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Abstract

For proper distribution-free learning of linear classifiers in d dimensions from m examples,

we prove a lower bound on the optimal expected error of d−o(1)
m , improving on the best

previous lower bound of d/
√
e−o(1)
m , and nearly matching a d+1

m+1 upper bound achieved by
the linear support vector machine.
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1. Introduction

This paper is about the following learning problem. A learner seeks to approximate an
unknown linear classifier f in Fd = {fw,b : w ∈ Rd, b ∈ R}, where fw,b(x) = + if w · x ≥ b,
and otherwise fw,b(x) = −. For x1, ...,xm, drawn independently at random from a proba-
bility distribution D over Rd, the learner receives examples (x1, f(x1)), ..., (xm, f(xm)), and
outputs h ∈ Fd. The accuracy of the learner is measured using another independent draw
xm+1 from D; its goal is to minimize the probability, with respect to all m+1 random draws
and any internal randomization, that h(xm+1) 6= f(xm+1). Let optd(m) be best possible
upper bound on this probability of error that a learner can achieve for every f and D. (A
formal definition of optd(m) can be found in Section 2.)

It is known that, for all d,

d/
√
e− o(1)

m
≤ optd(m) ≤ d+ 1

m+ 1
. (1)

The upper bound is achieved by the linear SVM algorithm (Boser et al., 1992). (Because
we could not find a proof, we have included one in Appendix A.) The lower bound, which
also holds for learners that may output arbitrary classifiers, is implicit in the analysis of
(Helmbold and Long, 2012). When d ≤ 2, a better upper bound is known: optd(m) ≤ d+o(1)

m
(Blumer and Littlestone, 1989; Haussler et al., 1994).

In this paper, we show that, for all d,

optd(m) ≥ d− o(1)

m
,
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determining the leading constant for general d to within one, and matching the upper bound
in the case d ≤ 2 up to the leading constant.

We use ideas from (Haussler et al., 1994) to reduce the problem of proving lower bounds
on optd(m) to the case where d = 1. The core of our analysis is a new lower bound on
opt1(m).

Since (Ehrenfeucht et al., 1989), a common lower bound technique is to (a) choose f
and D randomly, (b) characterize the optimal algorithm for minimizing the probability of
error with respect to the random choice of f and D along with the random data, and (c)
analyze the probability of error of this “Bayes optimal algorithm”. If we view the learning
problem as a game between the learner and Nature, then, informally, adopting this strategy
gives away the advantage that f and D can depend on the learner A, or, in game-theoretic
terms, that Nature can “move last”. It may be tempting to believe that no leverage is lost
in this way, since the minimax theorem (von Neumann, 1928) may be loosely interpreted
as saying that nothing is lost by moving first.

The minimax theorem holds for all finite games, but it has long been known that it
can fail for some infinite games (Sion and Wolfe, 1957). Here is one example. Each player
chooses a member of the open interval (0, 1), and the winner is the player with the bigger
number. The player who moves second can win with an arbitrarily high probability. For
example, if Player B knows Player A’s (mixed) strategy, and always outputs a value a tiny
bit greater than the 99th percentile of A’s distribution, then Player B will win at least 99%
of the time.

The halfline learning problem at the core of this paper is somewhat like this: it can be
helpful for Nature to put probability beyond the point where the learner is likely to put its
decision boundary. Our lower bound proof constructs D and f as a function of the learner
roughly in this way.

As we mentioned above, following (Haussler et al., 1994), we prove a lower bound for
optd(m) by embedding d copies of the problem of learning one-dimensional linear classifiers
into the d-dimensional problem. Using another embedding from (Haussler et al., 1994), our

new lower bound on opt1(m) implies a 2d−o(1)
m lower bound for proper learning of axis-aligned

hyper-rectangles in Rd, matching a known 2d
m+1 upper bound (Haussler et al., 1994) up to

the leading constant, and improving on the 2d/
√
e−o(1)
m lower bound implicit in (Helmbold

and Long, 2012).

Related work. The most closely related previous work was mentioned earlier. For
learning a class F of VC-dimension d without the constraint that the classifier comes from F ,
Li et al. (2001) proved lower bounds of d−o(1)

m for classes that they constructed, matching the

general upper bound of d
m+1 from (Haussler et al., 1994) up to the leading constant. Srebro

et al. (2010) and Shamir (2015) proved lower bounds on the complexity of distribution-free
linear regression, establishing the complexity of a formulation of this problem to within a
constant factor. Some less closely related lower bound work includes (Opper and Haussler,
1991; Devroye and Lugosi, 1995; Long, 1995; Antos and Lugosi, 1998).
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2. Preliminaries and main result

For w ∈ Rd and b ∈ R, the linear classifier fw,b : Rd → {−,+} parameterized by w and b
outputs fw,b(x) = + if and only if w · x ≥ b. Let Fd = {fw,b : w ∈ Rd, b ∈ R}.

