Martingale Boosting

Philip M. Long Rocco A. Servedib
Google Columbia University
Mountain View, CA New York, NY
plong@google.com rocco@cs.columbia.edu

September 15, 2008

Abstract

Martingale boosting is a simple and easily understood tigclenwith a simple and easily under-
stood analysis. A slight variant of the approach provabhjiees optimal accuracy in the presence of
misclassification noise.

1 Introduction

Boosting [15, 8] has been an overwhelming practical successmany applied domains, the best known
algorithms use boosting. Nevertheless, some time agoitisgngo noise was identified as a weakness of
the standard boosting techniques [7, 11, 5].

Heuristics have been proposed to combat this [14, 13]. Thedies are based on an implicit view
that noisy examples tend to be borderline cases: they genadisy examples roughly in proportion to how
much they deviate from the norm. This view has been seen tedfelubut there are applications in which
many examples are not borderline.

Some boosting algorithms have been shown to be provable4toisrant [16, 2, 3, 9, 10]. As in clas-
sification in general, the main approaches to theory foreatmerant boosting can be divided into agnos-
tic/malicious and independent models. In the agnostidtmoals case, essentially nothing is assumed about
the noise, except a limit on its rate. This may appear to beememlistic than the alternative in which the
labels are assumed to be flipped independently of the sarhioiever, analysis of agnostic or malicious
noise models is by necessity focused on the worst caseathpim this case, noisy examples are the most
extreme elements of the opposite class. Sources involvidgpendent misclassification resemble applied
problems more than this. Thus, analysis of learning wittepshdent misclassification noise may be the
most effective way to use theory to guide the design of bogsdilgorithms that are robust to noisy data
other than borderline cases.

1.1 Our contribution This paper is about an approach that we paktingale boostingWe concentrate
on the problem of predicting binary classifications, say @ &n As in many earlier boosting algorithms,
learning proceeds incrementally in stages. In each stxge@es are partitioned into bins, and a separate
base classifier is chosen for each bin. An example is ass@bedby counting the number of 1 predictions
made by the appropriate base classifiers from earlier rounds

The analysis is very simple: it proceeds by thinking of areobjo be classified as taking a random walk
on the number of base classifiers that predict 1. If the eat@srare balanced between false positives and

*This is a full version which contains some proofs omittedrfrive conference version because of space.
TSupported in part by NSF CAREER award CCF-0347282

false negatives and are slightly better than random gugssiis easy to see that, after a few rounds, it is
overwhelmingly likely that more than half the steps are mdbrrect direction: such examples are classified
correctly by the boosted classifier.

In some cases, one can promote balanced error rates difectgxample, if decision stumps are used
as base classifiers, one can easily adjust the thresholdatacleahe error rates on the training data. We also
show that it is possible torce a standard weak learner to produce a classifier with balagced rates in
the cases that we need.

Martingale boosting facilitates noise tolerance by the taat the probability of reaching a given bin
depends on theredictionsmade by the earlier base classifiers, and not on the label ekample. (In
particular, it does not depend on the number that are cooreicicorrect, as does Boost-by-Majority [6].)
The most technical aspect of the paper is to show that theghtirey to force balanced errors can be done
while preserving noise-tolerance. Ideas from earlier wayrlKalai and Servedio [10] are useful there.

Because it is a simple and easily understood technique #margtes highly noise-tolerant algorithms,
ideas from martingale boosting appear likely to be praltyiceseful.

1.2 Organization Section 3 gives a high-level description of the architextoir our boosting algorithm
and compares it with the three previous boosting algoritliiieh seem most closely related, namely the
Boost-by-Majority algorithm of Freund [6], the branchingpgram booster of Mansour and McAllester [12]
and the noise-tolerant booster of Kalai and Servedio [10].

In Section 4 we consider a learning scenario in which the vieataing algorithm is assumed to satisfy
a somewhat stronger guarantee than the usual weak learssugnption: the base classifier produced by
the weak learner is assumed to achieve accuracy signiffogiethter thari /2 on both positive and negative
examples. Working in this scenario lets us highlight thermdea of our new boosting method; we give
a very simple proof in Section 4 that our algorithm succdBshoosts such a weak learner to arbitrary
accuracy.

In Section 5, we show how a slight modification of the algarntfrom Section 4 can be used to boost
a standard weak learning algorithm, which only meets thalusaak learning criterion, to arbitrarily high
accuracy. We discuss computational issues and give annimepl@tion of this algorithm in a framework
where the learner has access to an example ofa&lé, D) in Section 6.

In Section 7, we show how the algorithm of Section 5 can be tsbdost a random classification noise
tolerant weak learning algorithm to achieve final accurheye, wheree is any value greater than the noise
raten. The modification described in this section is similar to thiaKalai and Servedio [10] who showed
how the boosting algorithm of McAllester and Mansour coutdnhodified to achieve tolerance to random
classification noise.

2 Preliminaries

Given a target concept: X — {0,1} and a distributiorD over X, we write D to denote the distribution
D restricted to the positive examplés € X : ¢(z) = 1}. Thus, forany event C {z € X : ¢(z) = 1}
we havePrp+ [z € S| = Prp[z € S]/Prplc(xz) = 1]. Similarly, we writeD~ to denoteD restricted to the
negative example§r € X : ¢(x) = 0}.

3 High-level structure of the boosting algorithm

The boosting algorithm works in a seriestostages The hypothesis of the boosting algorithm is a layered
branching program witli” + 1 layers in a grid graph structure, where layéast + 1 nodes (see Figure 1);
we refer to the-th node from the left in layet asv; ;, wherei ranges from 0 té. For0 < ¢ < T — 1, each
nodev; ; in layert has two outgoing edges, one left edge (which is labeled withta nodev; ;1 and one
right edge (labeled with a 1) to node, ; 1. Nodesu; in layerT have no outgoing edges.

output'0 ;) " output 1

NN o Y Y

V0,T v1,T V2, T U3, T vr—3,r VUr-2T VUT-1T UT,T

Figure 1: The branching program produced by the boostingriéthgn. Each node; ; is labeled with a
0/1-valued functiorh; ;; left edges correspond to 0 and right edges to 1.

Before stage of the boosting algorithm begins, each node at levels. ;¢ — 1 has been labeled with
a 0/1-valued hypothesis function. We writg; to denote the hypothesis function that labels nogdg
In the ¢-th stage, hypothesis functions are assigned to each af-th& nodesuy,; throughv,; at levelt.
Given an example: € X in staget, the branching program routes the example by evaludtingon «
and then sending the example on the outgoing edge whosedahgl(z), i.e. sending it to nodey,, , () 1-
The example is routed through successive levels in this vy itireaches levet; more precisely, when
examplex reaches some nodg ; in level j, it is routed from there via the outgoing edge whose label is
hi () to the nodev;, , ,(x),j+1- In this fashion the example eventually reaches the nodg; after being
evaluated on hypotheses, whergis the number of thesehypotheses which evaluated to 1.on

Thus, in thet-th stage of boosting, given an initial distributidn over examples:, the hypotheses
that have been assigned to nodes at levels. ¢ — 1 of the branching program indude+ 1 different
distributionsDy , . . ., D; ; corresponding to the+ 1 nodesvg, . .., vy in layert (a random draw from
distribution D, ; is a draw fromD conditioned onx reachingv; ;). In the following sections, we will
carefully specify just how the hypothesks;, . .., h;; are generated to label the nodes, ..., v in the
t-th stage of boosting; as we will see in Section 5, for the bogsalgorithms that work in the standard
model, it isnot the case that;; is obtained simply by running the weak learner on distrioutD; ; and
using the resulting hypothesis Aas;.

