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Abstract 
A Machine Learning (ML) System known as ROAMS 
(Ranker for Open-Auto Maintenance Scheduling) was 
developed to create failure-susceptibility rankings for 
almost one thousand 13.8kV-27kV energy distribution 
feeder cables that supply electricity to the boroughs of New 
York City. In Manhattan, rankings are updated every 20 
minutes and displayed on distribution system operators’ 
screens.  Additionally, a separate system makes seasonal 
predictions of failure susceptibility.  These feeder failures, 
known as “Open Autos” or “O/As,” are a significant 
maintenance problem.  A year’s sustained research has led 
to a system that demonstrates high accuracy: 75% of the 
feeders that actually failed over the summer of 2005 were in 
the 25% of feeders ranked as most at-risk.  By the end of 
the summer, the 100 most susceptible feeders as ranked by 
the ML system were accounting for up to 40% of all O/As 
that subsequently occurred each day. The system’s 
algorithm also identifies the factors underlying failures 
which change over time and with varying conditions 
(especially temperature), providing insights into the 
operating properties and failure causes in the feeder system. 

Background 
Electrical infrastructure has four main parts: 

1. Generation: a prime mover, typically the force of water, 
steam, or hot gasses on a turbine, spins an 
electromagnet, generating large amounts of electrical 
current at a generating station 

2. Transmission: the current is sent at very high voltage 
(hundreds of thousands of volts) from the generating 
station to substations closer to the customers 

3. Primary Distribution: electricity is sent at mid-level 
voltage (tens of thousands of volts) from substations to 
local transformers, over cables called feeders, usually 
10-20 km long, and with a few tens of transformers per 
feeder.  Feeders are composed of many feeder sections 
connected by joints and splices 

4. Secondary Distribution: sends electricity at normal 
household voltages from local transformers to individual 
customers 

 
Figure 1. Electrical Distribution 

 

The distribution grid of New York City is organized into 
networks, each composed of a substation, its attached 
primary feeders, and a secondary grid.  The networks are 
largely electrically isolated from each other, to limit the 
cascading of problems. 

The feeders of the primary grid are critical and have a 
significant failure rate (mean-time between failure of less 
than 400 days), and thus much of the daily work of the 



Consolidated Edison Company of New York (Con Edison) 
field workforce involves the monitoring and maintenance 
of primary feeders, as well as their speedy repair on 
failure. 

In the specific case of the underground distribution 
network of Con Edison, transmission lines deliver 
electricity into the city from upstate New York, New 
Jersey and Long Island, as well as from in-city generation 
facilities.  Substations reduce the voltage to 33kV or less, 
and underground primary distribution feeders then locally 
distribute the electricity to distribution transformers.  From 
there, the secondary network, operating at 120V/208V, 
delivers electricity to customers. Our work focused on 941 
underground primary feeders, distributing electricity to the 
New York City boroughs of Manhattan, Brooklyn, 
Queens, and the Bronx.  

Problem  
The underground distribution network effectively forms a 
3-edge-connected graph – in other words, any two 
components can fail without disrupting delivery of 
electricity to customers in a network.  Most feeder failures 
result in automatic isolation – called “Open Autos” or 
O/As – and many more occur in the summer, especially 
during heat waves when power use for air conditioning 
adds to the load. When an O/A occurs, the load that had 
been carried by the failed feeder must shift to adjacent 
feeders, further stressing them. O/As put networks, control 
centers, and field crews under considerable stress, 
especially during the summer, and cost millions of dollars 
in Operations and Maintenance (O&M) expenses annually. 
 
One of Con Edison’s primary goals has always been 
reliability, and its distribution network is the most reliable 
in the United States, and among the best in the world.  The 
goal is to maintain this standard of excellence even as 
electricity consumption continues to grow.  Over the years, 
they have made enormous investments in manpower and 
money to collect and analyze vast amounts of data from 
their systems.  The ROAMS system described in this paper 
is a continuation of Con Edison’s striving towards the most 
reliable and efficient system possible, and it is built on the 
foundation of the data and insights they have amassed over 
decades. 
 