For any d, an example is a member of Rd × {−,+}, a training set is a finite multiset of
examples.

Informally, a learner is a randomized mapping from training sets to Fd. A more detailed
definition, which includes a measurability constraint, is given in Appendix B.

Let D be any probability distribution over Rd with respect to the Lebesgue σ-algebra.
For a learner A and f ∈ Fd, let erD,f (A,m) be the probability that, for x1, ...,xm+1 drawn
independently at random from D, if A is given (x1, f(x1)), ..., (xm, f(xm)), it produces h
such that h(xm+1) 6= f(xm+1).

Define erd(A,m) = supD,f erD,f (A,m) and optd(m) = infA erd(A,m).

The following is our main result.

Theorem 1 For all d, optd(m) ≥ d−o(1)
m .

As mentioned in the introduction, this nearly matches known upper bounds of opt1(m) ≤
d+o(1)

m for d ≤ 2 and optd(m) ≤ d+1
m+1 for d > 2.

3. The d = 1 case

In this section, we prove Theorem 1 in the case that d = 1.

First of all, define õpt1 analogously to opt1, with the additional constraint that the
support of D is finite. Then õpt1(m) ≤ opt1(m), so it suffices to prove a lower bound for
õpt1(m). We will do this. This obviates any measurability issues.

Given a learner A and a number m of examples, we will describe a probability distribu-
tion D over [0, 1] with finite support and f ∈ F1 such that erD,f (A,m) ≥ (1−o(1))/m. Our
construction only uses a subset of F1 with a single parameter θ: classifiers that evaluate to
+ on x iff x ≤ θ.

We define D as follows. First, Pr(x = 1) = 1 − 1
2
√
m

. The remaining probability is

distributed evenly among ` = m3 points in [0, 1). Let us call the set of these ` points
T = {t1, ..., t`} where t1 < ... < t`; each member of T thus has probability 1

2`
√
m

. The

iterative construction of T will be described later. For all t ∈ T, f(t) = +, and f(1) = −.
(The behavior of f outside T ∪ {1} does not matter.)

Let h be the output of A. Since h ∈ F1, there are v, a ∈ R such that h(x) = + iff
vx ≥ a. If v = 0, then h is either the all-+ classifier or the all-− classifier. If v > 0, there
is a threshold θ̂ such that h(x) = + exactly when x ≥ θ̂, and, otherwise, there is a θ̂ such
that h(x) = + exactly when x ≤ θ̂.

The following lemma enables us to assume without loss of generality that there is an θ̂
such that h(x) = + if and only if x ≤ θ̂.

Lemma 2 For any learner B, there is a learner A such that

• A always outputs h for which there is an θ̂ such that h(x) = + if and only if x ≤ θ̂,
and
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Figure 1: The distributions used in the proof of Theorem 1 concentrate probability on a
negative example at 1, and spread probability evenly among positive examples in
[0, 1) that are chosen depending on the learner A.

• for any choice of T , erD,f (A,m) ≤ erD,f (B,m).

Proof Whenever B outputs a classifier that assigns all elements of [0, 1] the same class,
A can also do this, either by choosing θ̂ = 2 or θ̂ = −1. If B outputs a classifier h that
predicts + on [θ̃,∞) for θ̃ ≤ 1, then A can improve it using the all-+ classifier, since all of
h’s predictions on T ∩ [0, θ) are incorrect.

For the rest of the proof, let θ̂ refer to the threshold associated with the output of A
that is guaranteed by Lemma 2.

Let E0 be the event that all examples (xj , yj) have xj = 1, and let P0 be the probability

distribution on θ̂ obtained by conditioning Dm on E0. Since E0 is the event that none of
the examples are members of T , if we change T , this does not effect P0 – conditioning on
E0 removes any effect of the choice of T on θ̂.

The choice of t1 depends on A as follows. The first case is where Pr(θ̂ < 1|E0) ≥ 1− 1√
m

.

Since

lim
n→∞

Pr(θ̂ < 1− 1/n | E0) = lim
n→∞

Pr(θ̂ < 1 | E0)−Pr(θ̂ ∈ [1− 1/n, 1) | E0)

= Pr(θ̂ < 1 | E0)− lim
n→∞

Pr(θ̂ ∈ [1− 1/n, 1) | E0)

= Pr(θ̂ < 1 | E0)

there is an n such that

Pr(θ̂ < 1− 1/n | E0) ≥ 1− 2√
m

;

we choose t1 = 1− 1/n for an arbitrary such n.
In the remaining case, where Pr(θ̂ < 1|E0) < 1− 1√

m
, we set t1 = 0.

