and

W`,i,1, ...,W`,i,N

and b`,i are independent,

E[q`] = E[h2`,i] = σ2
b +

σ2
w

N

∑
j

x2`−1,j = σ2
b + σ2

wr`−1
def
= q`. (3)

We wish to emphasize the q` is determined as a function of random outcomes before
the `th layer, and thus a fixed, nonrandom quantity, regarding the randomization
of the `th layer. By the inductive hypothesis, we have

|E[q`]− q̃`| = |E[h2`,i]− q̃`| = |q` − q̃`| = σ2
w|r`−1 − r̃`−1| ≤ ε′σ2

w. (4)

The key consequence of this might be paraphrased by saying that, to establish the
portion of the inductive step regarding q`, it suffices for q` to be close to its mean.
Now, we want to prove something similar for r`. We have

E[r`] =
1

N

N∑
i=1

E[x2`,i] =
1

N

N∑
i=1

E[φ(h`,i)
2] = E[φ(h`,1)

2],

since, recalling that we have conditioned on previous layers, h`,1, ..., h`,N are i.i.d.
Since h`,i ∼ Gauss(0, q`), we have

E[r`] = Ez∼Gauss(0,q`)[φ(z)2]

= Ez∼Gauss(0,1)[φ(
√
q`z)2]

=

√
1

2π

∫
φ(
√
q`z)2 exp(−z2/2) dz

which gives

|E[r`]− r̃`| ≤
∣∣Ez∼Gauss(0,q`)[φ(z)2]− Ez∼Gauss(0,q̃`)[φ(z)2]

∣∣ .
Since |q` − q̃`| ≤ ε′σ2

w and we may choose ε′ to ensure ε′ ≤ q̃`
2σ2
w

, we have q̃`/2 ≤
q` ≤ 2q̃`.

For β > 0 and κ ∈ (0, 1/2) to be named later, by Lemma 11, we can choose a
such that, for all q ∈ [q̃`/2, 2q̃`],∫ −a
−∞

φ(
√
qz)2 exp(−z2/2) dz ≤ β/2 and

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz ≤ β/2
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and 1√
2πq

∫ a
−a exp

(
− z2

2q

)
dz ≥ 1− κ. Choose such an a.

We claim that
∣∣∣∫ a−a φ(

√
qz)2 exp(−z2/2) dz −

∫
φ(
√
qz)2 exp(−z2/2) dz

∣∣∣ ≤ β

for all q̃`/2 < q ≤ 2q̃`. Choose such a q. We have∣∣∣∣∫ a

−a
φ(
√
qz)2 exp(−z2/2) dz −

∫
φ(
√
qz)2 exp(−z2/2) dz

∣∣∣∣
=

∫ −a
−∞

φ(
√
qz)2 exp(−z2/2) dz +

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz

≤ 2 max

{∫ −a
−∞

φ(
√
qz)2 exp(−z2/2) dz,

∫ ∞
a

φ(
√
qz)2 exp(−z2/2) dz

}
≤ β.

So now we are trying to bound∣∣∣∣∫ a

−a
φ(
√
q`z)2 exp(−z2/2) dz −

∫ a

−a
φ(
√
q̃`z)2 exp(−z2/2) dz

∣∣∣∣
using q̃`/2 ≤ q` ≤ 2q̃`.

Using changes of variables, we have∣∣∣∣∫ a

−a
φ(
√
q`z)2 exp(−z2/2) dz −

∫ a

−a
φ(
√
q̃`z)2 exp(−z2/2) dz

∣∣∣∣
=

∣∣∣∣∣ 1√
q`

∫ a
√
q`

−a
√
q`

φ(z)2 exp

(
− z2

2q`

)
dz − 1√

q̃`

∫ a
√
q̃`

−a
√
q̃`

φ(z)2 exp

(
− z2

2q̃`

)
dz

∣∣∣∣∣ .
Since φ is permissible, φ2 is bounded on [−a

√
2q̃`, a

√
2q̃`]. If P is the distribution

obtained by conditioning Gauss(0, q`) on [−a
√
q`, a
√
q`], and P̃ by conditioning

Gauss(0, q̃`) on [−a
√
q̃`, a
√
q̃`], then if M =

√
2π supz∈[−a√2q̃`,a

√
2q̃`]

φ(z)2, since
q` ≤ 2q̃`,∣∣∣∣∣ 1√

q`

∫ a
√
q`

−a
√
q`

φ(z)2 exp(− z2

2q`
) dz − 1√

q̃`

∫ a
√
q̃`

−a
√
q̃`

φ(z)2 exp(− z2

2q̃`
) dz

∣∣∣∣∣
≤MdTV (P, P̃ ).

