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Linear classifiers are nearly optimal
when hidden variables have diverse effects

Nader H. Bshouty - Philip M. Long

Abstract We analyze classification problems in which data is gendrhtea two-tiered
random process. The class is generated first, then a layenditmnally independent hidden
variables, and finally the observed variables. For souiikeshis, the Bayes-optimal rule
for predicting the class given the values of the observeihbkas is a two-layer neural
network. We show that, if the hidden variables have nonigiug effects on many observed
variables, a linear classifier approximates the error rhitheoBayes optimal classifier up
to lower order terms. We also show that the hinge loss of atimdassifier is not much
more than the Bayes error rate, which implies that an aceliraar classifier can be found
efficiently.

Keywords learning theory bayes-optimal linear classification hidden variables

1 Introduction

In many classification problems, groups of features aretigeli associated, even among
examples of a given class. For example, when classifyingsraticles as to whether they
are about sports or not, words about soccer tend to appda game articles. Similarly, dis-
eases often coordinately affect the production rates of Imeesnof biomolecular pathways.
One way to model this phenomenon is to use a probabilityidigton with hidden

variables [18,4, 33,25, 22]. In one model of this type, tlassldesignation directly and con-
ditionally independently affects the hidden variablesheaf which in turn drives a set of

observed variables (see Figure 1). Each hidden variablebeanterpreted as indicating
whether a group of observed variables have been collegtafétcted by the class of the
item. For example, a hidden variable could indicate wheémearticle is about soccer or
not. Its descendents would include words that are espgciathmon in articles about soc-
cer, like “corner” and “striker”. It is intuitive that the Bas optimal classifier for a source
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Fig. 1 A probability model in which the dependence of the obsenadables on the class designation is
mediated by a layer of hidden variables.

like this is a two-layer feed-forward neural network, wittethidden layer of the neural net-
work corresponding to the layer of hidden variables in theegative model. (We provide a
proof because we are not aware of a reference for this intérature.)

Despite this fact, for many problems clearly possessindy uerarchical structure,
learning algorithms that use linear hypotheses achievellext, often even state-of-the-
art, performance (see, e.g. [20,28,32,31,19]). This magipear paradoxical, because one
might think that such algorithms must be doomed to fail beeahey use an inordinately
limited hypothesis space.

In this paper, we show that, despite the fact that the optitagkifier has a more complex
structure, a linear classifier can provide a good approxamatVe also show that the hinge
loss of the linear classifier is not much more than the Bay®s eate; this can be combined
with known tools [34,2] to imply that nearly optimal accuyatan be obtained efficiently.
Both results hold when the hidden variables influence malsgided variables — this is to
be expected for example in text classification problems,revisebtopics may have many
constituent words.

Here is the rough idea of the proof. When a hidden variablectsf many observed
features, a linear combination of those observed featuresld be expected to be highly
concentrated — the combination will be close to one valuenvthe hidden variable takes
one value, and close to another value when the hidden variakés the other value. Conse-
quently, this linear combination of the observed featussslie viewed as an approximation
to a rescaling of the hidden variable. If we replace eachdniddriable with the appropriate
linear combination of the observed variables that it affeahd construct a linear classifier
using the replacements, the result is a linear classifidreobtiginal features.

2 Definitions
2.1 The structure of the source

In a hidden variable modelthe joint distribution of the class lab&f, hidden variables
Hi, ..., Hy, and observed variable€$; 1, ..., X1, , ..., Xk1, -, Xk, (@ll of which take val-
uesin{—1, 1}) satisfies the conditional independence constraints shmotire Bayes Net of
Figure 1. The hidden variablgg,, ..., H,, are collectively conditionally independent given



the class designatio¥i. Each hidden variablél; in turn has a collection of observed vari-
ablesX;q, ..., X;,,, that are conditionally independent givén.
We can think of the model as generating labeled random exaxly) in stages, by

— generating the class labgland fixing it, then

— independently sampling the hidden variablgs..., hj, using the appropriate class con-
ditional distribution, fixing them, and finally

— independently sampling the observed variables

T1Ly ooy Tl s oos Thly oos Thomy, >
each from the appropriate conditional distribution giviea values of its parent.
Note that we may assume without loss of generality that fgriagices: and;, we have
Pr(X;; =11H; = 1) > Pr(X;; = 1|H; = —1),
since otherwise, we could replagg; with its negation.
Definition 1 (5-effect) We say that a hidden variablg; s-affectsobserved variable;; if

PI‘(XZ'J' = 1|H1' = 1) — PI‘(Xij = 1|H1' = —1) > ﬂ

2.2 Other probability tools

Definition 2 (Total variation distance) Thetotal variation distancbetween probability dis-
tributions P andQ over a common domaili, denoted byl7y (P, Q), ismaxgcy |[P(E) —

QB

Lemmal (Hoeffding bound [17], see [27])Let U, ..., U, be independent real random
variables, each of which takes values in an interval of langtThen

()

Pr

_22
2| <2 <2

3 Linear approximation

Here is our main result.