We have initially focused on the specific problem of 
ranking primary distribution feeders according to their 
susceptibility to failure.  Con Edison has made 
considerable efforts to identify, test and replace failure-
prone feeders in the fall and spring of each year, but 
overall numbers of failures (normalized to weather 
conditions) has remained fairly constant. A number of 
possible explanations have been offered for this: the 
increasing loading and continuous aging of the grid are 
neutralizing the improvements from the maintenance 

program; and/or the selection of reliability improvement 
measures needs to be more effective. 
The goal of the ROAMS system described here is to rank 
the feeders most susceptible to impending failure with 
sufficient accuracy so that timely preventive maintenance 
can be taken on the right feeders at the right time.  Con 
Edison would like to reduce feeder failure rates in the most 
cost effective manner possible. Scheduled maintenance 
avoids risk, as work is done when loads are low, so the 
feeders to which load is shifted continue to operate well 
within their limits.  Targeting preventive maintenance to 
the most at-risk feeders offers huge potential benefits. In 
addition, being able to predict incipient failures in close to 
real-time can enable crews and operators to take short-term 
preventative actions (e.g. shifting load to other, less loaded 
feeders).  
 
The work reported here is a key step in Con Edison’s long 
term goal: system-wide evolution from reactive to 
condition-based preventive maintenance processes and 
procedures. 

Application Description  
We are not aware of previous AI-based systems applied to 
power distribution problems.  There have been a number 
of efforts to improve the efficiency of complex systems by 
having a computer interpret a stream of sensor data.  
However, these systems generally use human-constructed 
expert or rule-based systems [7, 8, 9].  In contrast, we have 
opted for a machine learning system that learns its models 
entirely from data and hence does not include any human 

Figure 2: System Diagram.  Incoming dynamic system data 
at upper right is stored in the main database.  The ML 
Engine combines this with static data to generate and 
update models, and then uses these models to create
rankings, which can be displayed to the operator via the 
decision support app.  Any actions taken as a result are 
tracked and stored back in the database. 
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Figure 3: An example of a Marti model with 2 levels (i.e., 
T=2): the first level (left) shows the attribute A1 with an 
ascending sort direction; the second level (right) shows the 
other two attributes A2 and A5 that are part of the model. 
Notice that the split of the two lists on which A2 and A5 
operate is implicitly described by the height of the limiting 
line. 

biases. The overall structure of the ROAMS system is 
illustrated in Figure 2. 
A mixture of static data (e.g. age and composition of each 
feeder section) and dynamic data (e.g. electrical load data 
for a feeder and its transformers, accumulating at a rate of 
several hundred megabytes per day) is combined into a 
large data table.  The data table currently has roughly 150 
attributes for each feeder, and new ones are still being 
added. 
 
We then apply a boosting-based machine learning 
technique to the large data table, which outputs a learned 
model. We evaluate these generated models by applying 
them to subsequent test data using a performance metric 
that captures how high actual feeder failures are positioned 
in our ranked list of feeders (feeders predicted to have bad 
susceptibility will be higher in the list). More concretely, 
our performance metric, which we refer to as the 
normalized average rank of failures, is: 
 

 
 
 
 
 
For example, suppose that there are 1000 feeders in our 
system. If there are 3 failures on a given day, and the 
feeders that correspond to these failures were ranked at 23, 
65 and 147 in our list, then the resulting performance is: 
 

1 – ( (23 + 65 + 147) / (3 * 1000) ) = 0.92 
 
Note that a performance close to 1.0 (the ideal result) 
indicates that almost all actual outages were accounted for 
at the very top of our worst-feeders ranking. A 
performance close to 0.0 (the worst possible result) 
indicates that all actual outages were at the bottom of our 
ranking. A performance of 0.5 would indicate that our 
ranking is no better than random. 

When developing seasonal predictions used to guide 
replacement planning, we gather large amounts of 
historical data and train a few models based on different 
random subsets of this data. The final ranking is computed 
as the average of the rankings produced. 
 
To create the control center operators’ near-real-time 
display, we select a recent, well-performing model as the 
“current” model.  Every 15 minutes, we apply this model 
to the latest dynamic data, and generate a new ranking.  
This is the first time that our new MartiRank algorithm, 
described below, has been used for real-time operational 
decisions. 
 
An additional feature of this display is action tracking, 
which presents suggested actions that can be taken by field 
crews to improve system reliability, and tracks these 
operator actions.  This tracking data is collected in a 
database and is available as features for further machine 
learning analyses, to evaluate the effectiveness of field 
crew intervention.  The optimal actions learned will be 
used to design better preventive maintenance and 
operational policies for managing the electric grid of New 
York City. 
 

