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ON THE WEIGHT OF HALFSPACES OVER HAMMING BALLS*

PHILIP M. LONG' AND ROCCO A. SERVEDIO*

Abstract. For S C {0,1}™, a Boolean function f : S — {—1,1} is a halfspace over S if there
exist w € R™ and 0 € R such that f(z) = sign(w-x — 0) for all z € S. We give bounds on the size of
integer weights w1, ..., wn € Z that are required to represent halfspaces over Hamming balls S = {z €
{0,1}" : &1 + -+ - + xn < k}. Such weight bounds for halfspaces over Hamming balls have immediate
consequences for the performance of learning algorithms in the common scenario of learning from
very high-dimensional categorical examples which are such that only a small number of features are
active in each example. We give upper and lower bounds on weight both for exact representation
(when sign(w - z—0) must equal f(z) for every z € S) and for e-approximate representation (when
sign(w - z—0) may disagree with f(z) for up to an e fraction of points z € S). Our results show that
extremal bounds for exact representation are qualitatively rather similar whether the domain is all
of {0,1}" or the Hamming ball {0,1}2,, but extremal bounds for approximate representation are
qualitatively very different between these two domains.
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1. Introduction. Let S be a subset of the Boolean hypercube {0,1}"™. We say
that a Boolean function f : S — {—1,1} is a halfspace over S if there exist w € R"
and # € R such that f(z) = sign(w -z — 0) for all x € S. The pair (w,0) is an
integer representation of f if w € Z™. The weight of an integer representation is
max;—1, . |w;|. The weight of a halfspace f over S is the smallest weight of any
integer representation which computes f correctly on all x € S.

Many researchers have studied the weight of halfspaces over the entire Boolean
cube (corresponding to taking S = {0,1}"); see, e.g., [15, 14, 17, 7, 18, 16, 19, 13, 9,
1, 22, 4]. Upper and lower bounds have been obtained both for exact representation,
as described above, and for a relaxed scenario in which the integer-weight halfspace
sign(w - & — ) need only e-approximate the function f (i.e., we allow Pr,cg[sign(w -
x —0) # f(x)] to be at most ¢ for some given approximation parameter € > 0). We
describe these previous results in detail in section 1.1.

In this paper we give a detailed study of the weight of halfspaces, both exact
and approximate, over Hamming balls of radius k; i.e., we study halfspaces over the
domain

S=1{0,1}%, C{w e {0,1}" a1 + - +a, < k.

Motivation. In machine learning scenarios involving categorical (as opposed to
numerical) data, the most common way to represent an unlabeled example is as a
vector in {0,1}", where each coordinate corresponds to a binary feature and a value
of 1 indicates that the feature is active in the example. In many modern machine
learning problems, the set of all possible features is extremely large (e.g., the set of
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all possible words) but each example has only a small number of active features (e.g.,
the set of words in a given search query). In such a setting, the space of all possible
examples is contained in a Hamming ball {0,1}”,, where k < n. A natural question
is what types of learning algorithms are particularly well suited to this sort of data.

In machine learning, various notions of the “margin” of a binary classifier on an
input formalize in different ways the extent to which the classifier makes a clear-cut
prediction on that input [2, 21]. The margin of a classifier on a set of inputs is taken
to be the minimum margin over all inputs in the set. Upper and lower bounds on the
margin of a halfspace classifier f over a set of inputs are known to be closely related
to the weight of f [11, 5, 21, 23]. Thus, bounds on the weights of halfspaces provide
a way to bound their margins. Since halfspaces play a fundamental role in machine
learning, and the margin of a halfspace H is an important measure of the difficulty
of learning H, we are naturally motivated to understand the weight of halfspaces
over Hamming balls, as an initial step toward understanding the impact of sparsity
in feature vectors on learning complexity.

1.1. Previous work and our results. In this section we review prior work
on the weight of halfspaces (all of the previous work that we are aware of deals with
halfspaces over the entire Boolean cube {0, 1}™), and we state our results for halfspaces
over the Hamming ball {0, 1}7%,.

Prior work on exact representation of halfspaces over {0,1}™. It has
been known at least since the 1960s [15] that every halfspace over {0, 1}™ has weight
at most n©(™ (this fact has been rediscovered several times; see, e.g., [10, 17]). Since
there are 22(n") halfspaces over {0,1}" a counting argument shows that there exist
halfspaces over {0,1}" that require weight 29(") " and specific halfspaces that require
weight 22(") have been known for decades [14, 8]. Hastad [9] exhibited a specific
halfspace that has weight n*("), and his construction was subsequently refined in [1].
So the weight of exact representations of halfspaces over all of {0, 1}™ is by now quite
well understood.

Our results on exact representation of halfspaces over {0,1}%,. We
give an essentially complete picture of the weight of halfspaces over Hamming balls
{0,1}7%, for all values of k. First, it is easy to see that for &k € {0, 1} every halfspace
over {0,1}%, has an integer representation of weight 1. For k = 2, by analyzing a
greedy construction we show (Theorem 2.2) that every halfspace over {0,1}7, has
weight O(n), and we observe that a simple explicit halfspace has weight ©(n).

Things get more interesting beyond k& = 2. Using a linear programming argument,
we show (Theorem 2.1) that for every k > 3, every halfspace over {0,1}, has an

integer representation of weight (k -+ 2)(”“)/2, and we show that already for k = 3
there is a simple explicit halfspace for which any integer representation must have
weight 22("). Our main lower bound result for exact representation (Theorem 3.1) is
a general lower bound showing that for every k > 3, there is an explicit halfspace over
{0,1}7, that requires integer weight k(™). This is established via a construction that
carefully combines Hastad’s halfspace [9] with a “decision list”-type construction. Our
lower bound shows that our upper bound on the weight of halfspaces over {0,1}%, is
essentially the best possible. a

Prior work on approximation over {0,1}"™. The lower bound of [9] imme-
diately implies that there is an n-variable halfspace f over {0,1}" which is such that
any e-approximating halfspace sign(w -z —6) (i.e., w satisfies Pryco,1}n [sign(w - z) #
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f(z)] < &) must have weight 1/c%(glog(1/€))  The paper [22] showed that every
n-variable halfspace over {0,1}"™ can be e-approximated by a halfspace of weight

N 26(1/52), and showed an Q(y/n) lower bound for constant e. The upper bound
was subsequently improved (as a function of £) to weight n3/2 - 200/=”*) in [4], and
very recently [3] was further improved to /7 - (1/£)0cg”(1/€)

Our results on approximation over {0,1}72,. We study the weight required
to e-approximate halfspaces over {0,1}%,, i.e., given a halfspace f we now allow
the integer-weight halfspace sign(w - z — 0) to disagree with f(x) on an ¢ fraction
of all points in {0,1}%,. (For the informal discussion here k should be viewed as
“small” compared to n; precise bounds on k are given in the actual detailed theorem
statements.) As our main positive result (Theorem 5.1), we show that for every
halfspace f over {0,1}%, there is a halfspace that e-approximates f and has integer
weights each of which is at most k©(*/¢) independent of n. This proof combines
linear programming arguments with upper bounds on the edge boundary of monotone
Boolean-valued functions over the discrete domain {1,...,¢}*.

As our main negative result (Theorem 6.1), we show that for any constant & > 3
there is a simple explicit halfspace f (the “decision list” halfspace, which we denote
DL) which is such that any e-approximator of f over {0,1}%, must have weight

£/ 5Y) i shows that an inverse exponential dependence on 1/¢ is necessary

in any upper bound for {0, 1}, when k = O(1), in contrast to the y/n-(1/¢)°Uos” (1/))
upper bound over all of {0,1}" recently established in [3].

Finally, we give a detailed analysis of the specific “decision list” halfspace DL and
show (Theorem 7.1) that for this particular function the general weight upper bound
of Theorem 5.1 can be strengthened to k©*/ve). This shows that strengthening the
analysis of the DL function that is given in Theorem 6.1 will not be enough to improve
that lower bound to match the general upper bound of Theorem 5.1.

Discussion. Our results show that (as long as k > 3) the extremal bounds on the
weights required for exact representation of halfspaces are fairly similar whether the
domain is {0,1}7, or {0,1}"; in the former case the “right” weight bound is k®(™)
while in the latter case it is n®("). For e-approximate representation, though, our
results show that there are two interesting qualitative differences between the “right”
weight bounds for the two domains. First, our k°(*/¢) upper bound (independent of
n) for {0,1}%, stands in contrast with the Q(y/n) lower bound of [22] for {0,1}"; so
for Hamming balls no dependence on n is necessary in the weights, whereas for the
Boolean cube a polynomial dependence is required. Second, our k%(1/ ) Jower
bound shows that for any fixed constant k, some halfspaces over {0, 1}, require any
g-approximator to have weights that are exponential in 1/e. This is in sharp contrast
with the recent [3] upper bound, which shows that over {0,1}" it is always possible
to construct an e-approximating halfspace with integer weights that are only quasi-
polynomial in 1/e. Intuitively, this disparity may be viewed as a consequence of the
“nice structure” of the uniform distribution over {0,1}™ (with attractive properties
such as independence between coordinates, sub-Gaussian tails for linear forms w - x,
etc.) which is not present in the uniform distribution over {0, 1}7%,.

Preliminaries. Note that under the correspondence —1 <> 0, 1 <+ 1 an integer-
weight halfspace sign(w-xz —60) over the hypercube {—1, 1}" corresponds to an integer-
weight halfspace sign(2w-z— (6 +w1+- - -+w,,)) over the hypercube {0, 1}". So we may
work either over the Hamming ball {0,1}%, = {z € {0,1}" : 21+ - -+ < k} of the
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0/1 hypercube or over the Hamming ball {—1,1}%, ={z € {-1,1}": 21+ -+, <
—n+2k} of the +1/—1 hypercube; weight bounds obtained for one domain will carry
over to the other one with at most a factor of 2 difference. Similarly we may also
work over {—1,1}2 , ={x e {-1,1}" : 21+ -+ 2, > n— 2k}; sometimes this will
be the most convenient.