For j ∈ {2, ..., `}, the choice of tj is similar. The distribution over θ̂ obtained by
conditioning the m independent draws from D on the event Ej−1 that the greatest positive
example is tj−1 is unaffected by the choices of tj , ..., t`, because conditioning on Ej−1 removes

any effect of tj , ..., t` on the distribution over θ̂. We choose tj as follows. First, if Pr(θ̂ <
1 | Ej−1) ≥ 1− 1√

m
, then, similarly to the case j = 1, we have

lim
n→∞

Pr(θ̂ < 1− 1/n | Ej−1) = Pr(θ̂ < 1 | Ej−1)
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so there is an n such that Pr(θ̂ < 1 − 1/n | Ej−1) ≥ 1 − 2√
m

we set tj = 1 − 1/n for an

arbitrary such n that also satisfies 1 − 1/n > tj−1. If Pr(θ̂ < 1 | Ej−1) < 1 − 1√
m

, then tj

is an arbitrary member of (tj−1, 1).

Now that we have defined f andD, let us bound erD,f (A,m). If Pr(θ̂ < 1 | Ej) ≥ 1− 1√
m

,

let us say that A is reasonable at j. (Note that this is a property of A and T , and not the
random training and/or test data.) We have

Pr(h(xm+1) 6= ym+1) =
∑̀
j=0

Pr(h(xm+1) 6= ym+1 ∧ Ej).

Let us focus on a particular value of j. As a first case, suppose A is reasonable at j.
Then, given Ej , with probability at least 1− 2√

m
, tj+1, and therefore tj′ for all j′ ≥ j + 1,

are all greater than θ̂. Thus, for j for which A is reasonable at j, we have

Pr(h(xm+1) 6= ym+1 | Ej) ≥ (`− j)
(

1− 2√
m

)
1

2`
√
m
. (2)

Now, suppose A is unreasonable at j. Then

Pr(h(xm+1) 6= ym+1 | Ej) = Pr(θ̂ ≥ 1 | Ej)

(
1− 1

2
√
m

)
>

(
1− 1

2
√
m

)
1√
m

> (`− j)
(

1− 2√
m

)
1

2`
√
m
.

Consider the event U that xm+1 is less than 1 but greater than all positive training
examples. Note that

Pr(U |Ej) =
`− j
2`
√
m
.

Thus, for every j, the probability of a mistake given Ej is at least 1−2/
√
m times Pr(U |Ej).

Thus, overall, the probability of a mistake is at least 1−2/
√
m times Pr(U). Thus, it suffices

to bound Pr(U) from below.
We bound Pr(U) by conditioning on the very likely event E that there is at least one

positive example and that no positive example is seen twice. Conditioned on E , any ordering
of the m+1 examples is equally likely (because we have conditioned a permutation-invariant
distribution on a permutation-invariant event). Given E , U holds if xm+1 is the greatest
positive example, which happens for a fraction 1

m+1 of the random permutations of the
data.

Finally, we claim that Pr(E) = 1− o(1). The probability that at least one x1, ..., xm+1

is labeled + is at least
1− (1− 1/(2

√
m))m+1 = 1− o(1).

The probability that any positive example is seen twice is at most ` times the probability
that any particular t ∈ T is seen twice. The latter probability is at most m2 times the
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Figure 2: Haussler et al. (1994) proved lower bounds for linear classifiers in d dimensions
by embedding d interval-learning problems.

probability that any particular pair of examples share x values of t, which is at most 1/`2.
Therefore the probability that any positive example is seen twice is at most `m2/`2 =
1/m = o(1), so the probability that no examples are seen twice is 1− o(1).

Thus, overall, Pr(U) ≥ (1 − o(1))/m, which, as argued earlier, yields Pr(h(xm+1) 6=
ym+1) ≥ (1− o(1))/m.

4. The d > 1 case

As mentioned before, the extension to the d > 1 case uses ideas from (Haussler et al., 1994;
Li et al., 2001).

First, we note that opt(F1,m) is a non-increasing function of m — if additional examples
hurt the learner, it could be improved by ignoring the harmful examples.