Once allT stages of boosting have been performed, the resulting lhirmpprogram routes any example
x to some nodey, r at levelT'; observe that is the number of hypotheses that evaluated to 1 out of the
T hypotheses that were evaluatedaanThe final classifier computed by the branching program igpkm
given an example to classify, if the final node, 1 thatx reaches haé > T'/2 then the output is 1, and
otherwise the output is 0.

3.1 Relation to previous boosting algorithmsReaders who are familiar with Freund’'s paper on the
Boost-by-Majority algorithm [6] may experience a sense @fhdvu on looking at Figure 1, since a very
similar figure appears in [6]. Indeed, both our current bogsscheme and the Boost-by-Majority algo-
rithm can be viewed as routing an example through a brangmiogram which has the graph structure
shown in Figure 1, and both boosters work by ultimately prigaly 1 or O according to whether the majority
of T weak hypotheses evaluate to 1 or 0. However, we emphasizthéna is a very significant difference
between our boosting approach and that of [6]. In Boost-lajekity, in stage the weak learning algorithm

is only invoked once, using a single distributiéh that reweights each examples according to which node
v;¢ atlevelt it arrives at. Thus, in Boost-by-Majority there are offfyweak hypotheses that are ever gener-
ated in the course of boosting, and each nagle. . ., v: ; is labeled with the same weak hypothekisthe
final output is a majority vote over the§ehypothesesiy, ..., hr. In contrast, our algorithm invokes the
weak learnet + 1 separate times in stageonce for each of the+ 1 distinct distributionsDq ¢, ..., D; ¢
corresponding to the nodes, vi 4, ..., v . (We remind the reader again that as we will see in Section 5,
the hypothesis; ; is not obtained simply by running the weak learner®y), and taking the resulting hy-
pothesis to be; ;.) A total of 7'(7" + 1) /2 weak hypotheses are constructed, and any single exanuily
encounterd’ of these hypotheses in its path through the branching pmagra

As we will see, our algorithm has a very simple proof of coimess which seems quite different from
the Boost-by-Majority proof. Moreover, the fact that ougaiithm constructs a different hypothedis;
for each node);; seems to play an important role in enabling our boostingralgua to tolerate random
classification noise. We will show in Section 7 that a sligatiant of our boosting algorithm can learn to
any accuracy raté — ¢ < 1 — i in the presence of random classification noise at#ate such guarantee
is given for Boost-by-Majority or any variant of it that weeaaware of in the literature, and we were unable
to prove such a guarantee for Boost-by-Majority. It is aetiesting question for future work to determine
whether Boost-by-Majority actually has (close to) thisdesf noise tolerance.

Another related algorithm is the “boosting by branchinggeeens” algorithm of Mansour and McAllester
[12], which we refer to as the MM algorithm. Kalai and SengefdiO] modified the MM algorithm to obtain
a boosting algorithm which is robust in the presence of ramdiassification noise.

Like the Mansour/McAllester boosting algorithm, our bawstvorks by building a branching program.
Also, as mentioned earlier, our modification and analysishaf paper’s boosting algorithm to achieve
random classification noise tolerance will follow the ammo of Kalai & Servedio. However, there are
significant differences between our boosting algorithm #msl earlier work. The algorithm and analysis
of [12] and [10] are based on the notion of “purity gain;” a eadis split into two descendents if each of
the two labels 0 and 1 is achieved by a nonnegligible fraatioiihe examples that reaeh and two nodes
v andw are merged if the ratio of positive to negative examplesiwithis similar to the ratio withinw.
Nodes that are pure (for somez {0, 1} almost all examples that reachare labeled wittb) are “frozen”
(i.e. not split any more) and assigned the labelln contrast, in our new algorithm the label of a given
terminal node in the branching program depends not on therityayote label of examples that reach that
node, but on the majority vote label of the hypotheses thatesaluated on the path to the node. In the
analysis of our algorithm, progress is measured not in tefrpsirity gain achieved by splitting a node, but
rather by the amount of “drift” in the right direction that ade imparts to the examples that reach it. (We
will see, though, that notions of purity do play a role for @#incy reasons in the example oracle model
implementation of the algorithm that we describe in Secfign

We note also that the algorithms and analyses of [12, 10] gtleinsight into the structure of the
branching programs that they create. In contrast, our iégoryields a well-structured and easily intelligible
branching program as shown in Figure 1.

4 Boosting a two-sided weak learner

Letc : X — {0,1} be the target function that we are trying to learn to high emcy with respect to
distributionD over X. Throughout this section the distributiofs™ andD~ are defined with respect to

Definition 1. A hypothesis: : X — {0,1} is said to havdwo-sided advantage with respect taD if it
satisfies bottPr,cp+ [h(z) = 1] > 3 +~ andPr ep- [h(z) = 0] >+ + 4.

Thus such a hypothesis performs noticeably better tharorargiessing both on positive examples and
on negative examples. In this section we will assume thatave hccess to @vo-sided weak learndhat,
when invoked on target concepand distributionD, outputs a hypothesis with two-sided advantage.

4

In the next section, we will perform an analysis using thealisissumption of having just a standard
weak learner. That analysis can be viewed as reducing tbatgm to the two-side model studied here.
However, results in the two-sided model are arguably isterg in their own right for the following reason.
In practice, boosting algorithms are often applied in coojion with “decision stumps”, classifiers that
base their predictions on whether individual variablesaeve or below thresholds. For such classifiers,
the threshold can be adjusted so that the training errodambad between positive and negative examples,
with a modest increase in the overall error rate; this presfinding base classifiers with reasonably small
error on both kinds of examples, as is required by the dedimiti the two-sided model.

We now show how the general boosting framework of Sectiom3beaused to boost a two-sided weak
learner to high accuracy. This is done very simply: in staget each node; ; we just run the two-sided
weak learner on examples drawn fram; (recall that this is the distribution obtained by filteridgto
accept only those examples that reach nogdg, and use the resulting hypothesis, which has two-sided
advantage with respect ®; ;, as the hypothesis functiol; ; labeling nodev; ;. We refer to this boosting
scheme a8asi ¢ Marti Boost.

The idea of the analysis is extremely simple. ketlenote the final branching program thgdsi c
Mar ti boost constructs. We will see that a random exampldrawn fromD™ (i.e. a random positive
example) is routed through according to a random walk that is biased toward the right, @mandom
examplezx drawn fromD~ is routed throughh according to a random walk that is biased toward the left.
Sinceh classifies example according to whether reaches a final nodey with ¢ > T'/2 or ¢ < T'/2,
this will imply that ~ has high accuracy on both random positive examples and manégative examples.