Theorem 1 Suppose that a hidden variable modekatisfies, for3 > 0, that each hidden
variable g-affects at leastn observed variables, for

— (klogQ(k/opt) log(l/opt))
= 5 ,

whereopt is the error rate of the Bayes optimal classifier. Suppose

X = (X11, 0, Xtmgsooos Xl o0 Xbomy, )
are the observed variables. Then there is a linear classffisuch that

Prix y)~p(f(X) #Y) < opt + o(opt). (2)



Note that, aspt gets smaller, (1) guarantees a closer approximation. Kpiaias why
the bound onn grows with1/opt.

We prove Theorem 1 through a series of lemmas. We will esfaltlie stronger guar-
antee that the linear classifier approximates the behavian idealized classifier that has
access to the hidden variables. The optimal classffigr that uses the valuds, ..., hy, of
the hidden variable#fy, ..., Hj along withz11, ..., z,,, is at least as accurate as the opti-
mal classifier that only usesy, ..., zx.,, , Since when optimizing over classifiers that have
access ta, ..., hy, one possibility is use a classifier that ignores them.

Our first lemma is thaf,p¢ depends only on the hidden variables.

Lemma 2 For any realizationh of the hidden variables, and any realizatianof the ob-
served variables,

Pr(Y =1[H=h,X =x) = Pr(Y = 1|H = h), @)

so that
fopt(h,x) = argmax, Pr(Y = y|H = h). 3
Proof: Since
fopt(h,x) = argmax, Pr(Y = y|H = h andX = x)
and (2) follows from the fact thati4, ..., H;, form a Markov blanket foi’, we get (3). O
Our next lemma, which is proved using established techsifl4], characterizeg, .

Lemma 3 There is aw € R* and aw, € R such that, for all realizations& = (hy, ..., hy,)

of the hidden variables, and all realizatiogs= (z11, ...,z m, ) Of the observed variables,
Pr(Y =y,H=h)
(Y -Y, H= h)

=exp (y (wo +w - h)), 4
and therefore

fopt (h, x) = sign(wp + w - h).
Proof: Maximizing the right-hand side of (3) is equivalent to nrakiing

Pr(Y =yH=h) Pr(Y =y H=h)

Pr(Y=—-yH=h) Pr(Y =-y,H=h)’ ©)

which decomposes nicely, facilitating analysis, as we sak.
The odds ratio (5) can be written as follows

Pr(Y =y,H=h) Pr(Y =y) vq Pr(H:=hlY =y)

Pr(Y =y, H=h)  Pr(Y = —y) L Be(il; =1 [V =)

and a case analysis verifies that for eache have

Pr(Hi=hiY=y) _ 1
Pr(H;=h;|Y =—y) Pr(

=1y =1)Pr(H;=-1Y =1)
:—1|Y——1)Pr( i:1|Y:_1))

Pr(H
H;

Hi=1Y =1)Pr(H;=-1]Y =-1)
( (Hi=—1|Y =1)Pr(H. i:1|Y:_1)>>.

Thus, if for each € {1, ..., k}, we define

1 Pr(H; =1Y = 1)Pr(H; = —1|Y = -1)
w; = = In — — — ,
2 Pr(HZ =-1Y =1)Pr(H; = 1Y = -1)




let

_ Pr(Y =y) 1 vk Pr(H;=1|Y=1)Pr(H;=—1|Y=1)
wo = In (Pr(Y — —y)) +520n (Pr(lj‘tli:—l|Y:—1)rPr(H7;:1\Y:—l)) (6)

and sew = (wq, ..., wy), we get (4) which immediately implies thaf,¢ (x, h) = sign(wo+
w-h). O

Our next lemma will concern estimates of the hidden varmlglenstructed from the
observed variables. First, let us define some notation.

Definition 3 (X;) For each:, let X; consist of all indiceg such that
PI‘(XZ'J' = 1|H1' = 1) — PI‘(Xij = 1|H1' = —1) > ﬂ (7)

Definition 4 (H;" and H,;”) For eachi, define

1
H = EA > E(XylHi = 1)
e
_ 1
H = > B(Xy|H = -1).
X -
JEX;

Note that (7) implies thakl;" — H,” > 28.
Definition 5 (¢;) For eachi, defineg; : R — R to be the affine transformation of the real
line that mapsH;“ tol,andH; to—1;thatis,
2z — (H + H])
(\r) )Y = —————
oilo) = =t

Definition 6 (;) For eachi, define

A 1
Hi = ¢; B2 Z Xij |
JEX;

so that
E(H;|H; = h;) = h;. 8)
Our next definition is the linear approximation £g,; that we will analyze.

Definition 7 (f) Define R
f(X) =sign(wo +w - H),

whereH = (Hy, ..., Hy,).

As we have discussed, a key aspect of the analysis will begtmzmatzle w;H; is
likely to be a good approximation @le w; H;. To control the variance of

k A~
i=1

for this purpose, we need to show that we can assume withssitdbgenerality that each
weightw; is not very big. This is the subject of the next lemma.
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Fig. 2 The dependence structure of the probability distributisadlin the proof of Lemma 4.