Some more useful observations: If sign(w - z — ) is a halfspace with integer
coefficients over any subset S C {—1,1}" or S C {0,1}", then it is easy to see that
without loss of generality we may modify the threshold € to be of the form (integer
+%) We also note that if sign(w -  — 6) is an integer-weight halfspace with such
a threshold that computes a function f over {—1,1}%Z,, then sign(—w -z +0) is a
halfspace of the same weight computing — f over {—1,1}%,; so to bound the weight
of f over {—1,1}", it is enough to bound the weight of — f.

Finally, we establish some useful notation. We denote {1,...,n} by [n]. For
i € [n] we write e; to denote the unit vector in R whose only nonzero entry is a 1
in the ith coordinate. We let DL(x) denote the “decision list” halfspace over {0, 1}"
that is defined as follows: DL(x) equals (—1)%, where i is the largest index such that
z; = 1. (If x is the all-0 string (0)", then DL(x) = 1.) To see that DL(z) is a
halfspace, we observe that it can be represented as DL(x) = sign(>_1, (—2)%z;+1).
The function is called the “decision list” halfspace because it computes the decision
list “if z,, = 1, then output (—1)", else if 2, _; = 1, then output (—1)""1, else ....”

2. Upper bounds for exact representation. We start with a general upper
bound. The proof is a straightforward modification of standard integer-weight upper
bound arguments for halfspaces over {0,1}" (see, e.g., [15, 9]) adapted to the domain
{0,172

THEOREM 2.1. For 3 < k < n, every halfspace over {0,1}", has weight at most
(k +2)(n+1)/2, -

Proof. Fix f to be any halfspace over {0,1}Z2,. Each point z in {0,1}2, with
f(x) =y € {—1,1} provides a linear constraint

y(wlxl + -t wpT, + wn+1) >1

over the weights w1, ..., w,+1 which define the halfspace f(z) = sign(wizq + -+ +
W Ty +Wpy1). Since f is a halfspace the above system of Z?:o (?) linear inequalities
over variables wi,...,w,41 is feasible. A standard result in the theory of linear
programming (see, e.g., [15, 9]) implies that there is a subset of n + 1 of the above
inequalities which is such that if each inequality is replaced with an equality, the
resulting set of n + 1 equalities defines a unique weight vector (wy, ..., w,+1) € R**?
which is a feasible solution to the entire set of Z;ﬂ:o (’;
there is a representation sign(w-z+w, 1) computing f where (w1, ..., w,;1) € R**!
is the solution to a linear system

) inequalities. In other words,

Aw = b,

where b € {—1,1}""! and A is an (n+ 1) x (n + 1) 0/1 matrix in which the first n
entries of each row have at most k& ones and the last entry is 1. Let ddectt((‘:i)) be the
expression for a solution w; using Cramer’s rule. Since scaling the components of w by
the same constant factor does not affect the behavior of f, setting each w; = det(A4;)
also works. Fix an arbitrary i, let B = A;, and let By,...,B,11 be the rows of

B. Hadamard’s inequality (see, e.g., [6, p. 233]) gives det(B) < H;Z;rll || Bj||, where
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| Bj|| denotes the 2-norm of B; viewed as a vector in R"!. Let £;< k+ 2 be the
number of nonzero components in Bj; since these components are all +1, we have
| B; || = \/¢;, so that det(B) < H?ill V< (k+2)"t1/2 So f can be realized using
integer weights of at most this magnitude. d

We note that the proof given above actually holds for all & > 1 (not just k > 3 as
in the theorem statement), but much stronger bounds are possible for k = 1,2. For
k =1, it is easy to see that every halfspace over {0, 1}, has an integer representation
of weight 1. For k = 2 Theorem 2.1 only gives an upper bound that is exponential in
n, but the true extremal value for k = 2 is actually linear in n.

THEOREM 2.2. Every halfspace f over {0,1}%, has weight O(n).

Before giving the proof, here is some high-level intuition. Since we are working
over {0,1}%2,, intuitively in order to set the weight v; of variable z; correctly the
“only constraint that matters” is how many of the other n — 1 variables z; are such
that f(e; + e;) = 1. The proof shows that a suitable greedy approach of setting the
weights can satisfy all these constraints taking all the weights to be O(n) in absolute
value.

Proof of Theorem 2.2. Since f is a halfspace over {0,1}%,, it has some represen-
tation as f(z) = sign(w - © — 6), where wy,...,w,,0 are real numbers. We will use
this representation to construct an integer-weight representation sign(v - x — ') that
agrees with f on all points in {0,1}%, and where each |v;| < O(n).

By negating f if necessary (which does not change the integer weight required for
a representation) we may assume that f(0™) = —1. This means that sign(—6) = —1,
and thus we have 6 > 0.

We may suppose without loss of generality that w; < --- < w,, and all n weights
w1, ..., w, are nonzero (since if the weights do not satisfy these conditions they can
be reordered and perturbed to satisfy them). We note that if w, < 0, then every
input x € {0,1}%, (and indeed every input in {0,1}") has w -z < 0 < 6; in this case
f is the constant —1 function and f trivially has a representation of weight 0. Thus
we assume going forth that w,, > 0.

Let ¢ € {1,...,n} be such that wy_1 <0 < wy (so £ =1 if w; > 0). Now,

o let w' € R be (wy,...,we_1,0,wy, ..., wp);
e for each = € {0,1}7,, let 2’ € {0,1}"3" = (z1,...,201,0,20, ..., 2,);
e for each x € {0,1}72,, let 2’ € {0,1}"5 = (x1,..., 201, 1,20, ..., 2);

e when z =07, let 2’ € {0,1}"*! be (0,...,0).

Note that, for all z € {0,1}%,, sign(w’ - 2/ — ) = sign(w - x — ), and, for all
except 0", 2’ has exactly two ones. Furthermore, if we have a weight vector v € R**!
such that vy = 0, if we define © € R™ by ¢ = (v1,...,0¢—1,Ve+1,Vn+1), then, for all
x €{0,1}%, and all real 6, we have sign(v - ' — 6) = sign(v - z — 6). So, our problem
reduces to the problem of finding a vector v € R™*! with small integer weights for
which vy = 0 and there is a 6’ such that

sign(v -z — 0') = sign(w’ -z — )

for all z € {0"*+1} U {0,1}4%

Now let us define an (n + 1) x (n + 1) matrix (M(4,7))i je{1,....n+1} With entries
in {—1,1} as follows. The matrix M will be symmetric, i.e., M(i,5) = M(j,1).
It will also be monotone nondecreasing within each row and column, i.e., for each
value i, the string M (i, 1) ... M(i,n + 1) will be of the form (—1)"(1)"*1=" for some
r €{0,...,n+1};1i.e., the first r characters will be —1 and the remaining characters 1.
Here is how M is defined:
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e For {i,j} C {1,...,n+ 1} we have M(i,j) = 1 if and only if sign(w’ - (e; +
ej)) = 1.

e Define M (¢,¢) = —1 (recall that f(0™) = —1) and define the other diagonal
values, M (i,7) for i # £, as follows. For ¢ > 1 simply set M(4,4) equal to
M(i,i—1). Fori=1set M(1,1) equal to M(1,2).

For example, if

(2.1) w=(-3,-5/2,1,4/3,6,7), 0=1/2,
then

w' = (-3,-5/2,0,1,4/3,6,7)

and
-1 -1 -1 -1 -1 1 1
-1 -1 -1 -1 -1 1 1
-1 -1 -1 1 1 1 1
M = -1 -1 1 1 1 1 1
-1 -1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

It is easy to check that, in general, the matrix M is indeed symmetric. By virtue
of the fact that wy < -+ < wp—1 <0 < wyyq < -+ < wy, we have that M is monotone
increasing within each row and column. Finally, the construction of M ensures that
it faithfully reflects the structure of f over {0,1}",, in the following sense. Suppose
we can define weights v; < --- < v,41 and a threshold #’ with v, = 0 such that

(2.2) M(i,j) =1 ifand only if v; +v; >0
Then the halfspace

. !
sign(vixy + -+ v—1To—1 + Ver1Tpr1 + o+ Vpp1 Ty — 6)

correctly computes f over {0, 1}’;51, and therefore correctly solves the original prob-

lem. (In fact (2.2) is stronger than what is needed—all of the correct classifications
are already enforced by the off-diagonal elements, with the exception of 0", whose
correct classification is enforced by the constraint associated with M (£, ¢).)

In the rest of the proof we will construct the desired vy, ..., v,4+1 satisfying (2.2)
where
(2.3) v < <opeg Ko =0< vy <o Sy,

each v; is an integer, and each v; satisfies |v;] < O(n).

Going forth, the following notation will be useful: we write M; to denote the ith
row of M, which we view as an (n + 1)-character string M (i,1),..., M (i,n + 1) over
the alphabet {—1, 1}, and is, of course, the same as the ith column of M.

We may assume that M is not the (n+ 1) x (n + 1) identically —1 matrix (since
if it is, then f is the constant —1 function over {0,1}",), so in particular the bottom
right entry M(n + 1,n + 1) equals 1. On the other hand, we know that the M (¢, ¢)
entry is —1. Since M is monotone increasing within each row and column, and is
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symmetric, the only way that M could have all its rows M; = --- = M,, 41 equal to
each other is if M were either the identically +1 or identically —1 matrix. Since M
is neither of these matrices, there are at least two distinct rows in M.

The weights v1, ..., v,41 are constructed as follows. We partition {1,...,n + 1}
into 2 < A < n+ 1 intervals I,...,14 in the following way. The interval I; is
{1,...,i1}, where 4y is such that rows 1,...,4; satisty My = --- = M;, # M;, 1. Let
j1 be such that My = --- = M;, = (—1)"*1=71(1)*. Then interval I is {i;+1, ..., 42},
where similarly iy is such that M;, 11 = -+ = M;, # M,,+1. As before ja denotes the
value such that M;, 1 = --- = M;, = (—1)"T1772(1)’? (note that j» > j;). Continuing
in this way we get intervals I,..., /4 and values 0 < j; < --- < ja4 < n+ 1, where
the right endpoint of I4 is n+ 1. If @ < b are both in the same interval I;, then our
construction will assign the same weight to v, and vy.

