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Abstract

We give new algorithms for learning halfspaces in the cinglileg malicious noisenodel, where
an adversary may corrupt both the labels and the underlyisighaition of examples. Our algo-
rithms can tolerate malicious noise rates exponentiatlydathan previous work in terms of the
dependence on the dimensionand succeed for the fairly broad class of all isotropic togicave
distributions.

We give polyn, 1/¢)-time algorithms for solving the following problems to acacye:

e Learning origin-centered halfspacesR{" with respect to the uniform
distribution on the unit ball with malicious noise rate= Q(¢?/log(n/e)).
(The best previous result waXe/ (n log(n/€))'/*).)

e Learning origin-centered halfspaces with respect to aatrapic log-
concave distribution oR" with malicious noise ratg = Q(e* / log®(n/€)).
This is the first efficient algorithm for learning under ismic log-concave
distributions in the presence of malicious noise.

We also give a polfn, 1/¢)-time algorithm for learning origin-centered halfspacesler any
isotropic log-concave distribution aR"™ in the presence odidversarial label noiseat raten =
Q(e3/log(1/€)). In the adversarial label noise setting (or agnostic modatjels can be noisy,
but not example points themselves. Previous results candlen = (¢) but had running time
exponential in an unspecified function bfe.

Our analysis crucially exploits both concentration and-eahcentration properties of isotropic
log-concave distributions. Our algorithms combine anaiige outlier removal procedure using
Principal Component Analysis together with “smooth” baogt
Keywords: PAC learning, noise tolerance, malicious noise, agnostening, label noise, half-
space learning, linear classifiers.

1. Introduction

A halfspaceis a Boolean-valued function of the forh= sign(>"" ;, w;z; — 6). Learning half-
spaces in the presence of noisy data is a fundamental prdhlenachine learning. In addition
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to its practical relevance, the problem has connectionsaoymvell-studied topics such as kernel
methods (Shawe-Taylor and Cristianini, 2000), cryptobm@mardness of learning (Klivans and
Sherstov, 2006), hardness of approximation (Feldman e2@06; Guruswami and Raghavendra,
2006), learning Boolean circuits (Blum et al., 1997), anditike/multiplicative update learning
algorithms (Littlestone, 1991; Freund and Schapire, 1999)

Learning an unknown halfspace from correctly labeled (noisy) examples is one of the best-
understood problems in learning theory, with work datingkoia the famous Perceptron algorithm
of the 1950s (Rosenblatt, 1958) and a range of efficient @fgos known for different settings
(Novikoff, 1962; Littlestone, 1987; Blumer et al., 1989; &= and Turan, 1994). Much less is
known, however, about the more difficult problem of learnivadfspaces in the presence of noise.

Important progress was made by Blwhnal. (Blum et al., 1997) who gave a polynomial-time
algorithm for learning a halfspace undgassification noise In this model each label is flipped
independently with some fixed probability; the noise does affiect the actual example points
themselves, which are generated according to an arbitrabapility distribution oveiR™.

In the current paper we consider a much more challengialicious noisenodel. In this model,
introduced by Valiant (1985) (see also (Kearns and Li, 199Bgre is an unknown target function
f and distributionD over examples. Each time the learner receives an examgkepaemdently with
probability 1 — n it is drawn fromD and labeled correctly according fo but with probabilityr it
is an arbitrary paifx, y) which may be generated by an omniscient adversary. The p&eamis
known as the “noise rate.”

Malicious noise is a notoriously difficult model with few ptdge results. It was already shown
by Kearns and Li (1993) that for essentially all concepts#as it is information-theoretically im-
possible to learn to accurady— ¢ if the noise rate; is greater thare/(1 + ¢). Indeed, known
algorithms for learning halfspaces (Servedio, 2003; Ketail., 2008) or even simpler target func-
tions (Mansour and Parnas, 1998) with malicious noise &lfyianake strong assumptions about
the underlying distributiorD, and can learn to accurady— ¢ only for noise rateg much smaller
thane. We describe the most closely related work that we know of ictiSe 1.2.

In this paper we consider learning under the uniform distidm on the unit ball inR"™, and
more generally under any isotropic log-concave distrdoutiThe latter is a fairly broad class of dis-
tributions that includes spherical Gaussians and unifastridutions over a wide range of convex
sets. Our algorithms can learn from malicious noise rataisate quite high, as we now describe.

1.1 Main Results

Ouir first result is an algorithm for learning halfspaces i timalicious noise model with respect to
the uniform distribution on the-dimensional unit ball:

Theorem 1 There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfspacesitou-
racy 1 — e with respect to the uniform distribution on the unit ballsirdimensions in the presence
of malicious noise at ratg = Q(e?/log(n/e)).

The condition ony is expressed using and notO because we are showing that a weak upper
bound on the noise rate suffices to achieve accutraey.

Via a more sophisticated algorithm, we can learn in the presef malicious noise under any
isotropic log-concave distribution:
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Theorem 2 There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfspacesitou-
racy 1 — e with respect to any isotropic log-concave distribution ol&* and can tolerate malicious
noise at ratey = Q(e?/log®(n/e)).

We are not aware of any previous polynomial-time algoritliordearning under isotropic log-
concave distributions in the presence of malicious noise.

Finally, we also consider a related noise model knowadersarial label noiseln this model
there is a fixed probability distributioR overR"™ x {—1, 1} (i.e., over labeled examples) for which
al —n fraction of draws are labeled according to an unknown hatfep The marginal distribution
over R" is assumed to be isotropic log-concave; so the idea is thaadwversary” chooses an
n fraction of examples to mislabel, but unlike the maliciouwsse model she cannot change the
(isotropic log-concave) distribution of the actual exaenpbints inR". Learning with adversarial
label noise is clearly harder than with independent misdiaation noise — the ability to choose
which labels to corrupt allows the adversary to coordinaggr teffects to an extent.

For the adversarial label noise model we prove:

Theorem 3 There is apoly(n, 1/¢)-time algorithm that learns origin-centered halfspacesitou-
racy 1 — e with respect to any isotropic log-concave distribution o®* and can tolerate adver-
sarial label noise at ratey = Q(e?/ log(1/e)).

1.2 Previous Work

Malicious noise.General-purpose tools developed by Kearns and Li (1998)dls® (Kearns et al.,
1994)) directly imply that halfspaces can be learned for @isgribution over the domain in ran-
domized poly(,1/¢) time with malicious noise at a rafe(e/n); the algorithm repeatedly picks a
random subsample of the training data, hoping to miss alhthigy examples. Kannan (see Arora
etal. (1993)) devised a deterministic algorithm witt@/») bound that repeatedly exploits Helly’s
Theorem to find a group of + 1 examples that includes a noisy example, then removes thgpgro
Kalai et al. (2008) showed that the paly(/¢)-time averaging algorithm (Servedio, 2001) tolerates
noise at a rat€)(e//n) when the distribution is uniform. They also described anrowpment to
Q(e/n'/*) based on the observation that uniform examples will tencetavell-separated, so that
pairs of examples that are too close to one another can besegino

Adversarial label noise. Kalali, et al. showed that if the distribution over the instasis uniform
over the unit ball, the averaging algorithm tolerates asiéal label noise at a raf¥e/+/log(1/¢))

in poly(n,1/¢) time. (In that paper, learning in the presence of adveakkatbel noise was called “ag-
nostic learning”.) They also described an algorithm thatlétv-degree polynomials that tolerates

noise at a rate within an additiveof the accuracy, but in po()/nl/€4) time; for log-concave distri-

butions, their algorithm took pofy:“(!/)) time, for an unspecified functiost The latter algorithm
does not require that the distribution is isotropic, as closs.