But since, for κ < 1/2, conditioning on an event of probability at least 1 − κ
only changes a distribution by total variation distance at most 2κ, and therefore,
applying Lemma 10 along with the fact that |q` − q̃`| ≤ ε′σ2

w, for the constant C

11



from Lemma 10, we get

dTV (P, P̃ ) ≤ 4κ+ dTV (Gauss(0, q`),Gauss(0, q̃`))

≤ 4κ+
C|
√
q` −

√
q̃`|√

q̃`

= 4κ+
C|q` − q̃`|

|
√
q` +

√
q̃`|
√
q̃`

≤ 4κ+
Cε′σ2

w

q̃`
.

Tracing back, we have∣∣∣∣∫ a

−a
φ(
√
q`z)2 exp(−z2/2) dz −

∫ a

−a
φ(
√
q̃`z)2 exp(−z2/2) dz

∣∣∣∣
≤M

(
4κ+

Cε′σ2
w

q̃`

)
which implies

|E[r`]− r̃`| ≤
∣∣∣∣∫ φ(

√
q`z)2 exp(−z2/2) dz −

∫
φ(
√
q̃`z)2 exp(−z2/2) dz

∣∣∣∣
≤M

(
4κ+

Cε′σ2
w

q̃`

)
+ 2β.

If κ = min{ ε
24M

, 1
3
}, β = ε

12
, and ε′ = min

{
ε
2
, ε
2σ2
w
, q̃`
2σ2
w
, q̃`ε
6CMσ2

w

}
this implies |E[r`]−

r̃`| ≤ ε/2.
Recall that q` is an average of N identically distributed random variables with

a mean between 0 and 2q̃` (which is therefore finite) and r` is an average of N
identically distributed random variables, each with mean between 0 and r̃`+ε/2 ≤
2r̃`. Applying the weak law of large numbers (Lemma 8), there is an N` such
that, if N ≥ N`, with probability at least 1 − δ/2, both |q` − E[q`]| ≤ ε/2 and
|r` − E[r`]| ≤ ε/2 hold, which in turn implies |q` − q̃`| ≤ ε and |r` − r̃`| ≤ ε,
completing the proof of the inductive step, and therefore the proof of Theorem 7.

5 Experiments

Our first experiment fixed x[0, :] = (1, ..., 1), σw = 1, σb = 0, φ(z) = 1/z.
For each N ∈ {10, 100, 1000}, we (a) initialized the weights 100 times, (b)

plotted the histograms of all of the values of h[2, :], along with the Cauchy(0,
√
N)

distribution from the proof of Proposition 4, and Gauss(0, σ2) for σ estimated
from the data. Consistent with the theory, the Cauchy(0,

√
N) distribution fits

the data well.
To illustrate the fact that the values in the second hidden layer are not inde-

pendent, for N = 1000 and the parameters otherwise as in the other experiment,

12
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(a) N = 10
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(b) N = 100
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(c) N = 1000

Figure 1: Histograms of h[2, :], averaged over 100 random initializations, for N ∈
{10, 100, 1000}, along with Cauchy(0,

√
N) (shown in red) and Gauss(0, σ2) for

σ estimated from the data (shown in green). When we average over multiple
random initializations of the weights, the distribution of the activations matches
the Cauchy distribution, and not the Gaussian.

we plotted histograms of the values seen in the second layer for nine random ini-
tializations of the weights in Figure 2. When some of the values in the first hidden
layer have unusually small magnitude, then the values in the second hidden layer
coordinately tend to be large. Note that this is consistent with Theorem 7 es-

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

−600 −400 −200 0 200 400 600

Activations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

N
o
rm

a
liz

e
d
 c

o
u
n
ts

/d
e
n
si

ti
e
s

Figure 2: Histograms of h[2, :] for nine random weight initializations. Plotting
activations separately for different random initializations reveals the dependence
among the activations in a layer.

tablishing convergence in probability for permissible φ, since the φ used in this
experiment is not permissible.
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activation input variance weight variance
Identity 1 1
ReLU 1/2 2

Heaviside 1/2 2
Exponential e2 1/e2

Tanh 0.394 2.53

Table 1: Choices of input variance (r0) and weight variances (σ2
w) that theory

suggests will promote an invariant that the preactivations maintain a constant
scale as computation flows through the network.

6 Maintaining unit scale

In this section, we describe one use of our analysis to guide the design of initial-
ization variances.

Our analysis shows that q1 ≈ σ2
wr0 + σ2

b , and

q`+1 ≈ σ2
wEz∈Gauss(0,1)[φ(

√
q`z)2] + σ2

b .

