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ABSTRACT
We describe a system, Sentient Aware, that allows a user
to interactively navigate through a catalog by viewing and
clicking on images of products. When a user clicks on a
product, she receives a new set of products to browse that is
enriched for products that are similar to the clicked product.
This continues, allowing the user to define an increasingly
refined set of products, solely by expressing preferences be-
tween images of products.

We describe the design of Sentient Aware, including its
rationale, and some experiments. We also discuss limitations
of our model of the problem, and potential alternatives.
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1. INTRODUCTION
While shopping online offers many advantages including

convenience and price comparison, searching through large
catalogs to find exactly what you want can be challenging.
The typical keyword-based searching methods require con-
sistent tagging and, even under the best of conditions, will
still break down if the shopper does not have the same vo-
cabulary as the retailer. This leaves the shopper scrolling
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through a long list of products trying to find something
suitable. Filtering by attributes such as category, brand
and price is a common approach to narrow down the user’s
search. However, it is often hard for users to express their
desires through filters in a way that restricts the catalog
sufficiently. Filtering also creates hard boundaries between
products that can be very similar and it is prone to misla-
beling.

This paper is about a system that provides an alternative
way to navigate a catalog of products. Rather than describ-
ing what she wants with a query or filters, the user im-
plicitly expresses preferences by simply clicking on products
that she likes. As she clicks she provides the system with
progressively refined information about what she wants, so
that it can enrich its results accordingly. We describe a
product that provides this functionality, the design of an
implementation of the product and its rationale, and some
experiments. To focus on the main ideas, we have omitted
some details of the production system.

2. THE PRODUCT
Our product is called Sentient Aware. It has been in pro-

duction, with our first partner SHOEme.ca, since November,
2015. The original launch was with a catalog of women’s
boots; it is now used for nine additional shoe categories.
The most basic version of Sentient Aware works as follows
(see Figure 1). A shopper who enters the system is presented
with a screen of diverse product images and is invited to click
on the product that is most similar to what she is looking
for. After she clicks, she is given the option to see more
information about the clicked shoe, or buy it. She also is
presented with another screen that is enriched for products
that are similar to the product that she clicked on, and she
is invited to click again. If she clicks on an image in this
second screen, she once again receives an information/buy
invitation, and a third set of products is assembled that is
now enriched for products similar to both of her clicks (and
dissimilar to images that were not clicked). This continues,
with the system offering the user screens of products with a
progressively refined scope informed by the preferences ex-
pressed by the user.

Our partners interact with our service as follows. First,
they provide us with a catalog, which includes an image
for each product, along with metadata, such as size. After
our system processes the catalog, it exposes an API. The
client repeatedly sends the user action to our service, which
responds with a new list of products to show to the user.



Figure 1: An example of a user session on Sentient Aware.

(Technically, to avoid the need to maintain state for multiple
sessions, our API requires the client to recount all actions of
the user at each iteration.)

We are working on a number of refinements of this expe-
rience that will be described in Section 10.

3. KEY MODULES
Our system is broken into modules that will be described

in future sections.
Embedding training. Offline, before users interact with

the system, it trains a model for scoring pairs of products for
their dissimilarity. The output of this module is a mapping
that takes as input a raw representation of the product such
as an image, and outputs an embedding into R128. The
goal of training is for the distance between the embeddings
to reflect the dissimilarity between products.

Product scoring. At any given time, the system assigns
a score to each product that reflects its estimated attrac-
tiveness to the user.

Screen selection. These attractiveness scores are used
with the embeddings to choose a screen of products to present
to the user. The goal here is to trade off appropriately be-
tween (a) presenting the user with products that are likely
to be attractive, (b) providing the user with further oppor-
tunities to demonstrate preferences, and (c) reassuring the
user that the system“understands”the preferences expressed
with previous clicks.

4. USER MODEL
As in [4], our design is guided by the following model of a

user. Before engaging with the system, the user has in mind
a product in the catalog, which we will call the target. In
each screen S, we model the probability that the user clicks
on a product s given that the target is t using

Pr(s|S, t) =
exp(−d(s, t))∑

s′∈S exp(−d(s′, t))
(1)

where d(s, t) is the distance between the embeddings for s
and t.