Robust PCA.Independently of this work, Xu et al. (2009) designed andyaea an algorithm that
performs principal component analysis when some of the plesrare corrupted arbitrarily, as in
the malicious noise model studied here. Also, the thesisrab&er (2009) presents a “Robust
PCA’ algorithm which is a PCA variant aimed at amelioratihg effects of noisy examples.
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1.3 Techniques

Outlier Removal. Consider first the simplest problem of learning an originteeed halfspace
with respect to the uniform distribution on thedimensional ball. A natural idea is to use a simple
“averaging” algorithm that takes the vector average of th&tiye examples it receives and uses this
as the normal vector of its hypothesis halfspace. Servafiol) analyzed this algorithm for the
random classification noise model, and Kalai et al. (2008 raded the analysis to the adversarial
label noise model.

Intuitively the “averaging” algorithm can only toleratewtlamalicious noise rates because the
adversary can generate noisy examples which “pull” theaaeewrector far from its true location.
Our main insight is that the adversary does this most effelgtivhen the noisy examples are coor-
dinated to pull in roughly the same direction. We use a forraudfier detection based on Principal
Component Analysis to detect such coordination. This isedoy computing the directiomw of
maximal variance of the data set; if the variance in directiois suspiciously large, we remove
from the sample all points for which (w - x)? is large. Our analysis shows that this causes many
noisy examples, and only a few non-noisy examples, to bevedo

We repeat this process until the variance in every dire¢iot too large. (This cannot take too
many stages since many noisy examples are removed in egeh)st@hile some noisy examples
may remain, we show that their scattered effects cannottheidlgorithm much.

Thus, in a nutshell, our overall algorithm for the unifornstdibution is to first do outlier re-
moval' by an iterated PCA-type procedure, and then simply run tleeaang algorithm on the
remaining “cleaned-up” data set.

Extending to Log-Concave Distributions via Smooth Boostig. We are able to show that the
iterative outlier removal procedure described above ifuliger isotropic log-concave distributions
as well as the uniform distribution: if examples are remoired given stage, then many of the
removed examples are noisy and only a few are non-noisy (ial/sis here uses concentration
bounds for isotropic log-concave distributions). Howewsten if there were no noise in the data,
the average of the positive examples under an isotropicdogave distribution need not give a
high-accuracy hypothesis. Thus the averaging algorittomeaiill not suffice after outlier removal.

To get around this, we show that after outlier removal theaye of the positive examples gives
a (real-valuedweak hypothesis that has some nontrivial predictive accuratyterestingly, the
proof of this relies heavily oanti-concentration properties of isotropic log-concave istions!)
A natural approach is then to use a boosting algorithm to edritis weak learner into a strong
learner. This is not entirely straightforward because bogsskews” the distribution of examples;
this has the undesirable effects of both increasing thestafeemalicious noise rate, and causing
the distribution to no longer be isotropic log-concave. Idger, by using a “smooth” boosting
algorithm (Servedio, 2003) that skews the distributionittie las possible, we are able to control
these undesirable effects and make the analysis go thrduigk. extra factor ot in the bound of
Theorem 2 compared with Theorem 1 comes from the fact thabdbsting algorithm constructs
“1/e-skewed” distributions.)

We note that our approach of using smooth boosting is ren@ntsof earlier work (Servedio,
2002, 2003), but the current algorithm goes well beyond tBatrvedio (2002) did not consider a

1. We note briefly that the sophisticated outlier removahitégues of (Blum et al., 1997; Dunagan and Vempala, 2004)
do not seem to be useful in our setting; those works deal wstihamg notion of outliers, which is such that no point
on the unit ball can be an outlier if a significant fraction ofrgs are uniformly distributed on the unit ball.
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noisy scenario, and Servedio (2003) only considered theagiregy algorithm without any outlier
removal as the weak learner (and thus could only handle titeates of malicious noise in our
isotropic log-concave setting).

Tolerating adversarial label noise. Finally, our results for learning under isotropic log-cane
distributions with adversarial label noise are obtainedgia similar approach. The algorithm here
is in fact simpler than the malicious noise algorithm: sitioe adversarial label noise model does
not allow the adversary to alter the distribution of the eghes inR"™, we can dispense with the
outlier removal and simply use smooth boosting with the ayigig algorithm as the weak learner.
(This is why we get a slightly better quantitative bound iredrem 3 than Theorem 2).

Organization. For completeness we review the precise definitions of ipatrtng-concave dis-
tributions and the various learning models in Section 2. Vesent the simpler and more easily
understood uniform distribution analysis in Section 3. Weenrd the algorithm and analysis to
isotropic log-concave distributions in Section 4. Leagnwith adversarial label noise is treated in
Section 5. We conclude in Section 6.

2. Definitions and Preliminaries
2.1 Learning with Malicious Noise

Given a probability distributiorD overR", and a target functiorf : R — {—1, 1}, we define the
oracleEX, (f, D) as follows:

e with probability 1 — n the oracle draws according taD, and outputgx, f(x)), and

¢ with probability  the oracle outputs an arbitrafy, y) pair. This “noisy” example can be
thought of as being generated adversarially and can depetiteastate of the learning algo-
rithm and previous draws from the oracle.

Given a data set drawn frofX, (f, D), we often refer to the examplgs, f(x)) (that came
from D) as “clean” examples and the remaining examgieg) as “dirty” examples.

For a setS of probability distributions and a sdét of possible target functions, we say that a
learning algorithmA learnsF' to accuracyl — e with respect taS in the presence of malicious noise
at a raten if the following holds: for anyf € F, andD € S, given access t&€X,(f, D), with
probability at least /2, the output hypothesis generated by satisfiesPry.p[h(x) # f(x)] <
e. (The probability of success may be amplified arbitrarilgsel to 1 using standard techniques
(Haussler et al., 1991).)

Since scalingk by a positive constant does not affect its classification bynear classifier,
drawing examples uniformly from the unit ball is equivaléatdrawing them uniformly from the
surfaceS™~! of the unit sphere. When this is the distribution, we may aklgume w.l.0.g. that even
noisy examplegx,y) havex € S*~! — this is simply because a learning algorithm can trivially
identify and ignore any noisy examp(®, y) that hag|x|| # 1.

2.2 Log-concave distributions

A probability distribution ovelR"™ is said to bdog-concavef its density function isexp(—1(x))
for a convex functionp.
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A probability distribution overR™ is isotropic if the mean of the distribution i8 and the co-
variance matrix is the identity, i.eE[z;x;] = 1 for i = j and0 otherwise.

Isotropic log-concave (henceforth abbreviated i.l.c.ptributions are a fairly broad class of
distributions. It is well known that any distribution indedt by taking a uniform distribution over
an arbitrary convex set and applying a suitable linear foamation to make it isotropic is then
isotropic and log-concave. For an excellent treatment @ich@operties of log-concave distribu-
tions, see Lovasz and Vempala (2007).