So consider a random positive exampldi.e. x is distributed according t®*). For any nodey; ;,
conditioned onz reaching nodey;; we have thatr is distributed according t6D; ;)". Consequently, by
the definition of two-sided advantage we have thaboes from node; ; to nodev; 1 41 With probability
at leastl /2 + v, sox does indeed follow a random walk biased to the right. Siryildor any nodev; ; a
random negative example that reaches ngdavill proceed to node; ;1 with probability at least /2+ -,
and thus random negative examples follow a random walk di&sdhe left. Now standard bounds on
random walks are easily seen to imply thaf/if= 0(103—%), then the probability that a random positive
exampler ends up at a nodey - with ¢ < 7'/2 is at mosk. The same is true for random negative examples,
and thush has overall accuracy at lealst- e with respect tdD.

In more detail, we have the following theorem:

Theorem 1. Let v9,71,...,7r—1 be any sequence of values betw@&eand 1/2. For each valuet =
0,...,7—1, suppose that each of tihe-1 invocations of the weak learner on distributioRg, (with0 < ¢ <
t) yields a hypothesis; ; which has two-sided advantage with respect taD; ;. Then the final output hy-

pothesigh thatBasi ¢ Marti boost computes will satisfPr,cp[h(z) # c(x)] < exp (—(ZtT;Ol %)2/(2T)) .

Proof. As sketched above, we will begin by bounding the error ratpasitive examples (a nearly identical
proof will work for the negative examples).

Fort = 0,...,T we define the integer-valued random varialdleas follows: given a draw aof from
DT, let: denote the index of the nodg, thatx reaches at level of the branching program. The value of
X;isi.

Fix 1 <t < T and let us consider the conditional random varigb{g| X;_). Conditioned onX;_
taking any particular value (i.e. anreaching any particular node ;—;), we have that: is distributed
according taD; ;1) ™, and thus we have

1
E[X|Xi1] = X1 + Pr [hit—1(z)=1]> Xi1 + 3 + V-1, (1)

IE(Di,t,1)+

where the inequality follows from the two-sided advantafé,q_;.

5

Now fort = 0,...,T define the random variablg asY; = X; — Z (+7;) (soYy = Xy =0.)
Since each possible vaIue Bf_, corresponds to a unique value &f_; and vice versa, conditioning on
the value ofY;_; is the equivalent conditioning on the valueXf_;. Using inequality (1) we obtain

t—1 t—1
1 1
EY[Yia] = E|X - (5+%)Yi1| =EX[Yia] - Y (5 +%)
i=0 1=0
1 t—1 t—2 1
> X1+ 3 + -1 — 20(5 + i) = Xo—1 — 20(5 +7) = Y1,

so the sequence of random variablgs. . . , Y7 is a sub-martingale. We have

1
;Y| =X — Xeo1 — (5

1) <1
2+’Yt 1)|7)

so by Azuma’s inequality for sub-martingales (Theorem 7 ipp@ndix A) we getPr[Yr < —)] <

exp(—A2/(2T)). We take\ = Zfz’ol v, and observe th@tr[Yr < —\] = Pr[X7 < T/2] = Pryep+[h(z) =

0] for the final hypothesisi. Thus, we indeed have that the error rate on positive exariplat most
T-1 T

exp (—M) . The same argument shows tiat,. - [h(x) = 1] < exp (—M) and we are

done. 0

Note that if we havey, > ~ for all ¢, then Theorem 1 gives the familiar bouRd,cp[h(x) # c(x)] <
exp(——) We further observe that if all the; values are small and equal to the same valuthen we
can replace the 1 in the upper bound|Bh— Y;_1| with a value close td /2; and this gives a final bound in
which the constant in the exponent is close to 2 (rather thawrctirrent value of /2), which is optimal.

5 Boosting a standard weak learner
We recall the usual definition of a weak learner.

Definition 2. Given a target functiom : X — {0, 1} and a distributionD, a hypothesig : X — {0,1} is
said to haveadvantagey with respect tdD if it satisfiesPr,ep|h(z) = c(z)] > 1 + 7.

In this section we will assume that we have access to a sthndzak learning algorithm which, when
invoked on target conceptand distributionD, outputs a hypothesis which has advantage with respect
to D. This is the usual assumption that is made in the study oftb@psand is clearly less demanding
than the two-sided weak learner we considered in the prevéeation. We will show how thB8asi c
Mar t i boost algorithm of the previous section can be modified to boosaadstrd weak learner to high
accuracy.

For clarity of exposition, throughout this section we witirsider an abstract version of the boosting
algorithm in which all desired probabilities can be obtdirexactly (i.e. we do not consider issues of
sampling error, etc. here). We will deal carefully with taessues when we describe an example oracle
model implementation of the algorithm in Section 6.

5.1 Definitions and an easy lemmda.etc : X — {0, 1} be atarget concept. We say that a distributidn
over X is balancedif D puts equal weight on positive and negative examplesPirgcplc(z) = 0] = 5
Given an arbitrary distributio® (not necessarily balanced), we writeto denote the balanced versionfof
which is an equal average Bf" andD~; i.e. for anyS C X we havePr5[S] = & Prp+[S] + § Prp-[S].
Given a distributiorD over X and a hypothesis : X — {0,1}, we deflneh the balanced version af,
to be the (probabilistic) version afdescribed below; the key property Tofs that it output® and 1 equally

| [cl@) =1 c@) =0 W) = Lhz)=1] 2 m
h(z) =1 p q h(z) =1, h(z) =0 || p(1 — &) | g1 — &)
ha)=0] 1/2-p [1/2-q W) =0 h(x)=1] 0 0

h(z) =0, h(z) =0 %—p %—q

Table 1. Each table entry gives the probability of the cqroesling event under the balanced distribution
D.

| | hig(2) =0 hiy(x) =1 |
(x) =0 p 172 —p
1| 12-p ’

Table 2: Each table entry gives the probability of the cgroesling event under the balanced distribution
D; 4.

often underD. Letb € {0,1} be the value thak evaluates to more often, and let= Pr,cp[h(z) = b]
(so1l/2 < r < 1). Given an inputr € X, to evaluateh on z we toss a biased coin which comes up heads
with probability % If we get heads we output(z), and if we get tails we output — b. This ensures that

Pr,ep[h(z) = b] = Prlcoin is headse h(z) = b] = 4 - = 1.
The following simple lemma shows that if we have a weak hygsit. that has advantagerelative to

a balanced distributio®, then the balanced hypothe%imas advantage at leagt2 relative toD.
Lemma 1. If D is a balanced distribution anBrp[h(z) = c(z)] > 1+~ thenPrp[h(z) = ¢(z)] > 1 +7.