Figure 4: MartiRank Algorithm. 

inputs: list L of attribute-value descriptions of feeders with 
associated nr. of failures; nr of boosting rounds T 
output: marti-model M 
 
1. let M be the empty model 
2. for each round  t=1,..,T  do: 

 
- partition L into t sub-lists L1, .., Lt s.t. each Lj has 

same nr. of failures; let th2, .., tht be the location of 
the splits in terms of the normalized fraction  of 
feeders that fall above the split. 

 
- for each sub-list i=1,..,t  do: 

 
i. compute quality of Li  sort 

ii. for each attribute A  do: 
1. sort Li according to A in ascending order, 

compute quality of resulting sort 
2. sort Li according to A in descending order, 

compute quality of resulting sort 
 

- if there exists attribute A and polarity P that improves 
Li’s sort, then: 

i. if i > 1, add thi to M at level t, position i 
ii. add A to M at level t, position i. 

iii. sort Li  according to (A,P) 
- else: 

i. if i > 1, add thi to M at level t, position i 
ii. add “NOP” to M at level t, position i. 

3. output M 
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Use of AI Technology 
 

The core of the ROAMS system is a machine learning 
ranking engine whose aim is to produce in real-time a list 
of the network’s feeders sorted from most to least 
susceptible to failure. To train our models, we use 
Martingale Boosting [2], a recent variant of boosting. 
Boosting [3] is a very successful machine learning 
technique that combines several “weak learners” or simple  
classification rules, each with low individual accuracy, into 
a powerful single model with high predictive accuracy. In 
our case, the weak learners are functions defined by the 
ranking produced by sorting on a single attribute. A high-
level description of our learning algorithm, MartiRank, is 
given in pseudocode in Figure 4. MartiRank greedily 
selects in each of its rounds the attribute that is most 
correlated with the failures in the given training data set. 
The model records the selected attribute along with the 
direction of its sort (ascending or descending), which we 
call “polarity” in Figure 4. In round t (from t=1 up to t=T), 
it splits the total data set into t sub-lists, on which it applies 
its greedy attribute selection procedure; the list is 
partitioned so that each sub-list contains the same number 
of failures. Figure 3 shows an illustration of an example 
Marti model. 
  
We generate susceptibility rankings from a real-time feeder 
description list and a trained model by repeatedly sorting 
the list according to the attributes chosen by the trained 
model.  Intuitively, it is as if we walk the initial list 
through the model from left to right, reshuffling the list 
according to the attributes at that level of the model. Using 
the example model shown in Figure 3, we first sort the 
whole list according to A1 in ascending order. Then, we 
split the list into two parts with the top part containing 
(roughly) 1/4 of the total number of failures and the 
bottom part containing the rest and we sort the top sub-list 
following attribute A2 in ascending order and the bottom 
list using the values of attribute A5 in descending order.  
 
For the sake of comparison, we have been running two 
other methods: SVM [4] and linear regression. For both 
methods we use the predictions for each feeder (the 
predictions are real values) to get a final ranking by sorting 
on the predictions. As Figure 5 shows, MartiRank clearly 
outperforms both methods. A further advantage of using 
MartiRank over the other methods is that our models are 
easily readable and interpretable by human users. This is 
absolutely crucial for two reasons: (1) one of the main 
goals of this application is to learn about root causes of 
failure so that preventive maintenance procedures can be 
designed, and (2) operators using our system would not 
trust a prediction system that they cannot interpret. Notice 
also that MartiRank has been specifically designed to 
produce ranking models, whereas most machine learning 
methods need some kind of ad-hoc postprocessing (such as 
the ones used with the regression methods mentioned 
earlier) since the methods are not designed specifically for 
ranking. Notable recent exceptions are RankBoost [5], and 

RankNet [10]. Both of these methods address the problem 
of ranking by learning a real-valued function (used to rank 
future test examples) from pairs of instances (x,y) s.t. x is 
ranked higher than y in a given training dataset; 
RankBoost [5] uses boosting and RankNet [10] uses neural 
networks to learn the regression function. As no 
implementation is available for these systems, comparison 
to these alternatives is currently not feasible within the 
time constraints. Moreover, RankBoost and RankNet are 
“black-box” methods, i.e., it is very difficult to interpret 
and understand the models they produce. The 
interpretability of its model and the excellent prediction 
performance obtained so far have made MartiRank ideal 
for this application. 