We will use the following facts:

Lemma 4 ((Lovasz and Vempala, 2007))Let D be an isotropic log-concave distribution ovBr*
anda € S"! any direction. Then fox drawn according toD, the distribution ofa - x is an
isotropic log-concave distribution ovéR.

Lemma 5 ((Lovasz and Vempala, 2007))Any isotropic log-concave distributiof® over R™ has
light tails,

P [|x]| > fv) < e 1.
If n =1, the density oD is bounded:

P < 1|b—al.
erD[xe[a,b]]_]b al

3. The uniform distribution and malicious noise

In this section we prove Theorem 1. As described above, garighm first does outlier removal
using PCA and then applies the “averaging algorithm.”

We may assume throughout that the noise fagesmaller than some absolute constant, and that
the dimensiom is larger than some absolute constant.

3.1 The Algorithm: Removing Outliers and Averaging
Consider the following AlgorithmA,,,,:

Algorithm A,,:
1. Draw a sampl& of m = poly(n/e) many examples from the malicious oracle.
2. Identify the directionw € S"~! that maximizes

o2 Yy (wox)?
(x,y)€S

If 02, < 10mlosm then go to Step 4 otherwise go to Step 3.

3. Remove fromsS every example that hdsv - x)? > 101%. Go to Step 2.
4. For the example§ that remain letv = ﬁ Z(x’y)es yx and output the linear classifiéx,

defined byh, (x) = sgn(v - x).

We first observe that Step 2 can be carried out in polynoniag:ti

Lemma 6 There is a polynomial-time algorithm that, given a finiteleclion S of points inR",
outputsw € S"~! that maximize$~ o (w - x)%.
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Proof. By applying Lagrange multipliers, we can see that the ogtimas an eigenvector ofi =
> xes Xx1. Further, if A is the eigenvalue ofv, then>, _«(w - x)? = wl Aw = wT (Aw) = A.
The eigenvectow with the largest eigenvalue can be found in polynomial tisee( e.g., (Jolliffe,
2002)). |

Before embarking on the analysis we establish a termincédgionvention. Much of our analy-
sis deals with high-probability statements over the drathefn-element sampl#’; it is straightfor-
ward but quite cumbersome to explicitly keep track of allla# failure probabilities. Thus we write
“with high probability” (or “w.h.p.”) in various places belv as a shorthand for “with probability
at leastl — 1/poly(n/e).” The interested reader can easily verify that an approppaty(n/¢)
choice ofm makes all the failure probabilities small enough so thatethiére algorithm succeeds
with probability at least /2 as required.

3.2 Properties of the clean examples

In this subsection we establish properties of the clean plesithat were sampled in Step 14f,..
The first says that no direction has much more variance treexpected variance af/n:

Lemma 7 W.h.p. over a random draw dfclean example$jc.., we have

1 1 log ¢
aESn_l E (va)esclean n E
Proof. The proof uses standard tools from VC theory and is in AppeAdi |

The next lemma says that in fact no direction has too manyna@gamples lying far out in that
direction:

O(l)_n2ﬁ2eﬁ2n/2

Lemma 8 Forany$ > 0 andk > 1, if Sean iS @ random set of > ) (iR

then w.h.p. we have

clean examples

1
max _|{X € Sclean : (a : X)2 > ﬁ2}| < (1 + 11)6_52”/2.
aGS"_l E

Proof. In Appendix B. |

3.3 What is removed

In this section, we provide bounds on the number of clean ahdakamples removed in Step 3.
The first bound is a Corollary of Lemma 8.

Corollary 9 W.h.p. over the random draw of the-element samplé, the number of clean exam-
ples removed during any one execution of Step 3,jg is at mosttn log m.

Proof. Since the noise rateis sufficiently small, w.h.p. the numbérof clean examples is at least

(say)m/2. We would like to apply Lemma 8 with = 5¢*nlog ¢ and3 = 101%, and indeed
we may do this because we have
n2132,3%n/2 ) 5
O(1) -n*fF%e < O(1) - n(logm)m <of_™ < m <
(1+k)In(1 + k) (1+k)In(1+ k) logm 2

7
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for n sufficiently large. Since clean points are only removedéfjthave(a - x)? > 32, Lemma 8
gives us that the number of clean points removed is at most

m(1+ /i)e_52"/2 < 6mSnlog(f)/m> < 6nlogm.

The counterpart to Corollary 9 is the following lemma. Itdels that if examples are removed in
Step 3, then there must be madtiyty examples removed. It exploits the fact that Lemma 7 bounds
the variance irall directionsa, so that it can be reused to reason about what happens irediffe
executions of step 3.

Lemma 10 W.h.p. over the random draw 6f, wheneverA,,,, executes step 3, it removes at least
4’”1% noisy examples frorfiy;,ty, the set of dirty examples it

Proof. As stated earlier we may assume that’ 1/4. This implies that w.h.p. the fractiof of
noisy examples in the initial sétis at mostl /2. Finally, Lemma 7 implies that, = Q(n?) suffices
for it to be the case that w.h.p., for alle S"~!, for the original multisetS .., of clean examples
drawn in step 1, we have

2m

> (ax)’<

(va) ESclean

—. 1)
n
We shall say that a random samplehat satisfies all these requirements is “reasonable”. We wi

show that for any reasonable dataset, the number of noisypga removed during the execution
of step 3 ofA,,, is at least”1%a™

If we remove examples using directionthen it means (W - x)? > W SinceS
is reasonable, by (1) the contribution to the sum from tharckxamples that survived to the current
stage is at mostm /n so we must have

S (w-x)? > 10mlog(m)/n — 2m/n > 9mlog(m)/n.
(va)ESdirty

Let us decomposgiy, into N U F whereN (“near”) consists of those pointss.t. (w - x)? <
10log(m)/n and F (“far”) is the remaining points for whicw - x)? > 10log(m)/n. Since
IN| < |Sairty| < nm, (any dirty examples removed in earlier rounds will onlyuee the size of
Sdirty) We have

> (w-x)? < (m)10log(m)/n
(x,y)EN

and so

|F'| > ( Z)eF(W -x)% > 9mlog(m)/n — (fm)101log(m)/n > 4mlog(m)/n

(the last line used the fact that< 1/2). Since the points i’ are removed in Step 3, the lemma is
proved. |
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3.4 Exploiting limited variance in any direction

In this section, we show that if all directional variances amall, then the algorithm’s final hypoth-
esis will have high accuracy.

We first recall a simple lemma which shows that a sample ofaftieexamples results in a
high-accuracy hypothesis for the averaging algorithm:

Lemma 11 ((Servedio, 2001))Suppos&, ..., X, are chosen uniformly at random fra##—!, and
a target weight vecton € S"~! produces labelg; = sign(u - x1), ..., ym = sign(u - x,,). Let
v=2L1%" yx. Thenwhpu v = Q(%), while||v — (u - v)u|| = O(y/log(n)/m).

Now we can state Lemma 12.