Suppose D is some distribution supported on {cei : i ∈ {1, ..., d}, c ∈ [1, 2]}, where ei
is the ith natural basis vector. Any linear classifier fw,b restricted to the support of D
can be decomposed into d pieces that are applied to Xi = {cei : c ∈ [1, 2]} for different
choices of i (see Figure 2). For each piece, the restriction of fw,b to Xi is isomorphic to
a one-dimensional classifier on the interval [0, 1]. Thus, any learner A from Fd produces d
learners A1, ..., Ad for the class of restrictions of the members of F1 to [0, 1]. (In particular,
the hypothesis of A1, ..., Ad are linear classifiers.)

Suppose we put negative examples on each of {2ei : i ∈ {1, ..., d}}, and, if Ti is the
support set associated with Ai, put positive examples on {1 + tei : i ∈ {1, ..., d}, t ∈
Ti}. This data is collectively linearly separable. We may therefore apply our construction
from Section 3 independently to each piece, viewing examples from the other pieces as
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randomization. If h1, ..., hd are the classifiers produced by A1, ..., Ad, we have

Pr(h(xm+1) 6= ym+1) =
1

d

d∑
i=1

Pr(hi(xm+1) 6= ym+1 | ym+1 ∈ Xi).

Thus, it suffices to prove a lower bound for Pr(hi(xm+1) 6= ym+1 | ym+1 ∈ Xi). Applying a
standard Hoeffding bound, with probability 1− o(1), the number of examples falling in Xi

is at most m/d+
√
m lnm. Applying our lower bound construction from the case d = 1, we

get

Pr(h(xm+1) 6= ym+1 | ym+1 ∈ Xi) ≥
1− o(1)

m/d+
√
m lnm

=
d− o(1)

m
.
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Appendix A. Upper bound proof

This is a proof of an upper bound of d+1
m+1 for the linear SVM algorithm in Rd. The linear

SVM algorithm behaves as follows. When all training examples are the same class, the
algorithm outputs that class. Otherwise, it predicts using the linear classifier that separates
the positive examples from the negative examples while maximizing the distance from the
closest example to its separating hyperplane.

Suppose the training and test examples are

(x1, y1), ..., (xm+1, ym+1),

where y1, ..., ym+1 ∈ {−1, 1}. Since any permutation of these m + 1 examples is equally
likely, it suffices to bound from above the probability of a mistake when a uniform random
choice of these m+ 1 examples is the test example.

It is known (see (Cristianini et al., 2000)), that the parameters (w∗, b∗) of the linear
SVM applied to all of the data (both training and test) are the solution to the problem of
choosing w and b to minimize ||w||2 subject to

∀t, yt(w · xt − b) ≥ 1.

It also is known that there are non-negative α1, ..., αm+1 such that

• w∗ =
∑m+1

t=1 αtytxt, and

•
∑m+1

t=1 αtyt = 0.

Finally, the maximum-margin hyperplane is unique. If w′ = (w∗1, ..., w
∗
d, 0), and, for each

xt = (xt,1, ..., xt,d), we define x′t = (xt,1, ..., xt,d, 1), the above two conditions can be consol-
idated into

w′ =

m+1∑
t=1

αtytx
′
t.
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By Carathéodory’s Theorem for cones, there is U ⊆ {1, ...,m + 1} of size d + 1, and
non-negative β1, ..., βm+1 such that w′ =

∑m+1
t=1 βtytx

′
t and βt = 0 for all t 6∈ U , so that

w′ =
∑

t∈U βtytx
′
t. Unwrapping this, w∗ =

∑m+1
t=1 βtytxt and

∑m+1
t=1 βtyt = 0.

Now, consider the case, for some s 6∈ U , that (xs, ys) is the test example. Using the βt’s
for s 6= t, in part since βs = 0, w∗ and b∗ still satisfy the Karush-Kuhn-Tucker conditions
for a global optimum for the optimization problem obtained by excluding example number
s. Thus, the hyperplane parameterized by w∗ and b∗ is output when (xs, ys) is the test
example, and xs was classified correctly by w∗ and b∗. Since this holds for all s 6∈ U , the
linear SVM only makes mistakes on elements of U , and, since |U | ≤ d + 1, this completes
the proof.

Appendix B. Detailed definition of a learner

A learner can be built using any probability space (Ω,Σ, P ) as a source of randomness. It
is a function from Ω× (Rd × {−,+})∗ to Fd. Associated with each learner A is a predictor
φA that maps Ω × (Rd × {−,+})∗ ×Rd to {+,−} defined by φA(ω, S,x) = (A(ω, S))(x).
For any finite number m of examples, the restriction of φA to the case of training sets of
size m must be measurable with respect to the product distribution of (Ω,Σ, P ) and any
m+ 1-fold product distribution used to generate the training examples and the test point;
the distributions used to generate examples use the Lebesgue σ-algebra.

References
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