Proof. We may assume without loss of generality tRap[h(z) = 1] = r > 1, i.e. thatb = 1 in the above
discussion. If we lep denotePrplh(x) = 1 & ¢(x) = 1] andq denotePrp[h(z) = 1 & ¢(x) = 0], so
p + q = r, then the probabilities for all four possible valueshodndc are given in the left side of Table 1.
From the definition ofh it is straightforward to verify that the probabilities ofl &ight combinations of
values forh, h andc are as given in the right side of Table 1. We thus have Hi@t[ﬁ(:z:) = c(x)] =
2 1+q(1-4)+3—q=3+ 52 Byassumption we havBrp[h(z) = c(z)] > & + v, so from the left
side of Table 1 we have — ¢ > ~. The claim follows since: < 1. O

5.2 Boosting a standard weak learner withvar t i Boost Our algorithm for boosting a standard weak
learner, which we calMar ti Boost , works as follows. In stage, at each node;; we run the weak
learning algorithm on the balanced versiﬁﬁt of the distributionD; ; let g; + denote the hypothesis that the
weak learner returns. The hypothesis that is used to label; ; is h; + = g;+, namelyg; , balanced with

respect to the balanced distributi@.
The following lemma plays a key role in our proof of correcsie

Lemma 2. We havePr(,cp,)+ [hit(z) = 1] > 1+1 andPrep,)~ [hi(z) = 0] > 142

Proof. Since the original hypothesig ; that the weak learner returns when invoked @ has accuracy
at Ieast% + v with respect taD; ;, by Lemma 1 we have that the balanced hypothésishas accuracy
at least} + 7 with respect toD; ;. Let p denotePr - [hit(z) = c¢(z) = 0]. SinceD;, is a balanced
distribution andh; ; is a balanced hypothesis, it is easy to see that all four &ftlees must be as given in

7

Table 2, and thu®r 5~ [¢(x) = c(z)] = 2p > 5 + 3, i.e.p > § + 7. But sinceD; , is an equal mixture
of (Di ;)" and(D;;)~, this implies thaPr,¢(p,)+ [hit(x) = 1] > (3 +§)/5 = 5 + 3. We similarly have
thatPr,¢(p, ,)- [hit(x) = 0] > 5 + %, and the lemma is proved. O

With this lemma in hand it is easy to prove correctneskhft i Boost :

Theorem 2. Let v9,71,...,7r—1 be any sequence of values betw@&eand 1/2. For each valuet =
0,...,T7 — 1, suppose that each of thet 1 invocations of the weak learner on distributiofs; (with 0 <
i < t—1)yields a hypothesig; ; which has advantage; with respect td; ;. Then the final branching pro-

gram hypothesié that Mar t i Boost constructs will satisfPr ep[h(z) # c(z)] < exp (—@%7%%)2) .

Proof. The proof is almost identical to the proof of Theorem 1. WerdeBequences of random variables
Xi,...,Xr andYj, ..., Yr as before; the only difference is that (i) now we havgX;] > 1 + 2 (by
Lemma 2) rather thatiy| X,;] > % + v as in the earlier proof, and (ii) the randomness is now takem o
both the draw ofc from D* and over the internal randomness of each hypothiesist each node in the
branching program. This loss of a factor dfrom (i) in the advantage accounts for the different cortstan
(worse by a factor of 4) in the exponent of the bound. O

6 Complexity issues: implementation oivar t i Boost that works with an example oracle

Thus far we have described and analyzed an abstract verfsidar ¢ i Boost without specifying how the
weak learner is actually run on the distributi@n ; at each node. One approach is to run the boosting
algorithm on a fixed sample. In this case all relevant prdhigsi can be maintained explicitly in a look-up
table, and then Theorem 2 bounds the training set accuratyedr t i Boost final hypothesis over this
fixed sample.

In this section we describe and analyze an implementatidheo@lgorithm in which the weak learner
runs given access to an example orakl& (¢, D). As we will see, this version of the algorithm requires
some changes for the sake of efficiency; in particular we %#néleze” the execution of the algorithm at
nodesv; ; where it is too expensive to simulafg ;. We give an analysis of the time and sample complexity
of the resulting algorithm which shows that it is computasilly efficient and can achieve a high accuracy
final hypothesis. Note that the accuracy in this case is medswith respect to the underlying distribution
generating the data (and future test data).

6.1 The model We define weak learning in the example orakl& (¢, D) framework as follows:

Definition 3. Given a target function: : X — {0,1}, an algorithm A is said to be aweak learning
algorithm with advantage if it satisfies the following property: for any > 0 and any distributioriD over
X, if A'is givend and access td&' X (¢, D) then algorithmA outputs a hypothesis : X — {0, 1} which
with probability at leastl — 4 satisfiesPr ep[h(z) = c(z)] > 3 + 7.

We letm 4(6) denote the running time of algoritha, where we charge one time step per invocation of
the oracleE X (¢, D). Thus, if we must run algorithml using a simulated oracl& X (¢, D’) but we only
have access t& X (¢, D), the runtime will be at most: 4 (§) times the amount of time it takes to simulate a
draw fromE X (¢, D’) given EX (¢, D).

6.2 An idealized version of the oracle algorithmWe now describe the version dfrti Boost de-
signed to work with a sampling oracle in more detail; we dal algorithmSanpl i ng Marti boost,or
SMar t i Boost . While this algorithm is intended to work with random exaeglto keep the focus clear on
the main ideas, let us continue for a while to assume thagaqilired probabilities can be computed exactly.

In Section 6.3 we will show that the analysis still holds ibpabilities are estimated using a polynomial-size
sample.

For convenience, we will use to denote all of the random bits used by all the hypothéseslt is
convenient to think of as an infinite sequence of random bits that is determinedd#ie algorithm starts
and then read off one at a time as needed by the algorithmgkhitne algorithm will use only polynomially
many of them).

In staget of SMar t i Boost , all nodes at levels' < ¢ have been labeled and the algorithm is labeling
nodesuvo, ..., v . Let p;, denotePr cp [reaches; ;]. For eachh € {0, 1}, |e'[p$’7t denotePr cp [z
reaches; ; and the label of: is b], sop; ; = pgt +p},t. In staget, SMar t i Boost does the following for
each node; +:

1. If mingyeo,1y pf,t < ﬁ then the algorithm “freezes” nodeg, by labeling it with the bit(1 — b)
and making it a terminal node with no outgoing edges (so aayngkex which reaches; ; will be
assigned labell — b) by the branching program hypothesis).

2. Otherwise, we havminbe{o;}pgt > ﬁ In this case&SMar t i Boost works just likeMar t i Boost :
it runs the weak learning algorithm on the balanced ver@/ﬁp of D;; to obtain a hypothesis; ,
and it labelsy; ; with h; ; = g; +, which is g, ; balanced with respect t; ;.