Lemma 12 Let S = Sgean U Sairty b€ the sample ofn examples drawn from the noisy oracle
EX, (f,U). Let

e S .., be those clean examples that were never removed during steg,3,,

* S}y e those dirty examples that were never removed during stépl3.,,

o = % i.e., the fraction of dirty examples among the examplessinaive step 3,
and

e o = @”75221:” the ratio of the number of clean points that were erronepusinoved to

clean

the size of the final surviving data set.

Lets Sttean Y Sty Suppose thats’| > m/2 (i.e., fewer than half the total points were

removed) and that, for every direction € S"~! we have

o2 def Z (W‘X)Qél()mlogm.
(xm)es’ "

Then w.h.p. over the draw 6f, the halfspace with normal vecter |§,| Z(x,y)ES’ yx has error

rate
1
O (x/n’logm—i—a\/ﬁ—i— \/ n ogn) .
m

Proof. The claimed bound is trivial unlesg < o(1)/logm anda < o(1)/y/n, so we shall freely
use these bounds in what follows.

Let u be the unit length normal vector for the target halfspacé.vi.g., be the average dll
the clean examplesf,é1irty be the average of the dirty (noisy) examples that were netekl(i.e.,
the examples %/}, . ), andvy. be the average of the clean examples that were deleted. Then

v = __ > yx

7 7
|Sc1ean U Sdirty| (x,y)€S us’

irty

/
clean

1
= S US| ( > yx) + > yx | = ( > yX)
clean dirty (xay)esclean (x,y)GS/ (x7y)€SCIEanis<l:lean

dirty

irty

vV = (1 - 77/ + a)vclean + nlvfiirty — Vel - (2)
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Let us begin by exploiting the bound on the variance in evémction to bound the length of
Viiry- FOranyw € S"~! we know that

10m1 10m1
Z (W . X)2 < M7 and hence Z (W . X)2 < M
(va)es/ n ( 7y)esdnty "
sincesSg;,, € S'. Since|Sg;,, | < n'm, the fact that|r|[; < Vk||r||2 for any vectorr € R¥ gives

B o
( 7y)esdnty a n

Takingw to be the unit vector in the direction ef;, ,

we havel| v, || =
1 1 10m log m
W'Véirty ‘SI Z yx < ‘ 7 Z ‘WX’ < ‘517
di di

lrty’ 7y)esdnt dirty, (xay)es(/iirty irty

3)

n

Because the domain distribution is uniform, the erroh@is proportional to the angle between
v andu, in particular,

Prlhy £ f] = arctan(”v—<““>“”> (1 Y= (v wul] @
u-v u-v
We have that|v — (v - u)ul| equals
||(1 - 77/ + O‘)(Vclean - (Vclean : u)u) + nI(V:jirty - (V:jirty : u)u) - a(vdel - (Vdel : u)u)H
< 2[|[Velean — (Velean - W) u| + 77/||V:1irty|| + af[vaall
where we have used the triangle inequality and the factdhatare “small.” Lemma 11 lets us

bound the first term in the sum l6y(/log(n)/m), and the fact that . is an average of vectors of
length 1 lets us bound the third lay For the second term, Equation (3) gives us

Ve || < 10m(n/ 2logm _ 10mn’ log m - 201 logm’
= |S£1 |S’|n

1rty

where for the last equality we useésf| > m/2. We thus get

Iv—(v-uul|[ <O <\/log /m) + /201 Tog(m) /n + a. (5)

Now we consider the denominator of (4). We have

u-v=(1-7n+a)(u: vyen) +nu- Véirty — QU - Vgl

Similar to the above analysis, we again use Lemma 11 (but hewotver boundx-v > Q(1/1/n)),
Equation (3), and the fact thdiivq. || < 1. Sincea andn’ are “small,” we get that there is an
absolute constantsuch thata - v > ¢/\/n — /207 log(m)/n — a. Combining this with (5) and
(4), we get

o)
Pr[hy # f] < :O( nogn+ n’logm—ka\/ﬁ).
w (- /202 - o) §

10
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3.5 Proof of Theorem 1

By Corollary 9, w.h.p. each outlier removal stage removes@dt6tn log m clean points.

Since, by Lemma 10, each outlier removal stage removessit%% noisy examples, there
must be at mosO(n/(log m)) such stages. Consequently the total number of clean example
removed across all stages@¥n?). Since w.h.p. the initial number of clean examples is attleas
3m /4, this means that the final data set (on which the averagirgyitiigh is run) contains at least
3m/4 — O(n?) clean examples, and hence at least/4 — O(n?) examples in total. The condition
m > n? means that the number of surviving examples will be at leg&t. Consequently the value
of o from Lemma 12 after the final outlier removal stage (the rafithe total number of clean
examples deleted, to the total number of surviving exanjibest most%"%.

The standard Hoeffding bound implies that w.h.p. the adnaation of noisy examples in the
original sampleS is at mosty + /O(logm)/m. Itis easy to see that w.h.p. the fraction of dirty
examples does not increase (since each stage of outlievatmamoves more dirty points than
clean points, for a suitably largely(n/¢) value ofm), and thus the fraction’ of dirty examples
among the remaining examples after the final outlier remstage is at mosj + /O(log m)/m.

Applying Lemma 12, for a suitably large value = poly(n/e), we obtainPr[h, # f] <
O (v/nlogm) . Rearranging this bound, we can learn to accukaeyen forn = Q(e?/log(n/e)).
This completes the proof of the theorem. |

4. Isotropic log-concave distributions and malicious nois

Our algorithmA,,,,. that works for arbitrary isotropic log-concave distrilauts uses smooth boost-
ing.

4.1 Smooth Boosting

A boosting algorithm uses a subroutine, calledeak learner that is only guaranteed to output
hypotheses with a non-negligible advantage over randomssing? The boosting algorithm that we
consider uses eonfidence-ratedveak learner (Schapire and Singer, 1999), which prediets 1}
labels using continuous values|inl, 1]. Formally, theadvantageof a hypothesig’ with respect
to a distributionD’ is defined to béE,.p/[h'(z) f (x)], wheref is the target function.

For the purposes of this paper, a boosting algorithm makesiuhe weak learner, an example
oracle (possibly corrupted with noise), a desired accueaand a bound, on the advantage of the
hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown targection f with respect to some
distribution D repeatedly simulates a (possibly noisy) example oraclef fatith respect to some
other distributionD’ and calls a subroutingl,,..,. With respect to this oracle, receivingveeak
hypothesiswhich mapsR™ to the continuous interval-1, 1].

After repeating this for some number of stages, the boosiggrithm combines the weak
hypotheses generated during its various calls to the weakéde into a final aggregate hypothesis
which it outputs.

Let D, D’ be two distributions oveR™. We say thatD’ is (1/¢)-smooth with respect t® if
D'(E) < (1/e)D(E) for all eventsE.

2. For simplicity of presentation we ignore the confidenceapeeter of the weak learner in our discussion; this can be
handled in an entirely standard way.

11
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The following lemma from (Servedio, 2003) (similar resutem be readily found elsewhere,
see, e.g., (Gavinsky, 2003)) identifies the propertieswieaheed from a boosting algorithm for our
analysis.