Returning to the example shown in (2.1), we have

o [} = {L 2}7 I = {3}7 I3 = {4a 5}7 Iy = {65 7}7
L] i1:2,i2=3,i3=5,i4:7,and
b j1:27j2:47j3:57j4:7~

Let t be the index for which ¢ € I. Fix any index i € {1,..., A} and consider
any element a € I;. We have that M(a,n+1—j;) = —1, while M(a,n+2 —j;) = 1.
The idea of our construction is that we will maintain

(2.4) Vg + Unyi—j, =A—2t and vq +vpqo—j, =A—2t+ 1.

Together with (2.3) this ensures that (2.2) holds as required, taking ' = A —2t+41/2.
We claim that (2.4), along with v, = 0, is satisfied if, for each interval I;, the
following holds:

(2.5) Vael;, vo=1—1.

Consider the case that i = 1, and fix an a € I;. Recall M(a,j)=—1forj=1,...,n+
1—j1, and M(a,j) =1 from j = n+ 2 — j; on; in particular, M(a,n 4+ 2 — j1) = 1.
The monotonicity of M implies that columns n + 2 — j; through n + 1 consist of all
1’s, and since M (a,n+ 1 — j1) = —1, this is not true of column n + 1 — j;. Since M
is symmetric, rows n+ 2 — j; through n + 1 consist of all 1’s, and row n+ 1 — j; does
not. Thus Iy = {n+2—ji,...,n+ 1}, so, referring back to (2.5), we have

Upto—j; = A—t,
and since vy, y1—j5, € [a—1, we have
Un+41—j; = A—1-—t.

Since v, = 1 — ¢, we have that (2.4) holds when i = 1.
This pattern continues for i = 2, 3,.... Using induction, we can see that, for each
i, the boundary between I4_;4+; and [4_; is between n 4+ 2 — j; and n+ 1 — j7;, so

Un+1—j; =A—t—1i and Un+42—j; :A—t—Fl—i,

which, since v, = i — t, implies (2.4), and therefore (2.2).

We have constructed vy, ..., v,41 that satisfy (2.3) where each v; is an integer. It
follows easily from the construction that each |v;| is at most O(n), and the theorem
is proved. 0
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We note that for odd n the decision list halfspace DL(z) = sign(d>_ ., (—2)"z;)
requires integer weight at least (n—1)/2 over {0, 1}”,, and thus the O(n) upper bound
of Theorem 2.2 is tight up to a constant factor. To see this, suppose that sign(v-z—0)
has integer weights and computes DL correctly over {0,1}%,. By considering inputs
of the form e;, where i ranges from 1 to n, we see that v; > @ for i even and v; < 6 for
i odd. By considering inputs of the form e; +¢e;41 we see that v; > vg > v5 > -+ > v,
and vo < vy < vg < - < vy_1, s0 there are n distinct integer weights, and the largest
magnitude weight must be at least (n — 1)/2 as claimed.

3. Lower bounds for exact representation. In this section we give lower
bounds on the weight required to exactly represent various halfspaces over {—1,1}%,
for k > 3. We first note that simple counting arguments do not give very good lower
bounds. Let N(n,k) denote Zf:o ("), the number of points in {—1,1}%, (note that
N < (en/k)*). Since the VC dimension of halfspaces over {—1,1}%, is known to be
n + 1, the Sauer—Shelah lemma [20, 24] says that there are at most

S () <5 ()= ()

halfspaces over {—1,1}7%,. A standard counting argument says that if there are more
than C™ halfspaces over a given domain S C {—1,1}",, then some halfspace over
S must require integer weight Q(C). So the strongest weight lower bound that can
be obtained from this kind of counting argument is O((en/k)¥/n). This is actually
quite weak; we will see that much stronger lower bounds can be obtained for explicit
functions.

An exponential lower bound for a simple function. We now observe that
even for k = 3 a simple halfspace gives an exponential lower bound.

OBSERVATION 1. The function DL(z) has weight 2*") over {0, 1}7%,.

Proof. Let sign(v - z — 6) be a representation of DL over {0,1}",. As noted in
the preliminaries we may assume 6 is of the form (integer +3) so its magnitude is at
least 1/2.

Since DL(0™) = sign(0 — #) is +1 we have that 6 < 0. Writing each v; as w;0, we
may divide through by |0| and reexpress sign(v - x — ) as sign(w - = + 1). Here the
w;’s may not be integers, but since |6 > 1/2 it suffices to show that |w,,| = 29,

Since DL(e;) = —1 for j odd we have w; < —1 for j odd, and since DL(ex—1 +
er) = 1 for k even we have wy, > —wj_1 — 1 and thus wy, > 0 for even k. For even
k >4, since DL(ey, + ex—1 + ex—3) = 1 we have

(3.1)  |wg| =wk > —wk—1 —wk—3 — 1 = |wg_1| + |wr—3| — 1 for even k > 4.

For odd k > 5, since DL(ey, + ex—1 + ex—3) = —1 we have wy, < —wj_1 — wi—3 — 1,
and since wy, is negative for odd k and positive for even k, this means

(3.2) lwi| > |wg—1| + Jwk—g| + 1 for odd k > 5.

An easy induction using the inequalities (3.1) and (3.2) and the initial condition
w; < 1 for j odd gives that |w,| = 22, n|

Main lower bound for exact representation. Observation 1 gives an expo-
nential lower bound, but in general it does not match the £°™ upper bound provided
by Theorem 2.1. As our main lower bound result for exact representation we match
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the upper bound of Theorem 2.1 (up to an absolute constant in the exponent) and
prove the following.

THEOREM 3.1. Let k be an integer of the form k = 2¢, and let n = vk + 1 for
some integer r. There is a halfspace G (defined explicitly below) over {—1,1}2 o
for which the weight of any integer representation over {—1,1}2 . | is at least
Q(nlogk)/%o(n); ie., EQ2(n) B

We recall that in [9] Hastad gave an explicit halfspace over {—1,1}* and proved
that its weight over {—1,1}* is k®(*) Our construction builds on his construction;
indeed our n = (rk + 1)-variable halfspace may be viewed as r copies of Hastad’s
halfspace “concatenated” in a careful way (the exact meaning of this will be clearer
when we describe our construction in detail below).

Setup. First some notational preliminaries: Since k& = 2¢ we may view a k-bit
string as a function from {—1,1}¢ to {—1,1}, where an index j € {0,...,k — 1}
is interpreted as an ¢-bit vector. To keep the notation clean, we will refer to j €
{0,...,k—1} and its ¢-bit binary representation interchangeably. For f a k-bit string
and j € {0,...,k— 1} we write f(j) to denote the jth coordinate of such a string (or
the function f applied to j’s -bit representation). For f,g € {—1,1}* we write (f, g)
to denote the inner product Zf;é f()g(j). Note that for f,g € {—1,1}* we have
(.9 < k.

Following the notation from [9], for o C [¢] = {1,...,¢} let , denote the parity
function @, () = [[;c,, xi over the variables in . Again following [9], let ap, ..., ax—1
be an ordering of subsets of [¢] such that |o;| < |a;4+1] and the symmetric difference
;A1 always satisfies |a;Aa; 1] < 2. Note that «p is the empty set and thus ¢,
is the k-bit string consisting of all 1’s, while for each j = 1,...,k — 1 we have that
®a; is a k-bit string with exactly half of its entries —1.

Writing f : {—1,1}* — {~1,1} in terms of its Fourier representation as f(j) =
Zi:ol f(ai)@ai (j) we see that (f,¢a,) equals kf(ai)7 so we may view each inner
product (f,pa,) as a scaled Fourier coefficient of f.

For f € {—1,1}" we decompose f by writing it as (b, f,..., f"), where b €
{—1,1} and each f* is a k-bit string. We sometimes refer to f? as the “ith block” of
f and write f*(j) to denote the jth coordinate of the ith block of f.

The construction. Let G : {-1,1}%2 .. | — {—1,1} denote the n-variable
function B

r k—1

(3.3) G, f1 . f7) Eosign [ b4+ 3 ST (k + DFEDH(f 0, )

i=1 j=1

(Note that the inner sum starts with j = 1 and not 0; this will be important
later.) Since each (f%,¢q,) is a (£1)-weighted sum of the coordinates of f?, it is clear
that G is a halfspace with weight at most k©(™). We will show that any integer-weight
halfspace for G over {—1,1}%, ,, , must have some weight that is at least k%),

To get some more intuition for the function G, note that for a block f* we have
that (f',¢a,) = -+ = (f',¢a,_,) = 0 if and only if f? is one of the two inputs
(1,...,1) or (—1,...,—1) (this is because the constant +1 function and the constant
(—1) function are the only two Boolean functions that have all nonconstant Fourier
coefficients equal to zero). So, in other words, given an input f = (b, f,..., f") the
value G(f) is obtained as follows: If any block is neither constantly +1 nor constantly
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—1, let 7 be the largest such block, and output the sign of the Fourier coefficient J?i(oaj),

where j is the largest index such that fi(aj) is nonzero. Otherwise output the bit b.