The idea is that each node which is “frozen” in step (1) abmrérutes at mosf(Tf—H) to the error of
the final branching program hypothesis; since there are at M@ + 1)/2 many nodes in the branching
program, the total error induced by all frozen nodes is attr§o®n the other hand, for any nodg; which
satisfies condition (2) and is not frozen, the expected numbéraws fromE X (¢, D) that are required to
simulate a draw fronE X (c, Z/)i\,t) IS O(T?Q), and thus we can indeed run the weak learner efficiently on the
desired distributions. (We discuss computational efficyein more detail in the next subsection where we
take sampling issues into account.)

The following theorem establishes correctnesSMdir t i Boost :

Theorem 3. LetT = % Suppose that each time it is invoked on some distribm/Q\B the weak
learner outputs a hypothesis that has advantagsith respect toﬁz\t Then the final branching program
hypothesig: that SMar t i Boost constructs will satisfyPr,cp[h(z) # c(z)] < e.

Proof. Given an unlabeled instanee € X and a particular setting of the random bits for each of the
(randomized) hypothesés ; labeling nodes of the branching program, we say that) freezes at node
v; ¢+ If the path through the branching program thatakes under randomnessauses it to terminate at a
nodev; , with ¢ < T' (i.e. at a node; ; which was frozen bysMar t i Boost). We have

Pr[h(z) # c(z)] = Prlh(z) # c(z) & (x,r) freeze$+ Pr[h(z) # c(x) & (z,r) does not freeZe
< % + Prih(z) # c(z) & (x,r) does not freeZe

where the probabilities, as in the proof of Theorem 2, arenakver the draw af from D and the choice of
T.
It remains to show thaer[h(z) # c(z) & (x,r) does not freeZe< 5. As before, we first will show that
Pr,cp+[h(z) # c(x) & (x,r) does not freeZés at most;; the negative examples can be handled similarly.
To show thatPr,cp+ [h(z) # c(x) & (x,7) does not freede< §, we consider a slightly different
random process than in the proof of Theorem 2. fer 0,...,T we now define integer-valued random
variablesX] as follows. Given a draw of from D* and a random choice of

e If (x,7) does not freeze at any nodg,s with ¢’ < t, then X/ takes value, wherei denotes the index
of the nodev; ; thatx reaches under randomesat levelt of the branching program;

o If (z,r) freezes at some nodg with t' < ¢, then letk be the sum of — ¢’ many independent 0/1
coin tosses each of which comes up 1 with probabdity 2. The value ofX] is j + k.

(This part of the proof is reminiscent of [3].) Itis clear tha

. 1
E[X{|X,_, & (z,r) freezes at some node with ¢’ < ¢] = X;_; + 5+ %
On the other hand, ifx,) does not freeze at any such node, then conditioned r@aching any particular
nodew; ;1 under randomness we have that: is distributed according t¢D;;_1)". It follows from
Lemma 2 that

. 1
E[X{|X;_, & (z,r) freezes at no node; » with ¢’ < t] > X, ;| + 3+ %,
and thus overall we havB[X/| X, ;] > 2 + 1.
Now similar to the proof of Theorem 1, far=0,..., T let the random variabl&, be defined a¥} =
X/ —t(1+7). Asinthe earlier proof we have th&j, . . ., Y7 is a sub-martingale with bounded differences,

so Azuma’s inequality for sub-martingales gives[Y;] < —/T'/2] < exp (——) Now recall that if

(x,r) never freezes, then the predictib(r) is determined by the majority of the valuesigf; (=) obtained
from hypothese$,; ; encountered in its path through the branching program. ,Tihuke particular case of
positive example®r,cp+ ,[h(x) # c(x) & (x,r) does not freeZe< Pr (X7 < T'/2] = Pr[Y/ < —7T/2].
Applying the inequality from above, bounding negative epées similarly, and recalling our choice 6t
we have thaPr[h(z) # c(z) & (z,r) does not freeZe< § and the theorem is proved. O

6.3 Dealing with sampling error In this section we remove the assumptions that we know ailired
probabilities exactly, by showing that sufficiently acderastimates of them can be obtained efficiently. We
do not belabor details since sampling error analyses suttease we now present are quite standard.

Consider some node; ;. While we cannot determine precisely whetrpég is greater thanTT— or
not, standard multiplicative Chernoff bounds show that ae compare it up to a constant multlple which
is good enough for our purposes:

Fact 3. With O(Og Tlog3) many draws t&Z X (¢, D), we can obtain an estimafﬁyt of p?,t which satisfies the
following:

then with probabilityl — §, we have thaf» .+ Is at most ; and

b
o Ifpj, < 2T(’;+1)’ 4T(T+1)

o If p}, > 771y, then with probabilityl — &, we have thap}, is at leasty 7.

ThusSMar t i Boost will actually decide whether or not to freeze a nage by checking Whetheﬁf,t

exceedsm If minge o1y pgt is not too small then we can efficiently simulate draws frBii (c, 5;)

(by tossing a coin to decide whethBiX (c, 5;) will give a positive or negative example, and then drawing
from EX (c, D) until it gives an example with the correct label which reacheg):

Fact 4. If minyeqo 1 pz ;> 2T(T+1) then given access 0.X (¢, D) we can with probabilityl — § perfectly

2 1
simulate a draw fromE' X (e, D,»Vt) by making at mosID(Lfg&) many draws fronE X (¢, D).

10

Once we have run the weak learning algorithm witi (c, 5;) and it has given us its hypothesis;,
we need to construdi; ;, the balanced version of this hypothesis with respe@\;gg In order to do this
perfectly as in Section 5.1, we would need the exact value @fPrmﬁ:t [git(z) = b] > 1. While this
exact value is not available to us, the following straigitfard generalization of Lemma 1 shows that an
approximate value is good enough for our needs:

Lemma 5. Letr’ € [0,1] be any value such that —r’| < ; wherer is as described above. Lk}, denote
the “balanced” hypothesis obtained fropa, as in Sectlon 5.1 but using instead ofr. If Pr/\ [g, () =

c(z)] = 5 + 7, thenPrg—[h},(2) = c()] > 5 + .

Standard bounds on sampling show that we can obtain an éstifrad » which is accurate to within an
additive £ with probability 1 — § by making at mosO(l"gg#) many draws frorrEX(c,ﬂ;). Putting
all the pieces together, we have the following theorem wisicbws thatSMar t i Boost is correct and
efficient (we use) notation to hide polylogarithmic factors, and ignore theetedences o — which are
everywhere polylogarithmic — throughout for the sake otiedmlity):

Theorem 4. LetT = @(logi#). If A is a weak learning algorithm that requires; many examples to

construct ay-advantage hypothesis, th&Mar ti Boost makesO(s4) - O(%) - poly(1) many calls to
EX (e, D) and with probabilityl — ¢ outputs a final hypothesisthat satisfiePr, cp[h(z) # c(z)] <e.

Proof. A straightforward union bound over all failure probabégi (for each call of the weak learning al-
gorithm and for each sampling-based estimate), togethir Wieorem 3, establishes correctness. For the
sample complexity bound consider a single step of the @lhgowhen it is processing some nodza Es-
timatingplt takesO() many draws by Fact 3, and then running the weak learner BiHc, D; t) takes

O(@) many draws fromE X (¢, D) by Fact 4. Estlmatlng atv; ; to “balance” the hypothesig ; that the
weak learner returns také(w%) many draws fronE X (¢, D; t) ie. O() many draws fronE X (¢, D).