Lemma 13 ((Servedio, 2003))There is a boosting algorithn® and a polynomiap such that, for
anye,v > 0, the following properties hold. When learning a target fime f usingEX, (f, D),
we have: (a) If each call tod,,..; takes timel, then B takes timep(t,1/v,1/¢). (b) The weak
learner is always called with an oraclEX,,(f,D’) whereD’ is (1/¢)-smooth with respect t®
andr’ < n/e. (c) Suppose that for each distributi®X,, (f, D) passed td,,.q; by B, the output
of Ayeqr has advantage. Then the final output of B satisfiesPr eplh(x) # f(x)] <.

4.2 The Algorithm

Our algorithm for learning under isotropic log-concavetritisitions with malicious noise, Algo-
rithm A, applies the smooth booster from Lemma 13 with the followiregk learner, which we
call Algorithm A,.1.v. (The valuery is an absolute constant that will emerge from our analysis.)

Algorithm Apjew:

1. Drawm = poly(n/e) examples from the oracleX,, (f,D’).
2. Remove all those examplés, y) for which ||x|| > /3nlog m.
3. Repeatedly

e find a direction (unit vectoryv that maximizesz(x’y)es(w -x)? (see Lemma 6)
o if 30 yes(W- x)% < ¢2mlog?(n/e) then move on to Step 4, and otherwise
e remove fromS all examplegx, y) for which |w - x| > ¢y log(n/¢), and iterate agair.

4. Letv = ﬁ > xm)es Y% and- returm: defined byh(x) = g.Y2, if [v - x| < 3nlogm,
andh(x) = sgn(v - x) otherwise.

4.3 The key claim: the weak learner is effective

Our main task is to analyze the weak learner. Given the faigi.emma, Theorem 2 will be an
immediate consequence of Lemma 13.

Lemma 14 Suppose Algorithml,,.,, is run usingEX,, (f, D) wheref is an origin-centered half-
space,D’ is (1/¢)-smooth w.r.t. an isotropic log-concave distributid ' < n/e, andn <
Q(e3/log?(n/€)). Then w.h.p. the hypothedisreturned byA, . i.,, has advantagé) (W(Qn/g))

Before proving Lemma 14, we need to prove some uniformitylteon non-noisy examples
drawn from an isotropic, log-concave distribution. Thidlwnable us to use outlier removal and
averaging to find a weak learner.

4.4 Lemmas in support of Lemma 14

In this section, let us consider a single call to the weaknlesawith an oraclé€Z X, (f, D’) whereD’
is (1/¢)-smooth with respect to an isotropic log-concave distiisuD andn’ < n/e. Our analysis
will follow the same basic steps as Section 3.

12
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A preliminary observation is that w.h.p. all clean exammlesvn in Step 1 of Algorithmi,icw
have ||x| < v/3nlogm; indeed, for any given draw at from D’, the probability that|x| >
V3nlogm is at most_; by Lemma 5 together with the fact thB is 1/e-smooth with respect to
an i.l.c. distribution. Therefore, w.h.p., only noisy exales are removed in Step 2 of the algorithm,
and we shall assume that the distributiddsand D’ are in fact supported entirely ofx : ||x|| <
v/3nlogm}. This assumption affects us in two ways: first, it costs us aitiadal — in the failure
probability analysis below (which is not a problem and is actfswallowed up by our “w.h.p.”
notation). Second, it means that the ovetall e accuracy bound we establish for the entire learning
algorithm may be slightly worse than the true value. Thisisduse our final hypothesis may always
be wrong on the examplesthat have||x| > /3nlog m and are ignored in our analysis; however
such examples have probability mass at mgstunder the isotropic log-concave distributidh
(again by Lemma 5), and thus the addltlonal accuracy costrimat 5. Sincee > -5, this does
not affect the overall correctness of our analysis. Noteah:mnsequence of this assumptlon is that
we can just takeé:(x) = 33—

The remarks about high-probability statements and faipuadbabilities from Section 3.1 ap-
ply here as well, and as in Section 3 we write “w.h.p.” as it for “with probability1 —
1/poly(n/e).”

We first show that the variance ®f in every direction is not too large:

Lemma 15 For anya € S"~! we haveF, p[(a - x)?] = O(log?(1/e)).

Proof. Forx chosen according tP, the distribution ofa - x is a unit variance log-concave distribu-
tion by Lemma 4. Thus, for any positive integer

Exopf(a-x)?] < k2+z (i+1)2 Pr fla-x| € (ii +1]]

< kK24 Z(i +1?(1/e) Prlla-x| € (i,i +1]
i=k

< K41/ (i+1) Prila-x| >

i=k

< K+ (1/e) Z i+ 1)%e <k 4 (1/e) - O(k%eF)

where the first inequality in the last line uses Lemmas 4 and 5.
Settingk = In(1/¢) completes the proof. |

The following anticoncentration bound will be useful foroping that clean examples drawn
from D’ tend to be classified correctly with a large margin.

Lemma 16 Letu € S* 1. Then
Ex.pfju-x|] > ¢/8.

Proof. Clearly
Exwp/(lu-x]] > (¢/4) Pr [lu-x| > e/4].

13
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But by Lemma 5,

2
Pr([u-x| <e/4 < = Prlu-x| <e/4] < 2 )
x~D’ € x €

The next two lemmas are isotropic log-concave analogudseafiiform distribution Lemmas 7
and 8 respectively. The first one says that w.h.p. no dineetibas much more variance than the
expected variance in any direction:

Lemma 17 W.h.p. over a random draw défclean example$. .., fromD’, we have

1 n32log?¢
+—F.
Vi

max E Z (a-x)?p <O(1) (log2

aGS"_l f
(x7y) €Sclean

Proof. By Lemma 15, for anya € S"~! we have
Ex.p[(a-x)’] = O(log?(1/e)).

Since as remarked earlier we may assuiiés supported ofx : ||x| < /3nlogm}, we may
2
apply Lemmas 25 and 27 (see Appendix A) with functigisdefined byf., = 2% This

3nlogm*

completes the proof. |

The second lemma says that for a sufficiently large clean skttan.h.p. no direction has too
many examples lying too far out in that direction:

O(1)eeP (n ln(e‘ﬁ/e)Jrlog m)
(14+r) In(1+k)

Lemmal8 Forany 3 > 0 andx > 1, if Sgean iS a set of? > clean

examples drawn fror®’, then w.h.p. we have

1
max —]{X € Selean : |- x| > B} < (1+4k) (_) o B+
aeSn— 1 B

Proof. Lemma 5 implies that for the original isotropic log-concalistributionD, we have

Prfla-x| > f] < e 7,

SinceD’ is (1/¢)-smooth with respect t®, this implies that

Pr [la-x| > 8] < (6)
In the proof of Lemma 8, we observed that the VC-dimension of
{{x:]a-x|>p} : aecR", S eR}

is O(n), so applying Lemma 28 with (6) completes the proof of thisriem |

The following is an isotropic log-concave analogue of Clamryl 9, establishing that not too
many clean examples are removed in the outlier removal step:

14
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Corollary 19 W.h.p. over the random draw of the-element sampl&' from EX,, (f,D’), the
number of clean examples removed during any one executitimeodutlier removal step (final
substep of Step 2) in Algorithr,,)., is at mosteme® /n*.