The high-level intuition behind the lower bound is as follows. Consider a single
block i and fix all other bits in other blocks i’ # i to be 1. By fixing the bit b
appropriately, the function G computes exactly Hastad’s halfspace over the k variables
in block 7. (We recall that Hastad’s k-variable halfspace F' over a k-bit input string f €
{~1,1}*is F(f) = sign((f, goaj)) where j is the largest index such that (f, pa;) # 0;
equivalently, F'(f) = sign( ZZ 0 Y k41 (f, ¢a, )) gives an explicit representation of the
halfspace F.) So applying Hastad’s weight lower bound for his halfspace F, intuitively
the variables in block i should require integer weights growing as k*(*). Since higher
blocks dominate lower blocks in G and there are r = (n — 1) /k blocks, intuitively a
E®®) growth factor within each of (n — 1)/k blocks means that overall the weights
should grow as (k2(R)(n=1/k — g(n),

Unfortunately, this simple reasoning is not quite right when applied to the actual
weights w; of the input variables f%(j). This is because in Hastad’s halfspace all
integer coefficients must be large, but they do not actually increase by much; in fact,
the integer coefficients of all k variables in Hastad’s function can be taken to be within
a factor of 2 of each other. But, as we shall see, the reasoning of the previous paragraph
is essentially correct when a different representation is used, namely, when it is applied
to the “Fourier transformed” weights U; that are the coefficients of (f*, ¢q,) (see (3.5)
below), and this suffices to give the desired overall weight bound. We will show that
the U;—’S must grow very rapidly, and hence some v? must be large, and consequently

. J
some w; must be large.
The analysis. Our goal is to prove the following, which immediately gives The-

orem 3.1. (Throughout this section 8 denotes the constant log,(3/2).)
THEOREM 3.2. If the function G defined in (3.3) satisfies

r k—1
(3.4) G(f) =sign | D Y wifi(j) +web—0| Vfe{-11}%, o 1.
i=1 j=0
where each w; and wq s an integer, then for some j € {0,...,k — 1} we have wi >

(6741@5 9(klog k)/2fk)(n71)/k/k'
Following [9], the main step is to prove the following.
THEOREM 3.3. Suppose that the function G defined in (3.3) satisfies

r k—1
) = sign ZZU ,@a] )+ vob—t
=1 j=0
(35) Vf = (b7f17 .- '7fr) € {_17 1}211721@717

where each v’ and vy is an integer. Then v | > (6_4k62(k logk)/2=k)(n=1)/k,
To show that Theorem 3.3 implies Theorem 3.2 we use the following claim, which
is a simple consequence of Fourier analysis (see Lemma 2.3 of [9]).

CrLAM 1. For any f € {—1,1}* and any (wo, ..., wr_1) € RF, setting
1 .
Va = 1 Z:wjgoaa(]) for each a € {0,...,k — 1},

we have thatz Owjf() ZZ éva(fa@aa)
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Proof of Theorem 3.2 using Theorem 3.3. Suppose that {w;}, wo, 0 satisfy (3.4).
By Claim 1, for all f € {-1,1}2, ,, ; we have that

r k—1
) = sign <ZZU s Pa, ) + wob — 0)

i=1 a=0

where v} = ¢ ZJ o W’ (pau( ). We have that kv® is an integer for all i and a, and so by
Theorem 3.3 we get that kvj_, > (e~ 2(klog)/2=k)(n=1/k o Z;:é W pey,_, (§) >

(e~ 47 9(klogh)/2=k)(n=1)/k  which gives Theorem 3.2 since |pa,_,(7)] = 1 for all
J. O

3.0.1. Proof of Theorem 3.3. Throughout this section {U§},vo,t are as in
(3.5). Since all weights are integers we may assume that ¢ is of the form (integer +3).

We begin with some straightforward claims that will be useful later.

Cram 2. We have vo > 1. Moreover, for each i € [r — 1] we have vy >
Dirgliit1}ielr) Vo — t-

Proof. First we observe that for b € {—1,1} we have G(b, pay;-- -, Pan) = b,
which follows from the fact that (vq,, ¢a,) = 0 for all ¢ # 0. By (3.5) this means that
we have sign(vob+>_;_, v§ —t) = b, so it must be the case that vy > 0; since vy is an
integer, this means vy > 1. Furthermore, taking b = —1, we find that vo > >, vh—t.

For the second part of the claim, fix any ¢ € [r — 1] and consider the input f =
(=1, fY, ..., f"), where f = @u, for i’ ¢ {i,i+1} and f* = —pq, for i’ € {i,i+1}.
This input f has 2k + 1 bits that are —1 (this is the only place in the proof where we
use an input with this many —1 bits), and since

G(f)=—1=sign | —vg + Z vl — v —oitt —t
i ¢ {iyit 1}, €lr]

we have that vg > > g i 1},i0elr] vh — v — v —t. Averaging this with the earlier
inequality vg > >.._, v§ — t gives the second statement of the claim. a0

CraM 3. For every i € [r],j € [k — 1] we have v} > vo (in particular, all these
weights are positive).

Proof. Fix i € [r], j € [k — 1]. For €,b € {—1,1} consider the input f =
(b, f', ..., f7) € {~1,1}" defined by f' = cp,, and f' = @a,=(1,1,...,1) for
i" # 4. Since every @, for j > 1 corresponds to the truth table of a parity func-
tion over some nonempty subset of ¢ bits, the string f has either k/2 or k/2 + 1
entries that are —1 (depending on whether b is +1 or —1). By the definition of
G we have G(f) = sign(b + (k + 1)*0~D+ig) = £ and, referring to (3.5), we have
G(f) = sign(ev} +v0b+ 3 siep vl —t). When b is sign (-, 2irepr v —t) and € = —b,
this implies that v} > vo + | Dizirelr] vl — t|, which implies v} > . O

The proof uses two main lemmas. The first lemma says that weights do not get
smaller as we pass from the ith to the (i + 1)st blocks.

LEMMA 3.4. For every i € [r — 1] and every j € [k — 1] we have v > vl

Proof. Fix i € [r — 1], j € [k — 1]. Consider the input f = (— 1,f1,...,f7’) €
{—1,1}" defined by f* = —pq,_,, [T = ¢q,, and f = @, for i’ ¢ {i,i+1}. This
f has exactly k+ 1 entries that are —1, and the definition of G implies that G(f) =

1+1
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So G(f) =sign(vi™ = vk + Yigiit1yep Yo — vo —t) = 1, which implies that

1 . S .
v > vy — Z vy +vo +1t> vy,
i ¢{iit+1},i'€[r]

where the final inequality follows from the second statement of Claim 2. d

The crucial lemma for us is Lemma 3.6, which says that the v§ weights grow quite
significantly (by a factor of £2(*)) from the “beginning” to the “end” of each block i.
Because of the way the function G has been set up, we will be able to show this by a
reduction to a weight lower bound that Hastad proves for his halfspace over k = 2¢
variables.

DEFINITION 3.5. Let ty be the index of the first set in the enumeration of subsets
of [€] such that oy, has size 2.

LEMMA 3.6. For every i € [r] we have

’U;c—l >e 4k 2(klogk)/2 k ,Uzg.

Proof. Fix any i € [r]. Consider the (k + 1)-variable function defined as

iy def i
(3.6) A(b, f*) = G(b;ags-- - Paos [*3Pans - - - Pa)
k—1
(3.7) = sign U0b+ZU§(fi,(paj)+ Z kvg—t ,
Jj=0 i#i €[r]

where in line (3.6) f? appears in the ith of the r blocks and all other blocks are set
t0 @q,. Equality (3.7) holds because for each i’ # i, we have that (¢, ¢a,) is 0 for
j # 0 and is k for j = 0. For every (b, f) € {—1,1}¥*! the corresponding input to G
in (3.6) has at most k + 1 variables set to —1, so by the definition of G we have that

Fu(f%) if f is neither ¢,, nor — @a,,

3.8 A, f1) = '
( ) ( / ) {b if f* is either Pag O — Pag,

where Fj, is Hastad’s function on k variables, and Fi(f*) = sign((f*, ¢a,)), where j
is the largest index such that (f,a;) # 0. Recall that since ¢q, is the constant 1

function, we have (f%, ¢qa,) = E?;& f(4). Thus (3.8) gives us that

N
=

A | sign FOY ) ) = EBulf) v e{-L1"~

J

Il
o

Now it is clear that flipping the value of b changes the value of A(b, f*) only if f*
is either pn, Or —@a,. By (3.7) this implies that for all f* ¢ {@a,, —Pa,} We must
have

k—1
oo < |3 vi(flapa) + S kol —t
j=0 itirelr]

But this means that the k-variable function A’ : {—1,1}* — {—1,1},

k-1
(3.9) A'(fY def sign | vg Zfl —|—Z (f', ¢a,) Z kvo —t],
§=0

£ Elr
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must equal Fy(f?) for all f* € {—1,1}*, because %Zf;é fi(j) is always at most

1 in magnitude and equals sign(Z;:é fi(j)) when f%is o, Or —p4,. Scaling the
argument to sign(-) by a factor of k in (3.9), we have that

k—1 k—1
A'(f1) =sign [vo > F1G) +E | D vi(fpa,)+ D kv —t
Jj=0 Jj=0 i#i €r]

is a halfspace over {—1, 1}* that computes precisely Hastad’s function F},. As Hastad
notes (Lemma 2.2 of his paper), we may remove the constant term k(3_, ., ¢, kvl —t)

without changing the function. Recalling again that (f%, ¢a,) = Z?;& fi(4), we
rewrite the resulting expression for A’(f?) as

k—1
A(f7) = sign [ > 05(f 0a,) |
=0

where v} equals kv! for j # 0 and equals kvj + v for j = 0. Since these coefficients

are all integers, we are in precisely the situation of Hastad’s Theorem 2.4. The proof
of that theorem explicitly establishes (see the second-to-last highlighted equation on
p. 489) that vj,_, > e~ 4k g(klogk)/2—k . v;,, and the lemma is proved. 0O
Applying Lemmas 3.4 and 3.6 repeatedly and taking j in Lemma 3.4 to be tg
each time, we get that
T (e—4k52(klogk)/2—k)(n—1)/kvtlo7

which is at least (e’4k32(k logk)/2=k)(n=1)/k

proves Theorem 3.3. O

since Utlo is at least 1 by Claim 3. This

4. Preliminaries on e-approximating halfspaces over Hamming balls.
Let f be a halfspace over a domain S. We say that f has an e-approzimator of weight
W over S if there is an integer vector (vi,...,v,) € Z" with max; |v;] < W and a
threshold 8 € R such that

Prfsign(v- —0) £ f(z)] < =,

where the probability is with respect to a uniform choice of = from S. In the rest of
this paper we prove upper and lower bounds on the weight of e-approximators over
the Hamming ball {0,1}%,, where k is viewed as “small” compared to n.

Related work. In [4] it was shown that for any fixed p € (0,1) and any halfspace
fover {0,1}™, there is an e-approximating halfspace sign(w-z—6) of weight n-20»(1/¢%)
for f with respect to the product distribution Dy, i.e., Pryp, [sign(w-z—0) # f(z)] <
¢. Here the distribution D, is the product distribution over {0,1}"™ such that each
coordinate x; of a draw from D, is independently set to be 1 with probability p. The
“Op” in the exponent of the weight bound hides a dependence on p.