Thus, dealing with a single node ; takesO(@ + 3—21) many draws fromE X (¢, D). Since there are
O(T?) many nodes in the branching program &he- O(h)i—g/e) we obtain the claimed bound. O

7 A noise-tolerant version ofSMar t i Boost

In this section we show how ti&Var t i Boost algorithm can be modified to withstand random classifica-
tion noise. We follow the approach of Kalai & Servedio [10hawshowed how the MM branching program
boosting algorithm of Mansour and McAllester can be modifedithstand random classification noise.
Given a distributionD and a value) < n < %, anoisy example oracles an oracleE X (¢, D, n) that
works as follows: each tim& X (¢, D,) is invoked, it returns a labeled examle b) € X x {0, 1} where
x € X is drawn from distributiorD andb is independently chosen to laéxr) with probability 1 — » and
1 — ¢(z) with probability .
Recall the definition of noise-tolerant weak learning:

Definition 4. Given a target functior: : X — {0,1}, an algorithm A is said to be anoise-tolerant weak
learning algorithm with advantageif it satisfies the following property: for anyy> 0 and any distribution
DoverX,if Ais glven(S and access to a noisy example oraél& (¢, D, n) whereO <n< ;, then A

runs in time poly(1 T 5) and with probablllty at least — § A outputs a poly) -time evaluable

hypothesish such thatPr,ep[h(z) = c(z)] > 5 + 7.
Ideally, we would like a boosting algorithm that can conay noise-tolerant weak learning algorithm
into a noise-tolerant strong learning algorithm that ceriex@ any arbitrarily low error rate> 0. However,

11

Kalai and Servedio showed that in general it is not possib®bst the error ratedown below the noise rate
n.! They showed that a modification of the MM boosting algorithwhjch they called the MMM (Modified
Mansour-McAllester) algorithm, can achieve any error eaten + 7 in time polynomial in} and the other
relevant parameters. We now show that a modificatioBMr t i Boost has the same property.

Throughout this section we assume that the valug, @he random classification noise rate, is known
in advance to the boosting algorithm. As described in [13] #ssumption can be removed via a standard
approach of guessing different values for the noise rateuaimg) the best outcome.

For ease of presentation, in Section 7.1 we give the nolseattt martingale boosting algorithm under
the assumption that all required probabilities are obthieeactly. In Section 7.2 we deal with issues of
estimating these probabilities via sampling and bound &nepée complexity of the algorithm.

7.1 Boosting a noise-tolerant weak learneiRoughly speaking, the reason wBiyhar t i Boost can be
easily modified to withstand random classification noiseeicaise in each stagef boosting the labeb

of a labeled examplér, b) plays only a limited role in the reweighting that the exampleeriences. Since
this role is limited, it is possible for us to efficiently sitate the distributions that the weak learner requires
at each stage of boosting and thus for the overall boostiogess to succeed.

More precisely, as a labeled exampteb) proceeds through levels. . . ,t—1 of the branching program
in staget, the path it takes is completely independentofThus, given a sourc& X (¢, D,n) of noisy
examples, the distribution of examples that arrive at dqader nodev; ; is preciselyE X (¢, D; ¢, n). Once
a labeled examplér, b) arrives at some nodsg ;, though, it is clear that the lab&imust be consulted in the
“rebalancing” of the distributiorD; ; to obtain distributior@;. More precisely, the labeled examples that
reach node; ; are distributed according t8.X (c, D; ;,), but in order to us&Mar t i Boost with a noise-
tolerant weak learner we must simulate tiaéanceddistributionﬁ: corrupted with random classification
noise, i.e.£X (c, 5;, n'). (As we show below, it turns out that need not necessarily be the sameasis
okay to have a higher noise rajéefor the balanced oracle as longsgds not too close tc%.) The following
lemma from [10] shows that it is possible to do this:

Lemma 6. [Lemma 7 of [10]] Letr > 0 be any value satisfying + 7 < % Suppose we have access to
EX(c,D,n). LetpdenotePr,cplc(x) = 1]. Suppose thaj+35 < p < %(the case wherg+4 < 1—p < %

is completely analogous). Consider the following rejettsampling procedure: given a drafx, b) from
EX(c,D,n),

e if b = 0 then with probabilityp, = =22 reject (z,b), and with probabilityl — p, = £ set

1—p—n
b = b and accep(z,b');

e if b = 1 then se®’ to 1 — b with probability p; = (lf;:fl')o()giln:”gpn) (and sety’ to b with probability
1 — py), and acceptz, t').

Given a draw fromE X (¢, D, 1), with probability p,..; := (1‘2’3)(’3;7:()1__77[’)(1_”)) this procedure rejects, and

with probability 1 — pye; = W the procedure accepts. Moreover, if the procedure accéps
the (z, ') that it accepts is distributed according #8X (¢, D, ') wherey = : - m.

So the noise-tolerant version 8Var t i Boost , which we callNoi se- Tol erant SMarti Boost,
works in the following way. As in Section 6.2 lg} ; denotePr,cp [reachesy;;]. Forb = 0,1 let

1They showed that if cryptographic one-way functions exfen there is no efficient “black-box” boosting algorithnatizan
always achieve a final error rate< 7. A black-box boosting algorithm is a boosting algorithmttban run the weak learning
algorithm in a black-box fashion but cannot “inspect theeCoaf the weak learner. All known boosting algorithms areckkdox
boosters. See [10] for more discussion.

12

¢, denoteq?, = Pryep,[c(z) = b | x reachesv;;] = Pryep,,,[c(x) = b], s0¢), + ¢}, = 1. The
boosting algorithm (which takes as input a parameter 0, wheren + 7 is the desired final accuracy of the
hypothesis; we assume WLOG that- 7 < %) proceeds in stageas follows: at each nods .,

1 Ifp < % then the algorithm “freezes” nodeg; by labeling it with an arbitrary bit and making
it a terminal node with no outgoing edges.

2. Otherwise, ifminye g, 1) qgt < n + 3, then the algorithm “freezes” node; by labeling it with the
bit (1 — b) and making it a terminal node with no outgoing edges.

3. Otherwise the algorithm runs the noise-tolerant weaknkrausing £ X (c,ﬁﬁ,n’) as described in
Lemma 6 to obtain a hypothesjs;. The balanced version of this hypothesis (balanced withes
to D; +), which we callr; ;, is used to label node; ;.

Theorem 5. LetT = % Suppose that each time it is invoked with some ordﬁ]’é(c,ﬂ;,n’),
the weak learner outputs a hypothesis; that satisfiesPr _s~[g;+(z) = c(z)] > § + 7. Then the

final branching program hypothesis that Noi se- Tol er ant "SMar t i Boost constructs will satisfy
Proeplh(z) # c(x)] <n+.