Proof. Since the true noise ratgis assumed sufficiently small, the valye< /e is at moste/4,
and thus w.h.p. the numbérf clean examples i§' is at least (sayjn /2. We would like to apply
Lemma 18 withx = (n/e)~* and3 = ¢y log(n/¢), and we may do this since we have

O(1)ee? (nln (ee?) + log m) - O(1)e(n/e)®nlogm
(14 &)In(1+ k) ~—  (n/e)co~*logm
for a suitable fixegholy(n/e) choice ofm. Since clean points are only removed if they hgvex| >
£, Lemma 18 gives us that the number of clean points removediest

m(1 1) Lot < OO
(14 k) - < o

<o)’/ < % <

< 6me®/n?.

The following lemma is an analogue of Lemma 10; it lower baid number of dirty examples
that are removed in the outlier removal step.

Lemma 20 W.h.p. over the random draw &, any time AlgorithmA,,.,, executes the outlier
removal step it removes at Iea% noisy examples.

Proof. Since our ultimate goal is only to prove that the algorithrocgeds for somg which iso(e),
we may assume without loss of generality that the origin@entater is less thare/4. This means
thatn’ < 1/4, and consequently a Chernoff bound gives that w.h.p. tleéidrar’ of noisy examples
in S at the beginning of the weak learner’s training is at mg&t And Lemma 17 implies that for a
sufficiently large polynomial choice of, we have that w.h.p. for afl € S"~!, the following holds
for all the clean examples in the data before any examples reenoved:

Y (a-x)? < cemlog?(1/e) (7)

(x7y) €Sclean

wherec is an absolute constant. We say that a random sample thas aletttese requirements is
“reasonable.” We now set the constagthat is used in the specification df, .., to be/2(c + 1).
We will now show that, for any reasonable samg|ehe number of noisy examples removed during
the first execution of the outlier removal stepAf,;.., is at Ieast%.

If we remove examples using directionthen it means", . (w-x)? > c3mlog®(n/e). Since
S'is reasonable, by (7) the contribution to the sum from tharckxamples that have survived until

this point is at mostin log?(1/¢) so we must have
Y (wex)? > (& - omlogi(n/e).
(va)esdirty

Let Sairty = N U F whereN is the examplegx, y) for whichx satisfies(w - x)? < c3log®(n/e)
andF is the other points. We have

S (wex)? < Efmlog?(n/e)
(x,y)EN
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and so, sincélx|| < v/3nlogm implies that(w - x)? < 3n log m for all unit lengthw, we have

(w-x)? (w - x)? (w-x)?
F| > -~ = A7 S A
7l 2 Z 3nlogm Z 3nlogm Z 3nlogm
(x,y)eF (xvy)esdirty (x,y)EN
. (G—omlog*(n/e) — ifmlog®(n/e)
- 3nlogm
- mlog®(n/e)
- 3nlogm
S m
~ On)
where the next-to-last inequality usgs< 1/2 andc¢y = /2(c + 1), and the final one uses =
O(poly(n/e)). The points inF' are precisely the ones that are removed, and thus the lemma is
proved. |

4.5 Proof of Lemma 14

We first note that Lemma 20 implies that w.h.p. the weak leamest terminate after at mos(n)
iterations of outlier removal.

Let u be the unit length normal vector of the separating halfsgacehe target functiony.
Recall that we have assumed without loss of generality [{ixdt < /3nlogm for all x in the
training set, so thaljv|| < +/3nlogm, and thus the advantage bfwith respect toD’ can be
expressed as

Ewa/[(V i X)f(X)]
3nlogm

and so we shall work on lower boundid®.p/[(v - x) f(x)].
As in the proof of Lemma 12, let

Expr[h(x) f(x)] = (8)

e Sclean be all of the clean examples in the initial sampleand S, be those that are not

removed in any stage of outlier removal,

lean

e Sairty be all of the dirty examples in the initial sampte and .S, . be those that are not

removed in any stage of outlier removal,

irty

S’ : . . i -
o = % i.e., the noise rate among the examples that survive tatiéhd of training
clean dirty
of the weak learner, and
Setean—5 . .
e o — W the ratio of the number of clean points that were errongowgshoved to
clean dirty

the size of the final surviving data set.

As before we writeS” for S(,,, U Sg;,- Also as before, let., be the average dill the

clean examples\(ghrty be the average of the dirty (noisy) examples that were netel] andv g
be the average of the clean examples that were deleted. Tingingexactly as before, we have

v=(1-7" 4+ a)Veean + 1 Vairty — OVdel- 9)
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The expectation of ..., Will play a special role in the analysis:

* def
Vilean — EXND/ [f(X)X]
Once again, we will demonstrate the limited effectvg{rty by bounding its length. This time,
the outlier removal enforces the fact that, for amy= S*~!, we have

Z (w-x)% < dmlog?(n/e).

(x,y)eS

Applying this for the unit vectow in the direction ofv/,; 1ty @S Was done in Lemma 12, this implies

m

[Vairey |l < colog(n/e), |1
[Shirey|

1rty‘

Next, let us apply this to bound an expression that captlieaverage harm done lvgmy.

|Ex~D’ [f(X) (Véiirty : X)” = |V:1irty : V:lean|

< ¢olog(n/e)

* . 10
|Sé1rty| H Clean” ( )

To show thatv..n plays a relatively large role, itis helpful to lower boune tlength ofv?, . .
We do this by lower bounding the length of its projection ottt® unit normal vecton of the target
as follows:

*
Velean

‘u=E, . p|[(f(x)x) - u] = Expsgn(u-x)(x-u)] = Exop[|x-ul] >¢/8,
by Lemma 16. Sincea is unit length, this implies

HvzleanH > 6/8 (11)

Armed with this bound, we can now lower bound the benefit ingubby v jean:

1
EZND/ [f(Z)(Vclean . Z)] = S Z EZND/ [yf(Z)(X : Z)]
clean (%,9)E€Seiean
1 %
= Seiean Z (yX) " Vilean-

(ny) ESclean

SinceE[(yx) - v

Clean]

implies that w.h.p.
Ezp/[f(2)(Velean - 2)] > chleanH - O(n 10g3/2 m)/\/ |Scleanl-

Since the noise ratg’ is at mosty/e andn certainly less thar/4 as discussed above, another
Hoeffding bound gives that w.h.pSccan| is at leastm/2; thus for a suitably large polynomial
choice ofm, using (11) we have

[[v¥...|[%, and(yx) - v¥.. € [-3nlogm, 3nlog m], a Hoeffding bound

*
clean clean

1°

EZND/ [f(z)(vclean ' Z)] > chleanH2 nlog / vV m 2 > Clean (12)

17
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Now we are ready to put our bounds together and lower bounddientage of. We have

Exp [f(X) (V : X)] = (1 - 77/ + Oé)E[f(X) (Vclean : X)]
+0'E[f (%) (Virty - X)] — oB[f (%) (Vael - X)].