For constant p € (0,1/2) the distribution D, is rather similar to the uniform
distribution on {0, 1}Qpn since both distributions are close to being uniform over
strings of weight pn. In contrast, we give upper and lower bounds that depend only
on k and ¢, independent of n, but our bounds require that k be “small” relative to n.
Thus the results of [4] may be viewed as addressing the case where k is “large” (linear
in n), while our results may be viewed as addressing the case where k is “small.”
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Some useful distributions. In proving our upper and lower bounds it will often
be simpler for us to work with “nice” distributions which are close to the uniform
distribution over {0,1}%,. First we prove some simple observations which we will
use in the following sections.

OBSERVATION 2. Let D denote the uniform distribution over {0,1}%, and let
Dy denote the uniform distribution over {0,1}",, the set of all strings with ezactly k
ones. The total variation distance |D — D1l|1 between D and Dy is at most 4k/n.

Moreover, let Dy denote the distribution over [k]™ defined as follows: a draw of
x ~ Dy is obtained by taking x to be e;, + e, + --- + e;,, where each of i1,..., i
is drawn independently and uniformly from [n]. Then the total variation distance
|D — Dsll1 is at most (k* + 4k)/n.

Proof. For the first claim, if k¥ > n/4, then the claimed bound is trivially true, so
we assume that k& < n/4. We recall that (Jfl)/(’;) =j/(n—j+ 1), and that this is
at most 1/2 for j < n/4. So induction gives us that (,",) < 1(,",), (."5) < 3(."1)
and so on, so

k—1
n 1 n n
|{07 1}§k—1| < Z 2_J X |{07 1}:k—1| < 2|{07 1}:k—1|7
=0

and hence
0,1}%, 21{0, 1}, _ 21{0, 1}, _ 2(,"
ap MUl 2000500 200%] 260
|{031}§k| |{031}§k| |{071}:k| (k)
So, the total variation distance between D and D is
{0, 132, — {0,132, | {0, 1}%, 4]
Y. P@-Pi@) = =T = o] S %
z:D(x)>D1(x) ' I <k » <k
For the second claim, let dup be the event that x; > 1 for some i. We have
k—1
) 1)
4.2 5 (d = — <
(4.2) (dup) ; - <

Conditioned on the event (—~dup), the distribution D, is identical to D;. Thus for any
event I we have
|D1(E) = Dy(E)| = [D1(E) — Da(E | ~dup)Dy(~dup) — D2 (E | dup)Ds(dup)
< |D1(E) — D2(E | ~dup)Dz(~dup)| + D2(dup)
= [D1(E) — D1 (E)D2(~dup)| + D2(dup)
=D (E) - (1 — Dy(—dup)) + Da(dup)
kE(k—1)
<1 —Dy(~dup) + Dz(dup) = 2Dz(dup) < ———

by (4.2). So ||D2—D1|1 < Ek=1) which together with the first claim and the triangle
inequality for variation dlstance gives the desired bound. d

We close this section with the following notation, which will be useful later. Let
Zn i denote the set

Zngw={x=(v1,...,2,) €Z" :2; >0 Viand x1 + - - + x,, = k}.

Let ® : [n]* — Z,, . denote the mapping ®(a) = Zle €q;- Thus a draw of = ~ D is
obtained by drawing a uniformly from [n]* and setting x = ®(a).
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5. Upper bound for approximating halfspaces. In this section we prove our
main positive result on approximating halfspaces over {0,1}”, using small weights,
which is the following. a

THEOREM 5.1. Let f be any halfspace over {0,1}2,. Let e,k satisfy ’jl—z < cg,
where ¢ > 0 is a (small) universal constant. Then there is an e-approximator for f
over {0,1}%, that has weight kO*/2).

As noted in the introduction, it is easy to see that there are halfspaces over the
entire Boolean cube {0, 1}" that require weight €2(y/n) for e-approximation even when
e is (say) 1/5; an example of such a halfspace is sign(xy +x2 + -+ -+ x,—1 + nay,) (see
[22] for the proof). In contrast, Theorem 5.1 shows that over Hamming balls of any
constant radius, every halfspace can be approximated to any constant accuracy using
weights that are independent of n.

Here is some intuition before the formal proof. The proof works by showing that
every halfspace can be e/2-approximated with respect to the distribution Dy (this is
sufficient to establish the theorem by Observation 2). To e/2-approximate an arbitrary
halfspace f with respect to Ds, the argument proceeds as follows. After sorting the
weights, we first define a collection of ¢ = O(k/e) “key coordinates” in {1,...,n}
(these are just ¢ coordinates which are evenly spaced out in {1,...,n}). Then we
define a set S C Z, 1 of “key inputs,” which are the elements of Z, , that have
nonzero entries only in the key coordinates. Using a linear programming argument,
we show that there is a halfspace I/ that depends only on the t key coordinates, has
weight k) and agrees with f on all key inputs. An additional crucial property of
h' is that its weights are sorted in the same order as the weights of f. We then define
an n-variable halfspace h by basing the weights of the other n — ¢ nonkey coordinates
in a natural way on the weights that h assigns to the key coordinates. We use the
sortedness of the weights of I/ to characterize the error points of h. Finally, we upper
bound the error of h by using this characterization together with a simple upper bound

on the edge boundary of monotone Boolean-valued functions over the domain [¢]*.

Proof of Theorem 5.1. We first note that if & € {0, 1}, then there is a weight-1
exact representation of f, so we henceforth assume that k& > 2.

Let wy, ..., wy, 0" be a weight representation of f over {0,1}%,, so f(z) = sign(w-
z—¢') for all z € {0,1}",. We may assume that each w; is an integer and that 6’ is
of the form (integer +%) Additionally, we may assume that the weights are sorted
wy < -+ < wy, since if this is not the case, we can rename variables to make this
condition hold. We use the representation w, " to extend the domain of f to all of
R™; i.e., we define f(x) = sign(w -z — 6’) for all x € R™.

Key coordinates and key inputs. Let t = O(k/e). Note that if ¢ > n, then
by Theorem 2.1 there is indeed an exact representation for f over {0,1}%, that has

weight k9 /€); thus we may assume that ¢ < n. In fact, by the assumptions on ¢, k,
and n in the statement of the theorem we may assume that k& < n/t; this will be
useful later.

We define the set KC C [n],|KC| =t of “key coordinates” to be a fixed set

KC = {key; = 1,key,, ..., key, = n}

of values in [n] that are equally spaced as much as possible, i.e., for all j,j" € [t — 1]
we have key;; —key; =key; ;; —key; £1.
We next define the set KI C Z,, ), of “key inputs” as

KIl={z€Z,): Vi, if x; >0, then i € KC},
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S0 x € Zy, 1, is a key input if and only if all of its nonzero coordinates are key coordi-
nates.

A low-weight halfspace h that agrees with f on all key inputs. Our
next step is to establish the existence of a low-weight halfspace that depends only on
the key coordinates and agrees with f on all key inputs. This is done via a linear
programming argument quite similar to the proof of Theorem 2.1.

LEMMA 5.2. There is a halfspace h'(z) = sign(v' - x — 0) with the following
properties:

(1) For each i ¢ KC we have v; =0 (so h depends only on the key coordinates).

(2) For each i € KC we have that v/ is an integer satisfying |v}| < kO®).

(3) For each j € [t — 1] we have vi,, < Vi, -

(4) B (x) = f(x) for every key input x € K1.

Proof. We obtained the desired integer weights (v});cexc and the threshold 0 as
the solution to a linear program, which we now describe. Each key input z € KI
defines a linear constraint over the ¢ + 1 variables (v});cxc, 6 in the following way:

f(zx)- < Z vgxi—0> > 1.

i€KC
The linear program additionally contains ¢ — 1 constraints of the form

’U{(eyj < U{(eyj+1 Vi e[t —1].

This is a feasible linear program, since taking v; = 2w; for all i € KC, v, =0
for all i ¢ KC, and 6 = 26’ is a feasible solution. (To see that this works, observe
that for any « € K1 the total value of w - x is entirely contributed by coordinates
in KC.) Tt is clear that any feasible solution satisfies items (1), (3), and (4) of the
lemma, so it remains only to show that there is a feasible solution satisfying the weight
bound (2). This follows from the same arguments used in the proof of Theorem 2.1
with trivial modifications (the fact that there are now ¢ + 1 unknowns in the linear
program leads to the claimed bound of k©®) rather than k°(™ as was the case in
Theorem 2.1). O

Filling in the other weights. We now define the halfspace h that has weights
for all coordinates (not just the key coordinates). The halfspace h is defined as
h(z) = sign(v -z — @) in a very natural way as follows: For each key coordinate
i € KC we take v; = v]. For each nonkey coordinate i ¢ KC, let j be such that
key;_; <1 <keyj, i.e., key; is the first key coordinate immediately after i; we take
v = v{(eyj. For example, if v' = (3,0,0,4,0,6), then v = (3,4,4,4,6,6). Note that the
weights v; satisfy v; < vy < -+ < wy,; this will be useful later.

We will show that this halfspace h(x) is the e-approximator for f claimed in the
theorem statement. It is clear that the weight of h is at most kO = EkOK/2) a5
desired; it remains to show that Pry.p,[h(x) # f(2)] < &/2, or, equivalently, that at
most an £/2 fraction of points a € [n]* have h(®(a)) # f(®(a)).

Bounding Pry¢cpnx[h(®(a)) # f(®(a))]. We define a function up : [n — 1] —
KC as follows: up(i) = key;, where key, is the smallest element of KC satisfying
i < key;. Similarly we define down : [n — 1] — KC' as down(i) = key,, where key; is
the largest element of K C satisfying key; < i. Each i € [n—1] has up(i) = down(i)+1.
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For an arbitrary a € [n— 1]¥ we define the “upper key neighbor” of a and “down-
ward key neighbor” of a as

ukn(a) = (up(a1),...,up(ax)) € (KC)*,
dkn(a) = (down(ay),...,down(ay)) € (KC)F,

respectively. It is easy to see that for each a € [n— 1], both ®(ukn(a)) and ®(dkn(a))
are key inputs. Thus Lemma 5.2 ensures that sign( ®(ukn(a)) — 0) = sign(w
®(ukn(a)) — @) for all a € [n — 1]*, and likewise for ®(dkn(a)).