If we achieve
1 ≈ σ2

wr0 + σ2
b

and
1 = σ2

wEz∈Gauss(0,1)[φ(z)2] + σ2
b ,

this will promote q1 ≈ 1, q2 ≈ 1, q3 ≈ 1, and so on. Setting

σ2
w = 1/Ez∈Gauss(0,1)[φ(z)2], r0 = Ez∈Gauss(0,1)[φ(z)2], σ2

b = 0

satisfies both. These values are collected from some common activation functions
in Table 1.

7 Conclusion

We have given a rigorous analysis of the limiting value of the distribution of the
lengths of the vectors of hidden nodes in a fully connected deep network, and
described how to choose the variance of the weights at initialization using this
analysis for various commonly used activation functions. Our analysis can be
easily applied to other activation functions.

As in earlier work, our analysis concerned a limit in which the input grows
along with the hidden layers. This simplifies the analysis, but it appears not to
be difficult to remove this assumption (see (Matthews et al., 2018)).

After publication of some of this work in preliminary form (Long and Sedghi,
2019), elements of its analysis were used in (Novak et al., 2019).

Analysis of the length map in the case of ReLU activations was an important
component of recent analyses of the convergence of deep network training (Zou

14



et al., 2018; Allen-Zhu et al., 2019). A non-asymptotic refinement of our analy-
sis would be a step toward generalizing those results to more general activation
functions.
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A Proof of Lemma 1

Choose c > 0. Since limsupx→∞
log |φ(x)|

x2
= 0 and limsupx→−∞

log |φ(x)|
x2

= 0, we also
have
limsupx→∞

log |φ(cx)|
x2

= 0 and limsupx→−∞
log |φ(cx)|

x2
= 0. Thus, there is an a such

that, for all x 6∈ [−a, a], log |φ(cx)| ≤ x2

8
, which implies φ(cx)2 ≤ exp

(
x2

4

)
. Since

φ is permissible, it is bounded on [−a, a]. Thus, we have∫
φ(cx)2 exp(−x2/2) dx

=

∫ −a
−∞

φ(cx)2 exp(−x2/2)dx+

∫ a

−a
φ(cx)2 exp(−x2/2)dx

+

∫ ∞
a

φ(cx)2 exp(−x2/2)dx

≤
∫ −a
−∞

exp(−x2/4)dx+

(
sup

x∈[−a,a]
φ(cx)2

)∫ a

−a
exp(−x2/2)dx

+

∫ ∞
a

exp(−x2/4)dx

<∞

completing the proof.

B Proof of Lemma 9

The proof is by induction. The base case holds since we have assumed that r̃0 > 0.
To prove the inductive step, we need the following lemma.

Lemma 12 If φ is not zero a.e., then, for all c > 0, Ez∈Gauss(0,1)(φ(cz)2) > 0.

Proof: If µ is the Lebesgue measure, since

µ({x ∈ R : φ2(cx) > 0}) = lim
n→∞

µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0,

there exists n such that µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0. For such an n, we
have

Ez∈Gauss(0,1)(φ(cz)2) ≥ 1

n
e−n

2/2µ({x : φ2(cx) > 1/n} ∩ [−n, n]) > 0.

Returning to the proof of Lemma 9, by the inductive hypothesis, r̃`−1 > 0,
which, since σw > 0, implies q̃` > 0. Applying Lemma 12 yields r̃` > 0.
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C Proof of Lemma 11

Since limsupx→∞
log |φ(x)|

x2
= 0 there is an b such that, for all x ≥ b, log |φ(x)| ≤ x2

8s
,

which implies φ(x)2 ≤ exp
(
x2

4s

)
. Now, choose q ∈ [r, s]. For a = b/

√
r, we then

have ∫ ∞
a

φ(
√
qx)2 exp(−x2/2) dx

=
1
√
q

∫ ∞
a
√
q

φ(z)2 exp

(
−z

2

2q

)
dz

≤ 1
√
q

∫ ∞
a
√
q

exp

(
z2

4s

)
exp

(
−z

2

2q

)
dz

≤ 1
√
q

∫ ∞
a
√
q

exp

(
−z

2

4q

)
dz

≤ 1
√
q

∫ ∞
b

exp

(
−z

2

4q

)
dz.

By increasing b if necessary, we can ensure 1√
q

∫∞
b

exp
(
− z2

4q

)
dz ≤ β which then

gives∫∞
a
φ(
√
qx)2 exp(−x2/2) dx ≤ β. A symmetric argument yields∫ a

−∞
φ(
√
qx)2 exp(−x2/2) dx ≤ β,

completing the proof.
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