We bound each of the three contributions in turn. First, idin- ¥ > 1/2 and (12), we have

v 2
(1= 1 + Q)E[f (%) (Velean - x)] > Mzl
Next, by (10), we have

’n/EXND/ [f(X) (v:iirty ’ X)” < ¢ IOg(n/e) V 277/”VZIeanH'

Since we may assume that< e/ log?(n/€) for as small a fixed constantas we like (recall the
overall bound of Theorem 2), we get

colog(n/e)/ 20 |[Vaeanll < (€/64)[[Viican ||

* 2
(for a suitably small constant choice @}, and this is less thaﬁ\vdgAH since||v}....|| > €/8.

clean

Finally Corollary 19, together with the fact that there atev@stO(n) iterations of outlier
removal and the final surviving data set is of size at leagt, gives us thatv < w,

m/4
which (recalling that botly4 and allx in the support of®’ have norm at mos{/3n log m) means
that|aE[f (x) (Ve - X)]| = o(€?).
Combining all these bounds, we get
* H2 * H2 2

v v 2
, . > clean _ clean _ >

by (11). Together with (8), the proof of Lemma 14 is completed

5. Learning under isotropic log-concave distributions wit adversarial label noise
5.1 The Model

We now define the model of learning with adversarial labes@ainder isotropic log-concave dis-
tributions. In this model the learning algorithm has acdesan oracle that provides independent
random examples drawn according to a fixed distribuftoon R™ x {—1, 1}, where

e the marginal distribution ovaR" is isotropic log-concave, and

e there is a halfspacg such tha®r(y .\ p[f(x) # y] = 7.

The parameter is thenoise rate As usual, the goal of the learner is to output a hypothksis
such thatr(, ,).p[h(x) # y] < ¢ if an algorithm achieves this goal, we say it learns to aacyr
1 — e in the presence of adversarial label noise at nate

18
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5.2 The Algorithm

Like the algorithmA,,,;. considered in the last section, the algoritiiy,. studied in this section
applies the smooth boosting algorithm of Lemma 13 to a westk&r that performs averaging. The
weak learned,,.,, behaves as follows:

Algorithm A, jcy:
1. Draw a sefS of m examples according t8’ (the oracle for a modified distribution provid
by the boosting algorithm).
2. Remove all examplgs, y) such that|x|| > v/3nlog m from S.
3. Letv = ‘—§| > (xy)es Yx. Return the confidence-rated classifiedefined byh(x) =
YX_jf |v - x| < 3nlogm, andh(x) = sgn(v - x) otherwise.

3nlogm

19%
o

5.3 Claim about the weak learner

As in the previous section, the heart of our analysis will@arnalyze the weak learner. We omit
discussing the application of the smooth boosting algorittere, as it is nearly identical to Section
4.

Lemma 21 Suppose Algorithm,,., is run usingP’ as the source of labeled examples, whefe

is a distribution that ig1/¢)-smooth with respect to a joint distributiaR onR™ x {—1, 1} whose

marginal D’ on R" is isotropic and log-concave. Further, assume there exdiaear threshold
3

function f such thatPr( ) p/[f(x) # y] < n/eandn < Q(W)' Then with high probability,

Aalew OUtputs a hypothesis with advanta@é, - logE(Qn 79 ).

5.4 Lemmas in support of Lemma 21

During this section, let us focus our attention on a singh toathe weak learner. LeP’ be a
distribution as in Lemma 21 and I&' be the marginal olR"™. We observe that since’ is (1/e)-
smooth with respect t&, the marginalD’ of P’ is (1/¢)-smooth with respect to the margiri@lof
P.

As in Section 4, we may assume that the supporDbfies entirely onx such that||x|| <
V/3nlog m (this negligibly affects the final bounds obtained in ourlgses).

The following technical lemma will be used to limit the extém which the distribution”’ can
concentrate a lot of noise in one direction.

Lemma 22 Let E be any event with positive probability undBf, and letx = D’(F). For any unit
lengtha € R", Ex.p[la-x| | E] = O (log ).

Proof. Let 5 be such thaPry..p/[|a - x| > 8] = k. By Lemmas 4 and 5, together with the fact that
D' is (1/€) smooth with respect t®, we have

r < lffﬁJrl
€

which impliesg <1+ In ().

4
€ER
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Let F' be the event thgh-x| > 5. We will show thatEx..p/[|a-x| | E] < Ex.p[la-x| | F], and
then boundEy.p[|a-x| | F]. If Pr[(E—F)U(F — E)] = 0, then, obviouslyEx.p/[|a-x| | E] =
Ex.p/(la-x|| F|. Suppos@r[(E — F)U (F — E)] > 0. Then

Ex.plla-x|| E]

=Eyx.plla-x|| ENF|Pr[ENF] +Ex.p|la-x|| E— F|Pr[E — F|

=Eyx.pla-x| | ENF|Pr[ENF]+ Exuplla-x| | E— F]Pr[F — E]
(becausé@r[E| = Pr[F])

< Ex.plla-x|| ENF)Pr[ENF] +Expla-x|| F — E]Pr[F — EJ,

because for every € £ — F and everyx’ € F — E,
la-x| < B<l]a-x|.
But
E..pla-x| | ENF]Pr[ENF]+Eyop(la-x|| F — E|Pr[F — E] = Exupr[ja- x| | F],

SO
Ex.plla-x| | E] < Ex~p[la-x|| F]. (13)

Now, settingb = | 3|, we have

1
D) z—|—1xlj% [la-x| € (i,7+ 1]]

’(F 224—1
i=b

- /21: ( (bb>>

(0),

sinceD'(F) = O(e~"/e). Combining with (13) completes the proof. |

Exw'D/Ha'X| | F] <

@

I
SR

5.5 Proof of Lemma 21

Fix some halfspac¢ such thatr, ... p[f(x) # y] = 1, and letu be the unit normal vector of its
separating hyperplane.
Let P’ be the joint distribution given tal,.,, and letD’ be its marginal oRR". As noted in the
previous subsectiory’ is (1/¢)-smooth with respect to the original marginal distributibrof P.
First, we bound the advantage of the hypothésigth respect ta”’ in terms of the tendency of
h to agree with the best linear functigh

Ecy)p [Mx)y] = B yynpr [Mx) f(x)] = 0 = Exupr [2(x) £ (x)] = 1. (14)

Furthermore, as we have assumed without loss of generhbiy||k|| < /3nlogm for all
examples in the training set, and therefore thatt < \/3nlog m, we have
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Ei . p [h(X)f(X)] = Expr [ 3nlogm

so we will work on boundin@Eyp [ f(x)(x - v)].
Let P, be obtained by conditioning a random dréxyy) from P’ on the event that (x) =

clean

Define P, analogously, and leb;, .., andDy; , be the corresponding marginals Bf. Let

V;.irty = E(X,y)NP/-_ [yX]

dirty
V:orrect = EXND/[f(X)X].