We next observe that by the monotonicity of the weights vy, ..., v,, we have that
every a € [n — 1]¥ satisfies

®(dkn(a)) <v-P(a) <wv- P(ukn(a)).

Consequently if a € [n—1]¥ is such that sign(v-®(dkn(a))—6) = sign(v-®(ukn(a))—0),
then sign(v - ®(a) — ) must equal the same value, and hence for such an a we have

sign(w - ®(dkn(a)) — @) = sign(v - ®(dkn(a)) — ) = sign(v - (a) — )
(5.1) = sign(v - ®(ukn(a)) — 0) = sign(w - ®(ukn(a)) — ).

By monotonicity of the weights wy, . . ., w, we have that w-®(dkn(a)) < w-®(a) <
w - ®(ukn(a)), so, if (5.1) holds, all the quantities in (5.1) above are also equal to
sign(w - ®(a) — #"). Thus we have shown that if a € [n — 1] is such that sign(v
®(dkn(a)) — 0) = sign(v - ®(ukn(a)) — @), then sign(v - ®(a) — 0) = sign(w - ®(a) — ¢’),
i.e., h(®(a)) = f(®(a)). We observe that at most a k/n fraction of all inputs a € [n]*
have a; = n for any 7; by the conditions on k, £, and n in the statement of the theorem,
k/n may be assumed to be at most €/4. So to finish the proof of the theorem, it suffices
to show the following, which we refer to as statement (x):

(¥) At most an /4 fraction of all points a € [n—1]* have sign(v-®(dkn(a))—0) =

—1 and sign(v - ®(ukn(a)) — 0) =
We first note that for any two elements 4, j € [t — 1] we have

|down ™" (key;)|, [down ™" (key;)| € {[n/t], [n/t] + 1},

and we recall from the bounds on ¢ stated at the beginning of the proof that conse-
quently |down (i), |[down ' (5)| > k. As a result, for any two vectors (iy,...,ix) €
[t — 1% and (j1,...,Jx) € [t — 1]¥, we have that the two sets

{a €[n—1]":down(as) = i; forall £ =1,...,k} and
{be[n—1]":down(by) = jo for all ¢ = 1,...,k}

have sizes that differ by at most a multiplicative factor of (1 + )k < 3. Hence to
establish (x) it suffices to show that at most a £/12 fraction of all Vectors (i1,... i) €
[t — 1]* have

sign(v- ®(key; ,...,key; )—0)=—1 and sign(v-®(key, \q,...,key,; ;1) —0) =1
We define a Boolean-valued function F : [t — 1]¥ — {—1,1} as follows:
F(i,... i) =sign (v- ®(key, ,...,key; ) —0).

The monotonicity of the weights viey 1>+ s Vkey,_, implies that F'is a monotone non-
decreasing function over [t — 1]*: if r,s € [t — 1]* satisfy r; < s; for all i € [k], then it
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cannot be the case that F(r) = 1 and F(s) = —1. Now we upper bound the desired
probability using a union bound:

[F(i1y. .. i) # Flin+1,... i+ 1)]

T
(i1, i) E[t—1]F

< p Flis, ... i) # Flir + i, ..
= g O ) EE G L)

Pr [F(i1+1,i2,...,ik) #F(Z.l—Fl,Z.Q—I—1,i3,...,ik)]+-~-
(it,eein)E[t—1]F

+ Pr [F(ir+1,... 051+ 1,ig) £ F(ir+1,...,i + 1)].
(i17...,ik)€[t71]k

By the monotonicity of F; each of the k probabilities on the right-hand side (RHS)
is at most 1/(¢—1) (since fixing all the values of the other k& —1 coordinates, there can
be at most one setting of the remaining free coordinate which causes the value of F’
to change). For a suitable choice of the hidden constant in ¢ = O(k/e), we have that
1/(t — 1) <e/(12k). Thus the RHS above is at most £/12 as desired. This concludes
the proof of Theorem 5.1. O

6. Lower bounds for approximating halfspaces. Recall that the n-variable
halfspace DL is defined as DL(z) = sign(}_;—,(—2)2;+1). Our main result in this
section is a lower bound on the weight of any e-approximator for DL.

THEOREM 6.1. For sufficiently large n, k > 3 and % . (ﬁ)k >e > 4k/n, any
1/(k=1) _4

e-approzimator for DL over {0,1}", must have weight at least keMW)/e .

Discussion. It is easy to see that for all €, the function DL has an e-approximator
over {0,1}" of weight O(1/¢). So Theorem 6.1 shows that for a specific natural
function, taking k to be constant and letting e vary, getting an e-approximator over
the Hamming ball {0,1}%, (for k constant) requires weights that are exponentially
larger than the weights required for e-approximation over the entire Boolean cube.
Theorem 6.1 is also in sharp contrast with the recent upper bound of [3], which shows
that any Boolean halfspace has an e-approximator over the entire Boolean cube which
has weight at most quasipoly(1/¢) (as a function of €).

6.1. Proof sketch of Theorem 6.1. Since the proof of Theorem 6.1 is some-
what involved we give an outline here. At a very high level, the idea is that in order
for a linear threshold function sign(v - z — ) to be a good approximator for DL, it
should be the case that (roughly speaking) v; > 0 for even i, v; < 0 for odd ¢, and
the magnitudes of the weights |v;| increase sharply with i; the essence of the proof is
to show that if any of these conditions are “badly violated,” then sign(v -z — 6) must
disagree with DL on many inputs.

In more detail, let sign(v -z — ) be an arbitrary integer weight halfspace which is
a 2e-approximator for DL with respect to Dy (by Observation 1 it suffices to consider
such approximators). We first show (Claim 4) that without loss of generality we
may assume that the threshold 6 is 0 and the weights v; are positive for even i and
negative for odd ¢. This is not too difficult; the bulk of our work is to show that
overall the magnitudes of the weights must increase significantly from smallest to
largest, and thus the largest magnitude weight must be very large (since the smallest
magnitude weight has magnitude at least 1). To do this, we consider the weights in
order of increasing magnitude and consider disjoint “blocks” of the smallest-magnitude
weights, the next-smallest-magnitude weights, and so on. We show (Lemma 6.2) that
either there are large weights, or else almost all of the blocks are “pure,” meaning
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that they either consist almost entirely of positive (even-index) weights, or consist
almost entirely of negative (odd-index) weights. Finally, the argument concludes by
showing that if almost all of the blocks are “pure” as described above, then in fact
the halfspace must err on a significant fraction of all inputs.

6.2. Proof of Theorem 6.1. Let ¢ > 4k/n, and assume that sign(v -« — 0) is
an integer-weight halfspace which is a 2e-approximator for DL with respect to D;.
(Recall that Dy is the uniform distribution over {0,1}",.) We will show that if no
|v;] exceeds KO/ "7V =1 then sign(v - = — ) cannot be a 2e-approximator for DL.

We first observe that the upper bound on ¢ in the theorem statement gives us
£ <1000~ and that by combining the upper and lower bounds on & we may assume
k< O(lo:{éogn)5 these bounds will be useful later.

CramM 4. We may assume without loss of generality that all of the following
conditions hold:

(1) 6 =0;

(2) each coordinate v; is a nonzero integer;

(3) v; >0 fori even and v; <0 for i odd.

Proof. We first show how to obtain conditions (1) and (2) at the cost of only a
multiplicative-factor increase of ©(k) in the weights (this factor of ©(k) corresponds
to the “—1” at the end of the exponent of the weight bound of Theorem 6.1). Then
we show how to further obtain condition (3) at the cost only of decreasing n from its
original value down to some n’ € [n/2,n] and of increasing € from its original value
by at most a factor of 2.

As noted in the preliminaries we may assume that ¢ is of the form (integer +1).
Let u € R™ denote the vector u = (1,...,1). Tt is easy to verify that the halfspace
sign ((2kv — 20u) - x) agrees with sign(v - ¢ — 0) on every x € {0,1}",, because for
x €{0,1}", we have

(2kv — 20u) - & = 2kv - © — 2k0 = 2k(v - = — 0).

Next, we observe that since 2kv; is even and 26 is odd, we have that each coordinate
of (2kv — 20u) is a nonzero integer. Thus we have achieved conditions (1) and (2) at
the cost of at most a O(k) multiplicative factor for the largest weight.

So, let us suppose that sign(v-z) achieves conditions (1) and (2); we now deal with

the signs of the weights. Let P C [n] be the set of positive weights, P ef {i:v; >0},

and let N & [n] \ P be the set of negative weights, N = {i : v; < 0}. Let E C [n]

denote the set {2,4,...,2|n/2]} of even indices, and let O = [n] \ E denote the set
of odd indices in [n].
We claim that we have |[N N E| < 5557 and [P NO| < 555z To see why this must

be true, suppose [N N E| > g&. Then there are at least (INUFl) > ("/(00%)) inputs
x €{0,1}", of the form = = e;, +---+e;,, where i1, ..., 4 are distinct and all belong
to NN E. For each such « we have v-x < 0 (because all the weights which contribute
to v - x are negative) but DL(x) = 1 (because all the bits that are set to 1 in « are in
even coordinates), and hence sign(v - z) is in error on each such z. This means that

sign(v - ) has an error rate at least

k

where the second (strict) inequality holds for sufficiently large n because k = o(logn)
as noted above. From our bounds on ¢ and k the quantity (6.1) is greater than 2¢; but
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this contradicts the assumption that sign(v-z) is a 25 approximator of f over {0,1}",.
Thus it must indeed be the case that [N N E| < 556z The same argument Works for
PN O. Thus, we have established that indeed [N N E| < 55tz and [P N O| < 557

So an overwhelming majority of the even i lie in P, and an overwhelming majority
of the odd ¢ lie in N. Let G’ be defined as G' = (P N E) U (N N O); intuitively, G’ is
the set of “good” indices 4 for which v; has the “right” sign. The preceding paragraph
gives us that [G'] > (1 — 15 )n.