If the user is presented with a screen containing the target,
the session ends. The goal is for this to happen as soon as
possible.

5. LEARNING TO EMBED
Our offline training of embeddings builds on the work of

Hoffer and Ailon [6]. They described a method for training a
deep network to map images to points in Rd, so that similar
images are mapped to nearby points, and dissimilar images
to far away points. Their network took as input triplets
(t, u, v) of images, where a triplet was understood to mean
that u is more similar to t than v is. The idea was for
the deep network that used shared weights W to transform
t, u and v to blocks φW (t), φW (u) and φW (v) of k hidden
nodes each, and then to update these weights using gradient
descent to minimize a loss function that rewards making u
closer to t than v is.

In a triplet, a judge has indicated which of two options is
closer to t. In our application, a screen has more than two
products. However, we may easily modify the algorithm of
Hoffer and Ailon to train W to minimize log(1/PW (s | S, t)),
where PW (s | S, t) is the probability, according to the model



of Section 4, that a judge regards s as the most similar ele-
ment of S to t. This is equivalent to training the model of
Section 4 using maximum likelihood, except that, of course,
when using a rich hypothesis class like deep neural networks,
we must regularize (e.g. add a term to the objective function
that penalizes large weights – as in [6], we also use dropout
[11]). Aside from training with screens instead of triplets,
and changing the loss function to perform (penalized) max-
imum likelihood with respect to (1), we follow the design of
Hoffer and Ailon.

5.1 Bootstrapping a rough model through uni-
form sampling

When building a model for a new catalog, to build a rough,
preliminary model, we generate training data by picking a
target t uniformly from the catalog, sampling S uniformly
from subsets of a given size, and asking judges which mem-
ber of S is most similar to t.

5.2 Refining the model through simulation
Typically, when we sample t and S as in Section 5.1, mem-

bers of S are all quite dissimilar to t. With training data like
this, the algorithm is not challenged to make the fine-grained
distinctions that may be needed late in a user session.

We generate training data that balances between coarse-
and fine-grained examples similarly to what will be required
when the model is applied in the field as follows. We sim-
ulate user sessions using a preliminary model trained us-
ing data described in Section 5.1 along with a version of
the entire system using that model: we pick a random tar-
get t, generate a screen S1 using the system, then simulate
the user click using the preliminary model, use the system
to generate a new screen S2, and continue. We then send
(t, S1), (t, S2),... to judges. We repeat this for many tar-
gets t, and use the resulting data to train a new model. We
have used the Mechanical Turk (https://www.mturk.com)
for these judgments.

After we have trained a model with this new data, we
could iterate this process again, using the new model to
simulate the user.

6. SCORING
As in PicHunter [4], our scoring algorithm is based on

Bayesian principles. It views the choice of the target as a
random variable T . First, the system formulates a prior
probability Pprior that each product is the target, then it
updates this prior using the clicks of the user, based on the
probability model described in Section 4. Specifically, if we
use C to denote a random variable that reflects all of the
user’s clicks up to a given point in time, and c is an observa-
tion of C, we can use the model in Section 4 to calculate the
probability Pr(C = c|T = t) that we would see the clicks
that we did, given different possibilities t for the target. If
we apply Bayes’ rule together with the prior, the resulting
posterior gives us exactly what we want to know:

Pr(T = t|C = c) =
Pr(C = c|T = t)× Pprior(T = t)

Pr(C = c)
.

By combining the user model with the assumption that the
clicks on different screens are independent, we get

Pr(C = c|T = t) =
∏
i

Pr(si|Si, T = t)

where si is the product selected in the ith screen Si.
Since the session ends when the target is included in any

screen, at some point before the end of the session, we know
that any product previously presented to the user is not the
target, so we may set the posterior on those products to 0.

7. SELECTING PRODUCTS FOR A SCREEN
After we have updated product scores, the system must

choose which products to present in the next screen. This
choice presents what has become known as an exploration-
exploitation trade-off [13, 10, 8, 15], presenting a wide enough
range of products that the user’s choice exposes a lot about
her preferences versus choosing products that are likely to
appeal to the user immediately.