 
Application Use 

 
Control center operators use a web-based interface to view 
the current ranking of feeder susceptibility.  It shows the 
current ranking, and highlights feeders that have changed 
ranking since the last refresh 15 minutes ago.  
Additionally, it integrates and displays useful dynamic data 
collected in the process of assembling training data sets.  
This includes information on how many of the feeder’s 
sections and transformers are operating close to their 
limits.  The operator’s display is shown in Figure 6. 
 
The susceptibility display is designed to work in 
conjunction with three other existing applications, so 
operators can take proactive actions based on worst case 

Figure 5: This plot shows the performance of three 
competing methods (MartiRank, SVM, and linear regression) 
during the second half of 2005. Each day, we compute each 
algorithm’s performance in terms of the normalized average 
rank of failures that occurred during that day. MartiRank 
clearly outperforms the other methods.  Further, the periods 
that are critically important are the peak summer months, 
when the system is near capacity and feeder failures are more 
frequent, and these are the periods where MartiRank’s 
accuracy is best.  A histogram of daily failure counts is shown 
below the line graph.  All curves in the upper graph have 
been smoothed using a 5-day moving average for clarity of 
presentation. 



analyses. Action tracking features have been added to 
these existing applications, enabling the tracking of 
activities taken on susceptible feeders, and thus allowing 
the  quantification and measurement of resulting network 
performance improvements. Two of these applications are 
shown in Figures 7 & 8.  
 
 
In terms of prediction performance, we found that as 
summer 2005 became increasingly hotter, our ROAMS 
System learned the mix of attributes most closely 
correlated with impending failures, so that by July, we 
were approaching 0.8 out of a possible 1.0 performance.  
 
Figure 9 shows the ranks of feeders that failed on July 27th, 
a very hot day with an unusually-high number of failures 
(28 in total).3 
 
During the month of July 2005, none of the 500 feeders 
ranked lowest for susceptibility failed. More precisely, the 
worst ranked actual failure during the month of July was 
442 (out of a possible of 941). There were a total of 184 
failures during the month of July so that probability of this 
happening by chance is less than 2-184. 
 
We have a number of theories as to why performance was 
better during the summer.  The first is that many of the 
input features to our machine learning algorithm were 
developed by Con Edison with a specific focus on 
modeling the electric distribution system during heat 
waves.  The second is that distribution system failures may 
have more deterministic causes during heat waves, as the 
load and stress contribute directly to cable, joint, and 
transformer problems, while in the cooler months, failures 
tend to be more random and difficult to model.  However, 
these are just conjectures, and we are continuing to 
investigate this question. 
 
 

 
                                                 
3 Complete statistics with results for the summer can be found at 
http://www.cs.columbia.edu/~marta/roger 
 

 
Payoffs 

 
Reacting to an unscheduled feeder failure has a significant 
cost in manpower and materials, as well as potential risk of 
customer power outages.   Our ROAMS system is helping 
to mitigate those consequences in a number of ways. 
 
Our long-term recommendations of feeder susceptibility 
are helping to decide which feeder components should be 
replaced during the off-season.  Although the results will 
only become apparent over the coming years, we hope to 
see failure rates dropping again, resulting in a system that 
operates in a more cost effective manner.  
 
 

Figure 6: Operator’s display is used with 3 other web 
applications to act on feeder susceptibility rankings. 

Drill down on 
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Figure 7: Action tracking is used to track the actions taken 
on susceptible feeders to measure their effectiveness 
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Figure 8: To close the network protector on the transformer in 
vault V1629, the Switch Check application is used to open a 
job to dispatch crew to close the switch. Action Tracking 
records that the operator confirmed that he added a new 
switch check job to close the network protector.  
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Operators are using the short-term prediction capabilities 
of the current system in a number of ways.  In particular, 
they can now augment their existing information about the 
structural risks of a failure, i.e. what loads will increase 
and by how much due to the loss of the feeder, with an 
estimate of the likely risks of a failure, i.e. which feeders 
are actually most likely to fail under the new 
circumstances. 
 
 
Con Edison is investigating designs for a new generation 
of equipment that will allow dynamic switching of current 
flows.  We are working together to develop new machine 
learning techniques integrated with system-wide models so 
that as this new equipment comes online, more advanced 
and proactive responses will be possible for risks identified 
by our ROAMS System. 
 