Viewing the elements of G’ as being sorted in increasing order, it may be the
case that G’ contains multiple consecutive even elements or multiple consecutive odd
elements, i.e., we could have G’ = {1,3,5,7,8,10,11,14, ...} and the first 4 points in
G’ would all belong to O. Let G be the subset of G’ obtained by going through the
points of G’ from smallest to largest and greedily keeping the first (odd, even, odd,
even, ... ) points of alternating parity that we encounter (so if G’ were as in the above
example, we would have G’ = {1,8,11,14,...}). For a point ¢ (like 3 in the above
example) to be discarded from G’, it must be the case that i — 1 does not belong to
G'. Since at most {7sr points do not belong to G’, we have that the number of points
in G’ that are discarded in constructing G from G’ is at most 1g5z. Thus overall we
have that |G| > (1 — z-)n. Consequently, of the (}) points in {0,1}",, at least

(5)()

of them are of the form z = E?:l
belong to G. Since

(“12 g’;’“”") . <n(1 = L/(508) - (k- 1))’“ _ ((1 _ ﬁ) ket )

k
k

L1yt

25k ) T 2
this is at least half of the points in {0, 1}” . Let us restrict the halfspace sign(v-z) to
the domain {0,1}%,. Even if all the error points of sign(v - x) were to lie in {0,1}%,,
since sign(v - x) has error rate at most 2¢ over {0,1}”,, it must have error rate at
most 4¢ over {0, 1}%,. Moreover, since the points in G (going from smallest to largest)

alternate parity (odd, even, odd, even, ...) we have that DL over the domain {0,1}¢
is completely isomorphic to DL over the domain {0 1}‘G‘ Thus it suffices to analyze

ei;, where all k of the distinct indices i1,. ..,

the halfspace sign(v - x) over the domain {0, 1}‘ As claimed in the first paragraph
of the proof, the number of variables has gone down by at most a factor of 2 (from
n to |G|) and the error bound has at most doubled from 2e to 4e, so the claim is
proved. O

Using the above claim, for the rest of the proof we assume that the halfspace
sign(v - ) satisfies conditions (1)-(3). Next, as described in the overview at the
start of this subsection, we divide the weights into disjoint blocks according to their
magnitudes and show that almost all the blocks are “pure” (composed almost entirely
of even-indexed weights, or almost entirely of odd-indexed weights).

Fix 7 : [n] — [n] to be a permutation which sorts the weights v1,...,v, in
increasing order of magnitude, ie., 0 < [vz)| < |vr@)| < -+ < |vry| (If the
weights v; have all distinct magnitudes, then there is a unique such permutation

7, and otherwise we fix any such 7.) Let b dof O(1)/eV/*+=1_ If any weight has
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lvg| > (k/2)%/1000 then we are done, so we assume that each i has |v;| < (k/2)b/1000,
We partition [n] into b blocks Sq,..., S, whose sizes are as nearly even as possible,
ie.,

Sy ={r(1),...,7(|S1)}, ..., S ={m(n — S| +1),...,7(n)},

where there is a fixed value s &~ n/b such that |S;| € {s,s+ 1} for all 1 < i < b. Note
that S7 consists of the smallest-magnitude weights, Sy consists of the next-smallest-
magnitude weights, and so on.

We say that a block S; is pure if at least % of the coefficients (v;);es, have the
same sign; equivalently, S; is pure if at least this fraction of the elements of S; have
the same parity (almost all are even, or almost all are odd). We say that a pure block

“pure odd” (“pure even”) if 2% of its elements are odd (even). A block which is
not pure is said to be impure.

We have the following lemma.

LEMMA 6.2. At least 19095019 blocks are pure.

Proof. We introduce a different notion, that of a block being “narrow,” and use
this notion to prove the lemma. We show that at least 195’090 of all blocks are narrow,
and that at most 1000 of all blocks are both narrow and impure; this gives the lemma.

For a block S; let R; > 1 denote the ratio (largest magnitude of any weight in
the block)/ (smallest magnitude of any weight in the block), i.e., Rj = [vz(i)|/[Vr(is)l;
where 7(i1),7(i2) € S5 and v < Vx| < |vr@y)| for all 7r( ) € S;. (Note that
this ratio is well defined for all j = 1,...,b because each weight v; is nonzero.) We
say that a block S; is narrow if R; < k/2.

We first show that at least >b blocks are narrow. Recall that |v.(,)| <

(k/2)"1° " Since v, | > Nvrm)l/ vzl > Hf 1 Ri it must be the case that at

least 229b blocks are narrow, since otherwise we would have Hl L Ri > (k/2)b/1000,
We next claim that if more than /1000 blocks S; are both narrow and impure,

then we have Prye(o1)» [sign(v - z) # DL(x)] > 2e. To see this, fix any block £ that

”

is both narrow and impure. Consider an input z = Z?:l ei; chosen uniformly from
{0,1}™, conditioned on iy,...,1 all belonging to S¢. Some sign—either positive or
negative—must constitute the majority of the largest ﬁ elements of {v;};cs,; say
that sign is positive. Wlth probability at least 4000 the element v;, will belong to this
positive subset of the 2000 largest elements of {v; };es,. On the other hand the smallest
(1 — 5a55) of the elements of {v;};cs, must also contaln at least 55 - |9¢| negative
elements (because S is impure), and with probability 2O(k) the elements v;;, ..., v, _,
will all belong to this set of negative elements. Thus, under the conditioning on z

described above, with probability at least 1/ 20(k) we have that

(62) (F1" = e = (1) £ (D

ie., i1,...,ik—1 all have the same parity (odd or even) but ij has the opposite parity
(even or odd, respectively). However, since Sy is narrow, the magnitude of v;, can
be at most k/2 times the minimum magnitude of any of v;,,...,v;, _,. Since k > 3,
it follows that we have that sign(v - x) = (—1)%; but this is incorrect since DL(x) =
(—1)% (because iy, is the largest value in iy, ..., ix). Thus, conditioned on iy,. ..,y all
belonging to Sy, we have that x is classified incorrectly by sign(v-x) with probability at
least 1/29). The probability (over a random = € {0,1}7,) that all k coordinates of =
belong to Sy is easily seen to be at least 1/(2b)*. Assuming that at least b/1000 blocks
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are both narrow and impure, we get that overall the error rate Prye(o,1yn, [sign(v-x) #
DL(x)] is at least

b 1 1
1000~ (2b)F  20(R)

which exceeds 2¢ by our choice of b.
From the above paragraph, we may conclude that at most b/1000 blocks S; are
both narrow and impure. Since at least “2-b blocks are narrow, at least —os-p of the

1000 1000
b blocks are both narrow and pure, and Lemma 6.2 is proved. d
At this point we have shown that at least % of the b blocks are pure. Let

pure; < pure, < --- < purey be the indices of the pure blocks, where from the above
lemma we have b’ > %b. To conclude the proof we now show that if there are so
many pure blocks, then the error of sign(v - ) must exceed 2e.

The following terminology will be useful: Given an index x € [n — 1] we define
the “upshift” up(k) to be up(k) = k + 1. For a set S C [n] we define up(S) to be the
set

up(S)={j+1:5€ 5}

It is clear that |up(S)| = |S] for all S, and that if a p fraction of S is even (odd), then
a p fraction of up(S) is odd (even).

Conbider any ¢ € {1,...,b'} for which Spure, is a pure even block. (There are
at least 100 such ¢’s, since half of all indices are odd, half are even, and 99.8% of all
1nd1ces belong to a pure block.) We say that Spure, is upshift-decreasing if at least
100 of the elements j € Spure, are even and have up( ) € Ser for some ¢/ < pure,, and
we say that Spure, is upshift-increasing if at least 100 of the elements j € Spure, are
even and have up(j) € Sy for some ¢’ > pure,. Since (at least) 99.9% of the elements
J € Spure, are even, and thus have up(j) odd, at least 99. 8% of the elements j € Spure,
are even and have up(j) in some block S; with k # pure, s0 Spure, must be either
upshift-decreasing or upshift-increasing.

We consider two cases.

Case 1: at least half of all pure even blocks Spure, are upshift-decreasing. In this
case, there are at least 200b pure even upshift-decreasing blocks Spure, -

For Spure, @ pure even upshift-decreasing block, let Gpure, C Spure, denote the set

Gpure, = {J € Spure, : j is even and up(j) € Sy for some ¢’ < pure,}

50 |Gpure, | > 140 % (since |Spure,| = ). Let Lyure, denote the lower half of the elements

in Gpure,, and let Upure, = Gpure, \ Lpure, denote the upper half of the elements (so for

every & € Lyure, and 3 € Upure, We have v < ). We have |Lpure, |, [Upure, | > 5 - %
Fix an £ such that Sp,yre, is a pure even upshift-decreasing block. Consider the set

of all inputs x = e;, + --- + e;, € {0,1}2, for which 1,...,4x1 all belong to Lpure,

and ix belongs to up(Upure,). By the cardinality bounds of the previous paragraph

there are at least
|Lpuro£| 2n 2n
ure : >l - 106
[upUpure, )| (k—l =\100) k-1

possible such outcomes for x, so the probability that a random z € {0,1}", is of this
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sort is at least

() - (%) k-2n (2 (k—2)"" L2 <2 k—z)’“

(Z) - nk - 100 \106  n

PR A S S
106 106 = 926(k)  pk-

For such an = we have that v;,,vi,,...,v;,_, > 0 (since i1,...,ix_1 are even), v;, <0
(since iy is odd), and |v;, |, ..., |vi,_, | > |vi,| (since 75 belongs to S} for some ¢/ < pure,
and i1, ...,i,_1 all belong to Spure,). These conditions together give us sign(v - (e;, +
-+ +e;,)) = +1. But since we have iy € up(Upure,) and i1,...,ix—1 € Lpure,, it
must be the case that i1,...,i5_1 < ix; since iy is odd this means DL(z) = —1, so
sign(v - z) is incorrect on such z. Taking a union bound across all s=b possibilities

200
for £ that make Spure, @ pure even upshift-decreasing block, we get that overall

. 49 1
veghiyn, (- @) # DL@)] 2 5550 550
which is larger than 2e.

We now turn to the second case.

Case 11: at least half of all pure even blocks Spure, are upshift-increasing. In this
case there are at least %b pure even upshift-increasing blocks Spure,. Recall that in
an upshift-increasing block, at least 11‘0 of the elements j € Spure, are even and have
up(j) € Ser for some ¢/ > pure,.