7.1 Thompson sampling
Thompson sampling [13] has been shown to work well for

problems with an exploration-exploitation tradeoff, such as
placing internet ads and recommending news articles, where
the system only learns about the user’s reaction to the con-
tent that was chosen [5, 3, 9]. In our system, the structure
of the interaction with the user is richer, however Thompson
sampling may be extended as follows. In the most basic ver-
sion of our system, a screen of products is chosen to show
to the user by repeatedly choosing a product at random,
where the probability of choosing a product is equal to its
posterior probability. Thompson sampling progressively en-
riches the options presented to the user for products that
are likely to be of interest to the user. On the other hand, it
continues to present the user with opportunities to express
preferences for products that information up to a given point
in time suggests might not be of interest. Choosing products
with a probability equal to the probability that they are of
interest strikes a delicate balance between these two: in the
end, once a certain type of product can be eliminated with
high probability, it becomes very unlikely to be presented to
the user. Some theoretical analysis attests to the sensitivity
of this balance [1, 7, 2].

7.2 Weighted k-medoids
Armed with a posterior probability distribution over user

interests, our system may be configured to choose a screen
in order to minimize a weighted average of the distances of
the embeddings of the products in the catalog to the closest
embedding of a product included in the screen. If we refer
to all of the clicks up to a given point of time as c, the cost
function of a screen S can be formulated as

Cost(S) =
∑

x∈Catalog

Pr(T = x|C = c) min
s∈S

d(x, s), (2)

where Pr(T = x|C = c) is the posterior as defined in Sec-
tion 6. A known algorithm may be applied; for example,
weighted k-medoids is included in the R package Weighted-
Cluster [12]. Using weighted k-medoids allows the algorithm
to choose representatives of different kinds of products, but
in a way that assigns higher priority to finding representa-
tives of products that are likely to be of interest to the user.
Since the chosen products are in the middle of regions of em-
bedding space that are well-populated with potentially in-
teresting content, they themselves are likely to be of interest.
(Note also that members x of the catalog that are included
in the screen S contribute 0 to the cost; this effect provides



a direct incentive to include x in S when Pr(T = x|C = c)
is large.) Aside from speeding up the user’s search, this
also makes a screen after a click correspond more clearly to
the click action, which provides satisfying immediate grat-
ification to the user which may improve engagement. The
potential disadvantage of this method is the time complex-
ity: if the clusters are roughly equal-sized, n is the number
of products, k is the number of clusters, the time required
is roughly Θ(n2/k).

7.3 Candidate reduction
Both of the above methods for choosing screens are im-

proved (with respect to our metrics described in Section 8),
when they are applied to a restricted subset of the catalog
containing the highest scoring products. The fraction re-
tained shrinks as a session proceeds. After i clicks, the frac-
tion of the catalog kept is si, where the reduction factor s is a
tunable parameter. If this reduction results in keeping fewer
members of the catalog than there is space in the screen, the
system simply outputs the top scoring products. Note that
candidate reduction tilts the exploration/exploitation bal-
ance toward exploitation.

8. EVALUATION
We evaluate prospective changes to our system using tech-

niques that trade off between cost, turnaround time, and
meaningfulness in various ways.

8.1 Clicks to target with live judges
One evaluation method uses a game that we pay live

judges to play. The judges are challenged to find an item,
which is shown to them – this item is a randomly chosen
product from the catalog. We then present screens of prod-
uct images to them, chosen using our system, and count how
many clicks they take to find the product.

If a judge cannot find the product after 20 clicks, we
choose a new product for them. We pay users whether they
find the product or not.

We have contracted with Spare5 (https://spare5.com)
to run these tests.

8.2 Clicks to target with user simulations
We experiment more cheaply, with quicker turnaround,

by using our user model to simulate users. As in the exper-
iments described in Section 8.1, we choose a random target
t, and average count clicks to target. When the system pro-
duces a screen S, we generate a simulated click by assum-
ing that the user clicks on product s ∈ S with probability
Pr(s|S, t) using the model described in Section 4. If the sim-
ulation reaches a maximum amount of clicks, for example 20,
when computing the average, we count it as the maximum
(20).