The most impressive benefit from our work so far has 
come from an analysis of the preventive maintenance that 
Con Edison already does on its feeders. Con Edison has a 
program to ensure the reliability of its feeders through an 
in-field test.  High DC voltage is put across a feeder for a 
sustained period (the tests are known as “Hi-Pots”), and 
any resulting faults are immediately fixed.  The tests are 
effective for “shaking out” latent problems, but are 
expensive and can put substantial stress on the feeder. 
We discovered that our susceptibility ranking was 
extremely good at predicting which feeders were likely to 
fail their Hi-Pot. More importantly, those “good feeders” at 
the low-risk end of our ranking were virtually guaranteed 
to pass the Hi-Pot, and could safely be skipped. 
 
Con Edison is now including our susceptibility ranking in 
their evaluation of candidate feeders for Hi-Pot tests this 
season, and we expect to see substantial savings from a 
reduction in unnecessary tests, as well as increased 
reliability from feeders that are tested and pass. 
 

Development, Deployment, and Maintenance 
 

There were a number of development challenges that had 
to be overcome before the system could be deployed.  Con 
Edison is a large company, and its data is spread over 
many repositories.  Simply identifying the data that would 
be useful for the system and then arranging access 
mechanisms took substantial time (and is still continuing).   
 
As Con Edison has always been active in using advanced 
technology, many of their software systems have been in 
use for a considerable amount of time, and retain their 
original orientation towards human-readable output. We 
wrote programs, sometimes of substantial complexity, to 
convert this data back into a computer-usable form. 
 
A later challenge was the volume of data.  Our software 
processes were initially unable to keep up with the 
gigabytes of data being accumulated on a daily basis.  A 
full reorganization of our underlying database table 
structure and the addition of a preprocessing stage solved 
the problem. 
 
Having solved these problems, screens displaying the 
continuously-updated failure susceptibility rankings for 
feeders have been in use since mid-2005, about seven 
months prior to writing this paper.  Failure susceptibility 
rankings to support maintenance scheduling are being used 
with Fall 2005/Winter 2006 maintenance planning.  
Results from use of our ROAMS System to-date have 
given Con Edison the confidence to incorporate our 
findings into their current preventive maintenance program 
and to continue the development and deployment of this 
tool in 2006. 
 
 

Figure 10: Feature categories ranked in the top five of the 
first pass of MartiRank (below) are leading indicators of 
actual feeder failure causes (above).  Categories are shown 
stacked by type. 

Figure 9: Failed feeders of 27th July 2005. The x axis 
shows the rank of the failures, the y axis shows the 
cumulative number of failures up to that rank. 



Future Work 
 

Within the machine learning module there exist several 
directions for improvement. Our system uses, at any given 
time, the most recently trained model to make its 
predictions.  It is currently up to the operators to decide 
when to re-train a model if they observe that performance 
degenerates. We are currently designing a dynamic online 
algorithm that will select optimal or quasi-optimal models 
based on recent past performance of competing models. 
This next-generation ML engine aims for full automation 
of the system and removal of assumptions that might be 
hurting the current performance. Further, it may allow for 
an interesting knowledge discovery process, as we learn to 
relate environment and system states to optimal model 
characteristics. 
 
Additionally, we are starting to investigate the use of our 
ML system to identify root causes for failures.  The first 
pass of the MartiRank algorithm evaluates each feature 
individually for its ability to predict outages across the 
entire set of feeder training data.  We have found that if we 
group these features into general categories (electrical 
characteristics, transformer stress, cable type, etc.), the top-
ranked feature categories from the first MartiRank pass are 
effective leading indicators of corresponding actual failure 
causes, with a lead time of around 6 days. 
 
For example, we see a rise in Hi-Pot test related features in 
our analysis around a week before seeing a corresponding 
rise in actual feeder failures caused by burnouts, as shown 
in Figure 10. 
 
We believe that further study of the relationship between 
ML-identified attributes and actual causes may lead to 
further improvements in fault management processes and 
system reliability. 
 
A related prediction problem that arises in the context of 
our collaboration with Con Edison is that of making 
quantitative predictions about the time to failure of each 
feeder and relevant component in the network. This very 
hard problem could potentially be solved by a mixture of 
machine learning and statistical techniques such as 
survival analysis [6]. Although we are not currently 
focusing on this line of research it is part of our longer-
term research plans. 
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