The analysis of this case is quite similar to that of Case I; the difference is that
we consider a slightly different event. For Spyre, a pure even upshift-increasing block,

let Gpure, C Spure, denote the set
Gpure, = {J € Spure, : J is even and up(j) € Sy for some ¢ > pure,}

50 |Gpure,| > % . %.1 As before, let Ly, denote the lower half of the elements
le

in Gpure,, and let Upure, = Gpure, \Lpurel denote the upper half of the elements
(so for every o € Lpure, and B € Upure, we have a < ). As before, we have
|Lpurcl|a |Upurol| Z 12_0 : %

Fix an £ such that Spure, is a pure even upshift-increasing block. Consider the set
of all inputs x = e;, +- - -+e;, € {0,1}2, for which iy, ..., i,_; all belong to up(Lpure,)
and iy belongs to Upure[? As in Case I the probability that a random z € {0,1}", is
of this sort is at least 2@—1@ . bi,c. For such an = we have that v;, > 0 (since iy, is even),
Vigye vy Vip_, < 0 (since i1,...,i,—1 are all odd), and |vg,|, ..., |vi,_,| > |vi,| (since
i1,...,ik—1 belong to Sy, and Sy,, respectively, for some ¢1,¢> > pure,, whereas A
belongs to Spure,). These conditions together give that sign(v-(e;, +---+e€;,)) = —1.
But since we have i}, € Upure, and iy, ..., ik—1 € up(Lpure,) it must be the case that
i > i1,...,1,—1; since iy is even this means DL(x) = +1, so sign(v - x) is incorrect
on such an 2. The rest of the argument (analyzing the probability) proceeds exactly

49

as in Case I: taking a union bound across all 555b possibilities for £ that make Spure,

a pure even upshift-increasing block, we get that overall

91
Pr [sign(v-2) £ DL(x)] > —0b. —1
vy, g0 @) # DL@)] 2 5550 - sogr

’ in the definition of

!Note that in Case I we had “¢’ < pure,,” whereas now we have “¢ > pure,’
Gpurcl .

2Note the difference from Case 1.
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which is larger than 2. We are done in Case II, and done with the proof of Theo-
rem 6.1.

7. An upper bound for approximating decision lists. At this point we
have established that every halfspace over {0,1}%, can be e-approximated using
weight k9/¢) and that for the DL halfspace any e-approximator must use weight
£OW/e V=1 Tt is a natural goal to close the gap between these upper and lower
bounds; while we have not yet succeeded in doing this, we give a detailed analysis
of the DL halfspace and prove a stronger k°*/v#) upper bound for it. This tells us
that if the k9*/¢) upper bound of Theorem 5.1 is in fact the “right answer,” then
any lower bound proof establishing this must use a halfspace other than DL.

THEOREM 7.1. Let €,k,n satisfy ¢ = w(k®/n). Then there is an e-approzimator
for the function DL over {0,1}%, that has weight kO¥*/VZ).

Proof. Recall that the obvious halfspace representation for DL as

sign<i(—2)ixi)

i=1

has weight 2". We first present a simple construction with an easy analysis that
gives an €/2-approximator of weight kO®/2) under distribution Do (this yields an e-
approximator over {0, 1}, by Observation 2 and our choice of €). This of course only
recovers the general result of Theorem 5.1, but then we will sharpen this D L-specific
simple construction and analysis to prove the theorem.

We assume that € is of the form 1/integer, and we define r def k/e. Note that
r < n by the assumed lower bound on ¢.

We partition [r] into  blocks S1, .. ., S, whose sizes are as nearly even as possible,
ie.,

S1=A{1,.... %1} ...,Sr ={n—|S;|+1,...,n},

where there is a fixed value s ~ n/r such that |S;| € {s,s + 1} for all 1 < i < r.

For j € [n] let bl(j) € [r] denote the index of the block Sy ;) that contains j. For

1<j<nletw ©(=1)7(2k)P0). Tt is clear that max ey [w;| = (2k)" = (2k)*/=.

We claim that sign(w-x) is an O(g)-approximator for DL(x) over Do. To establish
this, consider an input z = ¢;, + --- + ¢;, drawn from Do; i.e., (i1,...,1) is drawn
uniformly from [n]¥. Let b* denote max{bl(i1),...,bl(i)}. Since the weights increase
by a factor of 2k between successive blocks, it is easy to see that if there is precisely one
index j € [k] for which bl(i;) = b*, then sign(w - x) = (—1)™®{#.i} agrees with the
value DL(z). So we have that Pr,.p,[sign(w-x) # DL(x)] is at most the probability
that there are at least two distinct indices ji, jo € [k] such that bl(ij,) = bl(i;,) = b*.
It is clear that for each ¢ € [r], the probability that both none of bl(i1),...,bl(ix) lie
in[0+1,...,r] and at least two of bl(i1),...,bl(ix) equal £ is at most

o) - <§>k . ’2_22

Summing over £ =1,...,r, we get that Pr,..p,[sign(w - z) # DL(z)] is at most

20(1) . f—i 2 =0 <§> =0(e)
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by our choice of = k/e. This concludes the initial simple construction and analysis.

We now build on the above simple construction to prove Theorem 7.1. The idea
is to have the magnitude of the weights increase gradually within each block while
keeping the sign of each weight correct as in the earlier construction. This lets us
argue that in order for an input to be misclassified, it must have the “top two” bits
that are set to 1 being quite close to each other, as well as a third input bit set to 1
that is also close to these top two. This more stringent condition lets us give a stronger
bound on the probability of failure, which lets us use smaller weights to achieve an
overall failure probability of e.

We now take r = k/+/e. As before we may assume this is an integer which is less
than n. We define r blocks of variables Sy, ..., S, and bl(-) as before.

We define integer weights wy, . .., wy, as follows. For each j the sign of w; is (—1)7.
The magnitude of the weights is defined as follows: First, |wi| = (2k)". If the first
weight in block S; (say its index is a; + 1) has |wq,+1| = C, then the magnitudes of
weights increase linearly in that block from C' to (2k)C; i.e., for j € {1,...,]S:|} we
have

|waysj] = C +C - {Mw

S

so the final weight in block S; has magnitude |w,,ys,|| = (2k)C. If the final weight
Wa,+|s,| of block S; has magnitude (2k)C, then the first weight wq, 45,41 = Wa, 1 +1
of the next block has magnitude (4k?)C (so there is a factor-of-(2k) increase in the
weights between each pair of successive blocks). It is clear that all weights are integers
and that the largest one has magnitude |w,| < (2k)" - (2k)*" = k©("). The halfspace
we consider is sign(w - z).

Consider an input = e;, + -+ + ¢;, drawn from Da, so (i1, ...,4) is drawn
uniformly from [n]*. As before let b* denote max{bl(i),...,bl(ix)}. As before, the
only way that it is possible for sign(w - x) to disagree with DL(x) is if there is some
¢ € [r] such that both none of bl(i1),...,bl(ix) lie in [( +1,...,r] and at least two of
bl(i1),...,bl(ix) equal £. (Our subsequent analysis will impose even more conditions
that must be satisfied in order for sign(w - x) to be incorrect on x.)

Fix any £ € [r]. The probability that both

e none of bl(i1),...,bl(ix) liein [0 +1,...,7]

and
e at least two of bl(i1),...,bl(ix) equal £
is at most k2 times the probability that both
e none of bl(i1),...,bl(ix) liein [( +1,...,7]
and
[ ] bl(ll) = bl(lg) = é;
let us condition on this event. Let us write iy = ay + j1 and i = ay + jo2; we have

that ji, jo are selected independently and uniformly from {1,...,[S¢|} =~ {1,...,n/r}.
This means that ||w;, | — |w;,]|| is essentially distributed as
2k~ 1) (1~ )
Wa+1 |S£|

(we have omitted ceiling operators for readability; it is easy to check that this omission
does not significantly affect the subsequent analysis), and consequently x is classified
incorrectly only if at least one of the k — 2 values (|wy,|)j=3,... r is at least ‘waﬁl .
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ﬂS;A , for otherwise the cumulative effect of the other £ — 2 weights would not be
large enough to offset the effect of w;, and w;,.

Let ¢ € {0,1,...,} be such that [j; — ja|/|S¢| € ((2k)~ (V) (2k)~°]. Since every
possible outcome for |]1 — ja| (where j1, jo are drawn mdependently from {1,...,]S¢|}
has probability at most O(1)/|Se|, we have that for each ¢ the value Pr[|j1 — ja|/|S¢| €
((2k)~(e+1) (2k)~°] is at most O((2k)~°). Because the weights increase by a factor of
2k between successive blocks, this means that the only way that |w;;| can be at least
| W41 - (JTS;J‘Q)‘ is if bi(i;) belongs to {¢{ —c— 1, —¢,... ¢} (recall that because of
our conditioning we have bi(i;) < ). Because of the conditioning described earlier,
for each fixed j € {3,...,k} this occurs with probability O(1 + ¢)/¢. Taking a union
bound over £ — 2 different j’s, the probability that any |w;,| is as large as would be
necessary to cause an error is at most O((1 + ¢)k)/¢.

Putting all the pieces together and summing over all possible values £ =1,...,r,
we have that

Pr [blgn(w x) # DL(z)] < ZO <§> ZO (2k)~ O((l 2— c)k)

k3 1—|—c
:0(1)-—k ék 32

kQ
.7-_2’

which is O(e) by our choice of 7. The theorem is proved. O

8. Conclusion. We have studied exact and approximate representations of half-
spaces over the Hamming ball {0,1}%,, giving upper and lower bounds on the weight
of such representations. While our upper and lower bounds are fairly close, there are
still several open questions that naturally suggest themselves for follow-up work. In
particular, our Theorem 5.1 gives a weight upper bound of k©(*/¢) which is indepen-
dent of n but depends superexponentially on k; we suspect that it may be possible
to improve this dependence on k. Even for fixed k there is a gap between our upper
bound, which is exponential in e~ !, and our lower bound, which is exponential in
e~ 1/(=1) Tt would be interesting to close this gap.

Finally, a broader goal for future work is to explore the implications of our newly
established weight bounds on the effectiveness of various margin-based learning algo-
rithms over {0,1}%,.
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