Proof. As in the proof of Theorem 3, given an unlabeled instance X and a particular setting of the
random bits for each of the (randomized) hypotheggedabeling nodes of the branching program, we say
that (z,) freezes at node; ; if the path through the branching program thaiakes under randomness
causes it to terminate at a nodg with ¢t < 7 (i.e. at a node; ; which was frozen byNoi se- Tol er ant

Shar ti Boost). We say that a node; ; is negligibleif p; ; < % We have
Pr[h(x) # c(z)] = Prlh(z) # c(x) & (z,r) does not freeZet

Pr[h(z) # c(z) & (z,r) freezes at a negligible nopl¢
Pr[h(x) # c(z) & (z,r) freezes at a non-negligible ndde

Since (x,r) reaches a given negligible nodeg; with probability at mostﬁ and there are at most
T(T + 1)/2 many negligible nodesPr[h(x) # c(x)& (z,r) freezes at a negligible nodis at mostz.

ConsequentPr(h(z) # c(x)] is at mosty + Pr[h(z) # c(x) & (z,r) does not freeZeplus

Z Prlh(z) # c(z)| (x,r) freezes ab; 4| - Pr[(z, r) freezes av; ;. 2

i,t : vy ¢ is non-negligible

SincePr[h(x) # c(z) | (z,r) freezes ab; ;] equalsPryep, , »[h(z) # c(x)], by the fact that the algorithm
freezesy; ; if mingye (g 1y qﬁ{t < n+ 3 (case (2) above), we have that (2) is at mpst 5. Thus

Prih(z) # o(x)] < Prlh(z) # c(x) & (x,7) does not freeder n + %T

so it remains to show thaer[h(z) # c(x) & (z,r) does not freezeis at mostz. The proof of this is
identical to the proof thalPr[h(x) # c(z) & (x,r) does not freeZe< § in the proof of Theorem 3 but now
with £ in place of . O

13

7.2 Complexity issues for implementation ofNoi se- Tol er ant SMar ti Boost In this section we
remove the assumptions that we know all required probasiléxactly, by showing that sufficiently accu-
rate estimates of them can be obtained efficiently via a mohjal amount of sampling. (For simplicity,
throughout the discussion we continue to assume that we kmoexact value of as mentioned at the start
of Section 7.)

A direct analogue of Fact 3 shows thaf
estimatep; ; of p; ; = Pryep [« reaches; | such that

M) many draws toF X (¢, D, n) suffice to give an

o If p; < 3T(T+1) then with probabilityl — ¢, we have thap; ; is at most2T 1) ; and

o If py > 3T(T+1) then with probabilityl — ¢, we have thap; ; is at IeastQT 1)

ThusNoi se- Tol er ant Sharti Boost will decide whether or not to freeze a nodg on the grounds
of its being negligible (case (1)) by checking whetfigr exceed T(T)

For case (2), ip; + is not too small then we can efficiently S|mulate draws filB (¢, D; ¢+, n), and thus
can estimate?, efficiently:

Fact7. If p;; >
such that

thenO(5A1/%) draws fromE X (¢, D, n) suffice to give an estimagé, of ¢,

I i)

o If qﬁ’,t < n+ g, then with probabilityl — 4, we have thag; ; is at most; + 7; and
o If pgt > 1+ 3, then with probabilityl — §, we have thag; ; is at most) + 7.

Proof. Itis easy to see that

. . Pr(w,y)EEX(c,'Di,t,n) [y = b] -n
Y zeDiy 1—2n ’

Thus in order to estimat@f”t to within an additived(7), we must estimat®r, y)cx (e, D, . [y = b] 10

within an additiveO(7(1 — 27)). This reqwres@(w) many draws fromE X (¢, D; ¢+,n), and since

pit = (7=), there is an overhead &f(L) to simulate each draw frold X (¢, D; ¢,) usingEX (¢, D,).
U

Now we consider case (3), which requires us to use the refesampling procedure of Lemma 6. We
first note that if the exact value gf = Pryep, [c(z) = 1] were available, then the probabiligy..; of

rejecting would not be too high (so it would indeed be possiblefficiently simulate? X (c, 5;, n')):

Claim 8. The rejection probability,.; := (1*2'0)('”17;31;7’))(17”)) from Lemma 6 satisfigs..; < 1—(n+73).

Proof. Recall thaty + 5 < p < % ¢ From this it is straightforward to verify that we have

T T T 2p(1 — p)(1 = 2n)
< — —-—n—=)< —p) < .
ntg =2+ g)=n=g) < 2(-p) < —7—
1-2 +(1 1— 2p(1—p)(1-2
The claim follows since,.; = p)(p? ; n’))() equalsl — W. O

This claim implies that giverEX (¢, D; +,n), if p were known exactly then we could sample from
EX(c,D;y,n') with a slowdown of at mos;&HT/2 < =. Moreover, if the exact value of were available,
then the noise ratg’ would not be too close té (soit Would be possible to efficiently run the weak learner

using EX (¢, D;+,7n)). This is because (as shown in Lemma 7 of [10]) the noiseyafeom Lemma 6

14

isfiegy/ = L — ——£2=1 1_ 7 gGj in ti 11 i
satisfies;’ = 5 St = 2 T i Since the weak learner runs in time p@ly2—n,, 5) When invoked

on EX(c, 5;, n'), the runtime for each invocation of the weak learner would denlled by poly?, 3).
So if the exact value op = Pryep, ,[c(x) = 1] were available, then using X (c, D,n) we could

simulateE X (e, 5;, n') and run the weak learner at a given neglein poly(g, %) time overall (there is an
O(%) factor because of the overhead to simulBt¥ (¢, D; ;,n) from EX (¢, D, n)). But of course, we do
not have the exact value of the probabilityhat Lemma 6 requires; instead we must use an estipatiep

that we obtain by sampling. Singéis not exactlyp, the oracle we simulate may not be exactly balanced,
and it may have slightly different noise rates for positiviel megative examples; but as we now show, the
deviation fromEX (¢, D; ,n") can be made so small that the weak learner is unaffected.

It is easy to see that = {7_;2’;] wherep equalsPr(, y)cpx(c,p;,n) [0 = 1]. Thus we can estimateto
within an additive£¢ by estimatings from EX (¢, D; +,n) to within an additivet£(1 — 2n). As above, we
can obtain such an estimatefwith probability 1 — §) by making at mow(%) many draws from
EX(e,D,n).

Thus, we may assume that we have an approximatidinat is within an additive:¢ of p. We now use
the following lemma (the proof is a routine but tedious emoalysis applied to the proof of Lemma 7 of
[10]):

Lemma 9. Consider the rejection sampling procedure defined in Lemimat &vith o’ used in place op in
the definition o, andp;. Given anyv > 0, there is a valug = m such that if o’ — p| < ¢, then

(i) this procedure rejects with probability at maist- (n +) (and thus the rejection sampling procedure
incurs a slowdown of at mogi);

(ii) if the procedure accepts, then the, b) that it accepts is distributed according t§—p) EX (¢, (Di), n4)+
(3 +p)EX(c,(D;y)~,m-) where|p| is at mosts and., n— each differ fromy’ by at most an additive-v.