These experiments can be used to assess changes to the
system that do not involve changes to the embeddings, for
example, how to choose elements of the screen to present to
the user. This mode of evaluation may not be used to com-
pare methods for training embeddings. To see why not, con-
sider scaling up all the embeddings by a large constant. This
would increase the simulated probability that the user clicks
on the item closest to the target, and, generally, the prob-
ability of clicking on products would become more skewed
toward products that are close to the target. Thus, as the
embeddings become larger, the clicks to target will tend to

decrease. This will be the case, even if the click distributions
are not as skewed as such large embeddings would indicate.
If we tried to use such embeddings in the field, the resulting
inaccurate probability estimates would actually harm the
system.

8.3 Log-loss with user model for evaluating
embeddings

The ultimate test of the value of embeddings is observa-
tion of their effect on the qualitative behavior of the system.
We may evaluate embeddings objectively using the experi-
ments described in Section 8.1. We may obtain a cheaper
preliminary evaluation of an embedding E using the user
model PE from Section 4 engendered by E, by calculating
the average, over held-out test data consisting of a screen S,
a target t and a click s, of log(1/PrPE (s|S, t)). These tests
can be used for fine-grained design decisions, like setting
parameters for deep network training, choosing network ar-
chitectures, et cetera. A diverse set of especially promising
candidates may then be evaluated using the live user test
described in Section 8.1.

8.4 Test data and simulating the introduction
of new products

Immediately after a model is trained, it is applied with
the same catalog that trained it. Thus, if we generate test
data using the same catalog (which does not require general-
ization to images not used during training), we are faithfully
reflecting conditions in the field.

After some time, however, new products are added. Thus,
typically, in production, a catalog consists mostly of images
that were seen during training, along with a few new images.

In order to produce test data with this property, we must
simulate the addition of new products to the catalog. To do
this, we choose a random subset N of products, and exclude
them from the training data. When we simulate the system
to choose t, S pairs to send to the judges, we behave as if
products in N are not in the catalog. Then, to generate
test data, we add the products in N back into the catalog.
Thus, the members of N play a role in test data analogous
to products added after training when the system is used in
the field.

9. EXPERIMENTS

9.1 Spare5 experiments
As described in Section 8.1, we challenged users to find

specific products of SHOEme.ca’s women’s boots catalog of
3600 products. The system displayed 7 products per screen
and we used a candidate reduction factor s of 0.6. Table 1
shows the results over 10k searches, for Thompson sam-
pling and for weighted k-medoids. Recall that if a judge
cannot find a product within 20 clicks, she is given a new
task. When the system used Thompson sampling, judges
succeeded slightly more often (though the difference is not
statistically significant), though they required slightly more
clicks to target when they did. To arrive at a single statistic
to use to compare algorithms, we need to choose a number
of clicks to “charge” an algorithm when the target is not
found. One natural, but conservative, choice is 20. The
fourth column, labeled PEN20, gives the average number
of clicks when an algorithm is charged 20 clicks when the
target is not found.



Algorithm % found ave. clicks when found PEN20

Weighted k-medoids 67.2± 1.3% 8.54± 0.05 12.30
Thompson sampling 69.2± 1.3% 8.87± 0.05 12.30

Table 1: Results of a Spare5 test validating the system and comparing k-medoids with Thompson sampling.

Figure 2: The effect of different values of the candidate re-
duction factor s on simulated clicks-to-target.

9.2 The effect of candidate reduction
In order to find the optimal setting for the candidate re-

duction factor s, we evaluated the clicks to target through
simulations as described in Section 8.2. The experiments
were performed on SHOEme.ca’s women’s boots catalog of
4448 shoes, simulating 12 boots per screen. For each value
of s, 10k searches were simulated with a maximum of 20
clicks per search. As Figure 2 shows, both for Thompson
sampling and k-medoids, the value minimizing the simulated
clicks to target is 0.6. K-medoids performs slightly better
than Thompson sampling in simulations, but the difference
was not observed with live users.

10. CONCLUSION
We have filed patent applications for the novel methods

described in this paper.

10.1 The user interface
While the basic product provides an API through which

we communicate product lists, and leaves the design of the
interface to our partner, our company is working on its own
user interface. A detailed description of this effort is beyond
the scope of this paper.