Note that the linearity of expectation implies that

Ex.p' [f(X) (X ’ V)] - (EXND/ [f(X)(X)]) V= VZorrect V== Z vcorrect yX (16)
(x y)ES

Equation (16) expressds, . [f(x)(x - v)], which is closely related to the advantage:dhrough
(15) and (14), as a sum of independent random variables, @neath example. We will bound
Exp[f(x)(x-v)] by bounding the expected effect of a random example on iteeyaind applying

a Hoeffding bound.
Letn = Pr(xy)~p/[f(x) # y]. SinceP’ is 1/e-smooth with respect t&, we haven’ < n/e.
We can rearrange the effect of a random example as follows

E ()P [Vorreet - (%) = (1= 1) Ey)mpr [Viorree - (f()X)|y = f(x)]
+0 B y)n P [Veorreer - (= (¥)X)|y # f(x)]
= (1= 1)Euynr [Viomee - (f(x)X)|y = f(x)]
0 B y)n P [Veorreer - (f(X)X)|y # f(x)]
"By~ P Veorrees - (f X)Xy # f(x)]
A1 By [Veorreer - (—f(x)X)]y # f(x)]. (17)

E(x,y)NP’ [Vzorrect ’ (f(X)X)]
= nIE(x,y)NP’ [Vzorrect : (f(X)X)|y 7& f(X)] + (1 - nI)E(x,y)NP/ [VZOrrect : (f(X)X)|y = f(X)],

by replacing the first two terms of (17) Wil ). p[Viorect - (f(X)X)], we get

E ) Viomeer (%)) = Epcyopr [Vioreer - (f(3)%)]
1B gy [Viorreer - (F)X)|y # ()]
1 By P [Viorreer - (—F(X)X)|y # f(x)]
E(X,y)NP’ [VZorrect : (f(x)x)]
=20 B gy [Viomeer - (F(X)X)|y # f(x)]
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Twice applying the linearity of expectation, we get

E(x,y)NP’ [Vzorrect : (yX)] = ||V:orrect||2 - 277/E(x,y)~P/ [V:orrect : (f(X)X)|y 7& f(X)]
= ||V>ckorrect | |2 - 277,Vcorrect ’ V;;irty
> ||V:orrect||2 - 277/||V:orrect|| ’ ||V(>§irty||
1
> _Hvzorrectu2 - 4(77/)2"v§irty"27

2

The last line follows from the fact that — qr > (¢® — r2)/2 for all realq, r.

So now our goals are a lower bound [pw.....; || and an upper bound dfv?; . ||.

We can lower bound|v},,...;|| essentially the same way we did before, by lower bounding its
projection onto the “target” normal vectar.

VZorrect u = E(x,y)wP’[(f(X)X) ! ll] = E(x,y)NP’ [Sgn(u : X) (X : ll)] = E(x,y)NP’HX : u” > 6/16’
(18)
by Lemma 16.
We upper bound|vy; . || as follows:

I

HVZlirty = V:hrty “Exopr [—f(x)x]

= ||V§.irty|| : EXND(/jircy

dirty

< [IVaiiy [10(og(1/(1'€)))

by Lemma 22. Thufivy,, || < O(log(1/(n'¢))).
Combining this with (18) and (16) we have that if

' log(1/(n'e) < ce®

for a suitably small constant, thenEy..p/[f(x)(x - v)] is a sum ofm i.i.d. random variables,
each with mean at lea$t(¢?), and coming from an interval of lengi®(n logm). Applying the
standard Hoeffding bound, polynomially many examples sgffor Exp/[f (x)(x - v)] > Q(€?).
Combining with (15) and (14) completes the proof.

< ||V§.irty|| - Ex~pr [
€

6. Conclusion

Our algorithms use boosting together with a confidencedrateak learner that perform a simple
averaging of labeled examples. As shown in earlier worky&iio, 2002, 2003) there are close
connections between such an approach and the Perceptaittaty It seems likely that the Per-
ceptron could be used as an alternative to boosting andgimgran our algorithms; it would be
interesting to see if a Perceptron-based approach has aosetital or empirical advantages over
the algorithms we give in this paper.

More generally, there are relatively few algorithms forrfeéag interesting classes of functions
in the presence of malicious noise. We hope that our resiilthelp lead to the development of
more efficient algorithms for this challenging noise model.
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As a challenge for future work, we pose the following quastido there exist computationally
efficient algorithms for learning halfspaces undebitrary distributions in the presence of mali-
cious noise? As of now no better results are known for thidlpra than the generic conversions
of (Kearns and Li, 1993), which can be applied to any conckgstsc We feel that even a small im-
provement in the malicious noise rate that can be handledaliispaces would be a very interesting
result.
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Appendix A. Proof of Lemma 7
Let us start with a couple of definitions and a couple of bodra®s the literature.

Definition 23 (VC-dimension) A setF’ of {—1, 1}-valued functions defined on a common domain
X shatterseq, ..., 24 if every sequencey, ..., yq € {—1, 1} of function values has a functighsuch
that f(z1) = 1, ..., f(z4) = yq. The VC-dimension df is the size of the largest set shattered by
F.

Definition 24 (pseudo-dimension)For a setf’ of real-valued functions defined on a common do-
main X, thepseudo-dimensionf F' is the VC-dimension dfsign(f(-) — 0) : f € F,0 € R}.

Lemma 25 ((Pollard, 1984; Talagrand, 1994))Let F’ be a set of real-valued functions defined on
a common domaitX taking values in0, 1], and letd be the pseudo-dimension Bf LetD be a
probability distribution overX. Then ifz4, ..., z,, are obtained by drawingn times independently
according toD, for any§ > 0,

Pr(3f € F,%if(ws) > Eplf] +cx/d+%g(1/5)] <9,
s=1

wherec > 0 is an absolute constant.
Lemma 26 (see Blumer et al. (1989))r'he VC-dimension of unions of two halfspace®(s).

Now, let us bound the pseudo-dimension of the class of fanstihat we need.

Lemma 27 Let F,, consist of the functiong from R to R which can be defined hf(x) = (a-x)?
for somea € R"™. The pseudo-dimension B}, is at mostO(n).

Proof. According to the definition, the pseudo dimensionFyfis the VC-dimension of the sét,,
of {—1, 1}-valued functionsy, o defined byg, ¢(x) = sign((a - x)? — 6). Eachg, ¢ is equivalent
to an OR of two halfspaces:

a-x>Vv0 OR (—a)- x>0

Thus the VC-dimension df,, is at most the VC-dimension of the class of all ORs of two lpaées.
Applying Lemma 26 completes the proof. |

Applying Lemmas 25 and 27, we obtain Lemma 7.
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Appendix B. Proof of Lemma 8

We will use the following, which strengthens bounds like lcean25 when the expectations being
estimated are small. It differs from most bounds of this typeroviding an especially strong bound
on the probability that the estimates aneichlarger than the true expectations.

Lemma 28 ((Bshouty et al., 2009))SupposeF' is a set of{0, 1}-valued functions with a common
domainX. Letd be the VC-dimension df. LetD be a probability distribution overX. Choose
a>0andK > 4. Then if

c (dlog é + log %)

= aKlog K ’

wherec is an absolute constant, then

P

Wng
whereE, (f) = L 37 f(w).

To prove Lemma 8, we first use the fact that, for any fixed S*~! ands > 0, it is known (see
(Kalai et al., 2008)) that

[3f € F, Ep(f) < abutEy(f) > Ka] <6,

Pr [la-x|> 8] <e P2
reSn—1
Further, as in the proof of Lemma 7, we have that
la-x|>p ifandonlyif a-x>pgOR(-a) x> [,

so that the set of events whose probabilities we need to &tiis contained in the set of unions of
pairs of halfspaces. Applying Lemma 26 and Lemma 28 complbie proof.
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