It is easy to check that sinde|, | — n.| and|’ — n_| are all at mos¥, the total variation distance
between(s — p)EX (c, (D)™, n4) + (5 + p)EX(c, (Diy)",n-) andEX (c, D;4,7') is at mostdv. Since
the weak learner makes at most r(c-;l_ly%) draws to the example oracle to achieve confidenee)’ that it

outputs a satisfactory weak hypothesis when ruon(c, D; ;, 1), if we choose = W then we
have confidencé—d that its behavior when run witth —p) EX (c, (D;¢) ", 4)+(3+p) EX (¢, (D)=, n-)
will be indistinguishable from its behavior when run withX (e, l/);, 7’). This in turn implies that we may
take& :poly(}, %), and thus that the overall runtime for each invocation ofieak learner to gej; ; is at
most polyT’, 7, 5)- (Recall thatr < 5 — 7 so a poly 1) factor subsumes a pdly-) factor.)

Finally, as in Section 6.3, we must balance the hypothgsigo obtain the hypothesis; ; that will
actually be used at nodg ;. As in that earlier section, we can only approximately badathe hypothesis
but this is sufficient by an analysis similar to that of thevoras section. So all in all, we have that in

case (3) ofNoi se- Tol erant SMarti Boost, the time (and number of calls 86X (¢, D, n) required
is poly(T', =, 7, 5) =Poly(2, 7, 5)-
Putting all the pieces together, we have the following teeowhich establishes correctness and effi-

ciency of the sampling-based versionNifi se- Tol er ant SMarti Boost :

Theorem 6. Given anyr such that) + 7 < 1, letT = @(10%#)' If A is a noise-tolerant weak learning
algorithm with advantage;, thenNoi se- Tol er ant SMar t i Boost makes polf, 1, 5) many calls to
EX(c,D,n) and with probabilityl — § outputs a final hypothesiks that satisfiePr,cplh(x) # c(x)] <

n+T.

8 Conclusion

We are working on implementing the algorithm and evaluaiisgerformance and noise tolerance on real
world data.

15

References
[1] N. Alon, J. Spencer, and P. ErdoBhe Probabilistic MethodWiley-Interscience, New York, 1992.

[2] Shai Ben-David, Philip M. Long, and Yishay Mansour. Agtio boosting. IrProceedings of the 14th
Annual Conference on Computational Learning Thepgges 507-516, 2001.

[3] N. Bshouty and D. Gavinsky. On boosting with optimal ptlgunded distributionsJournal of Ma-
chine Learning Researci3:483-506, 2002.

[4] F. Chung and L. Lu. Concentration inequalities and masile inequalities.Internet Mathematics
3(1):79-127, 2006.

[5] T.G. Dietterich. An experimental comparison of threethogls for constructing ensembles of decision
trees: bagging, boosting, and randomizatibtachine Learning40(2):139-158, 2000.

[6] Y. Freund. Boosting a weak learning algorithm by majorit Information and Computatign
121(2):256-285, 1995.

[7] Y. Freund and R. Schapire. Experiments with a new bogsdigorithm. InProceedings of the Thir-
teenth International Conference on Machine Learnipgges 148-156, 1996.

[8] Y. Freund and R. Schapire. A decision-theoretic gefiwatibn of on-line learning and an application
to boosting.Journal of Computer and System Scien&#g1):119-139, 1997.

[9] Dmitry Gavinsky. Optimally-smooth adaptive boostingdsapplication to agnostic learnindournal
of Machine Learning Research:101-117, 2003.

[10] A. Kalai and R. Servedio. Boosting in the presence ofsaoiInProceedings of the 35th Annual
Symposium on Theory of Computing (STQ#2)ges 196—205, 2003.

[11] R. Maclin and D. Opitz. An empirical evaluation of baggiand boosting. IPAAAI/IAAIL pages
546-551, 1997.

[12] Y. Mansour and D. McAllester. Boosting using branchprggrams.Journal of Computer and System
Sciences64(1):103-112, 2002.

[13] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. rlorpd generalization through explicit opti-
mization of marginsMachine Learning38(3):243—-255, 2000.

[14] G. Ratsch, T. Onoda, and K.-R. M uller. Soft margins fata8oost.Machine Learning42(3):287—
320, 2001.

[15] R. Schapire. The strength of weak learnabilit§achine Learning5(2):197-227, 1990.

[16] R. Servedio. Smooth boosting and learning with malisimoise.Journal of Machine Learning Re-
search 4:633-648, 2003. Preliminary versionfmoc. COLT'01

A Sub-Martingales and Azuma'’s Inequality for Sub-Martingales

A sub-martingalés a sequencgy, . . . , X of random variables with finite means such thatffot ¢ < T,
we haveE[X;|X;_1] > X;_;. (This is the definition given in [1]; the definition in [4] isrenger in that it
requiresE[XZ-|X1, e aXi—l] = Xi—l-)

The following theorem is well known, but for completeness give a proof since we could not find
precisely this statement in the literature. The proof iglydgdentical to the proof of Theorem 5.2 (Azuma’s
inequality for regular martingales) given in [4].

16

Theorem 7. [Azuma’s Inequality for Sub-Martingales] Let= Xy, ..., X7 be a sub-martingale which has
bounded differences, i.e.
|X; — Xi—1| <¢ foreachi=1,...,T.

/\2
PriXer < N <exp| ———|.
[(Xr < -A < p< 22;6;)

Then for anyA > 0 we have

Proof. As in [4], for any fixedd and|z| < ¢ we have
1 1

bz ~ Oc _ —0Oc ~(,0c —0c
e 726(6 e)x+2(e +e77).

Fori=1,...,TletY; = X; — X;_1, s0|Y;| < ¢; andE[Y;|X;_1] > 0. Then forf < 0 we have

1 1
E[e‘9Yi|Xi,1] < E [—(eeci — efeci)Y; + 5(69@ + efaci)

Xi_
~ QCZ' 7 1:|

1 A A 1 _ .
— _(eGCZ - eiecz)E[}/AXifl] + _(6001 + 67001)
QCZ' 2
1
S 5(6961' _i_e—GCi)
S 6920?/2

where the last line uses the inequalitysh(z) < e’”2/2, valid for all z > 0.
Since
E[ei|X; 1] = E[?Xi=Xi-D| X,] = E[efX|X;_]e 0%i1,

we have
E[eexi|X,_1] < 02ct/2 | fXion

So inductively, we have
E[e"*7] = E[E[""|X7]]

< 6926%/2E[69XT71]

T
< <H 692012/2) E[CHXO]
=1
frd 6%62 ZZTZI 67.2‘
Consequently foé < 0 we have
Pr[Xp < —A] = Pr[efXT > 70
S EGAE[EGXT:I
< €9>\+%92 Y Cz?'
Choosef = _ZTA > to minimize this expression, and we have
i=1 "1
/\2
PriXp <)N <exp| ———— .
[] 2 Zz‘T:1 622

17