10.2 Leveraging the prior
The production system assigns equal prior probability to

each product in the catalog.
The most obvious way to use the prior is to assign higher

prior probability to popular products. Doing this, however,
would give rise to another exploration-exploitation tradeoff
– the prior of a product affects its popularity. Setting the
prior this way would reduce the incidence of “weird” prod-
ucts in Sentient Aware. On the one hand, this could make
the system more aesthetically pleasing overall. On the other
hand, it would dull the ability of the system to serve users

with unusual tastes. Also, as the prior becomes more con-
centrated on popular products, our product becomes less
differentiated from traditional offerings.

We also could expose the prior to our partners, allowing
them to promote certain products. They may use this prior,
for example, to assign lower priority to products that are
nearly out of inventory and higher priority to products with
excess inventory.

We also could use the prior to respond to brand preference
on the part of the user. This way, a user could direct the
system toward a certain kind of product without entirely ex-
cluding other products. To implement this, we need a way to
go from a list of products to a prior. Many methods for esti-
mating a probability distribution are available for this. We
are experimenting with a method that uses a kernel density
estimator (see [14]).

Another use of a prior would be to inform our interac-
tion with the user by metadata that we can gather about
the user. For example, it could be used to take account
of the fact that, overall, tastes in San Francisco differ from
tastes in Peoria. Incorporating this information using a prior
with a system that adapts quickly to a given user’s tastes,
however, enables the system to react quickly to exceptions
to geographical trends, providing a satisfying experience to
users in Peoria with tastes like those more commonly found
in San Francisco.

If we want to use priors for several of the purposes de-
scribed about, a standard way to combine priors P1, ..., Pn

is simply to multiply them and normalize so that the sum
to 1.

10.3 When are we done?
Recall that our system never shows the same product

twice. As expected, this practice improves the number of
clicks required to find the target.

Consider, however, a scenario in which the user is looking
for a green rain boot with daisies on it. If the catalog does
not have any such products, and only has a few green rain
boots, our system will produce increasingly focused screens
for some time. Once it has displayed all of the green rain
boots, however, it will start to display products that are
less similar to the user’s ideal product. This might make it
appear that it has become lost. It should not be hard to
detect this (as the posterior starts to become less peaked).
In such cases, it might be useful to communicate with the
user. Another option is to start to reintroduce previously
displayed products at this stage.

10.4 Alternative user models
The target model that drives our design is of course an

idealized working hypothesis. The limitations of this model
are made clear when it is applied with increasingly large
catalogs. As the catalog gets larger, it takes longer and
longer for the user to find what she wants. This is because,
no matter how similar another item in the catalog is to t, in



this model, the user will only be satisfied by t.
In an alternative model, for a given radius r, the user

will accept any product with d(s, t) ≤ r. A disadvantage
of this model is the arbitrary choice of r. It also makes it
more difficult to describe a game to users for training whose
objective is clearly defined. In simulation studies, we have
found that counting clicks to target is strongly associated
with counting clicks until finding something within distance
r of the target.

Another limitation of clicks-to-target is that it does not
take account of the pleasure of browsing. In another model,
we may assume that, instead of a single target, the user
has an affinity function a, that assigns a non-negative value
of each product that reflects how attractive this product
is to the user. We then could assume that the user clicks
on product s with probability proportional to exp(a(s)). If
we also assume that the user buys a product with proba-
bility proportional to exp(a(s)), then a goal of tending to
display products with large values of a simultaneously pur-
sues sales, and pleasurable browsing. The use of such a
model presents a challenge regarding training an embedding
model. One reasonable working hypothesis may be that, for
a model trained using triplet data, the value of a(s) varies
smoothly with the embedding of s: in other words, we would
be assuming that similar products are similarly attractive.
Training embeddings to reflect similarities, as in the original
triplet network, would be compatible with this assumption.

Comparing systems based on different user models presents
an evaluation challenge. For example, a method designed
based on a clicks-to-target user model should be expected
to produce better values in a clicks-to-target simulation,
or with live clicks-to-target games. One way to compare
would be to conduct A/B tests with a live system, compar-
ing statistics such as the sales numbers, user engagement
statistics, or indications of user interest such as add-to-cart.
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