Lemma 4 There is a hidden variable sourcg whose total variation distance from is at
moste, and for whichV 2 max; <;<, |w;| = O(log(k/€)) and|wo| = O(k log(k/e)).

Proof: Suppose we modified by adding a secondary lab¥l and a layer of hidden vari-
ablesHy, ..., Hy, so that

— Y is obtained by flipping” with probabilitye/(k + 1),

— the conditional distribution offy, ..., H;, givenY was the same as the old conditional
distribution giveny’, and

— eachH; was obtained by negating the valuef with probabilitye/(k + 1), and

— the conditional distributions a1, ..., X;,,, given H; were the same as the old condi-
tional distributions ofX;1, ..., X;m, given H,.

(See Figure 2.) If we did this, the joint distribution of
Y, Hiy ooy Hyy X115 ooy Xt s ooos Xkt s oos Xhomy
would have total variation distance at medtom the distribution over
Y, Hy,y ooy Hyy X115 00y X1y oo Xk oo X s

because the probability that any of flips are executed is at he+ 1)(e/(k + 1)) = €. This
means that the probability of error of any classifier withpesg to the original sourc® is
at moste more than its error probability with respect to the modifiedree@. Furthermore,

Y7H17 “ey Hk7X117 "‘7X1m17 "'7Xk17 7kak

have the same conditional independence structure as thmarsource, bulPr(H; =
hlY = y)is always in the intervale/(k + 1),1 — ¢/(k + 1)], and so iPr(Y = y). Thus,
for i > 1, since, for the modified soureg,

1 Pr(H; = 1|Y = 1)Pr(H; = —-1|Y = —1)
w; = = In - ~ = =
2 \Pr(H; =—1|Y = )Pr(H; = 1|Y = —1)




we have
1 ((e/(k: +1)) x (e/k + 1))
2 1x1
< w;
1 1x1
Sgh ((e/(k T1) % (k¥ 1))
and, similarly,

In (e/(kl-l- 1)) 4 % 25:1 In (e/(k+11)>z<le(k+1)>

< wg

1 1 —k 1x1
<In (m) +22 im0 (m) ’

and simplifying completes the proof.00

Now our goal is to approximate the optimal classifierdoiTo keep the notation simple,
until further notice, let us reuse the notatifi., w, etc. to refer to optimal classification for
Q, and dispense with the tildes. Another way to think of thikhat we are assuming without
loss of generality (module-approximation) that the weights of the optimal classifaar®
have magnitude at mogv .

From here, our analysis will make use of the standard noti@noeargin.

Definition 8 (1 and p) Define
u(h,y) =y (wo +w - h)
so that (4) can be rewritten as

Pr(Y =y,H=h)
Pr(Y = —y,H=h)

= exp (u(h,y)).

We can think op(h) = maxy u(h, y) as a measure of the extent to whiclletermines the
value ofy.

Our analysis will proceed by showing that, for ahy conditioned on the event that
H = h, the linear classifiey obtained by usingd1, ..., H;, makes prediction errors at a
slightly larger rate thary,pt. This will be achieved through two bounds. The first bound
will capture the intuition that, whep(h) is not too small, then approximatirgl by H
is unlikely to perturb correct classifications. The secoondral will capture the intuition
that, wherp(h) is small, every,p is inaccurate enough that any classifier approximates its
accuracy to within a small factor.

We begin with the case in whichis big.

Lemma5 For anyh,

Pr(f(X) # fopt(X,H)H = h)

IN

k A~
Z w; (Hi — Hz)
=1

Pr<_ zp(h))H—h)

p(h)*B*m
(‘” (m)) '

IN



Proof: The first inequality follows directly from the definition pf
By (8), after conditioning o = h, we haveE(H;) = h;, So the expectation of

is 0. To apply the Hoeffding bound (Lemma 1), we need to show that the sum of
independent random variables, each of which takes valuassmall interval. Unwinding
the definition ofd;, we get

k
S:;wl hi_i |X|Z

JEX;

H++H—
=sz hit e 72 X
— H; (A H; JGX

Moving out the sum ovey,

, H' +H; 1 -
=Y Y <|X| WHT —H) A, H)X”>' ©)

i=1jeX;

The independence structure of the source implies that, edtaitioning on the event that
Hi = hq,..., H, = hy, the various variableX’;; are mutually independent, and therefore so
are the various terms of the double sum in (9). Recall thati¢ffimition of 5-effect implies
that (H;” — H; ) > 28, and that we assumed tHat;| > m. Since|w;| < W, each term in

(9) can be upper and lower bounded as follows:
( hi HY + H ) W
w; | == — —
[ e —))  26m

" ( hi Hf +H 1 X__)
-\ S - a) xlE - H) T

( hi HY +H ) w

. _ + s
|| |x|(H - H) 2pm

so that each term of the right-hand side of (9) is bounded imngarval of Iengthﬂm.
Applying the Hoeffding bound (Lemma 1) to the terms of theéntigand side of (9), we get

sz i— H

p(h)*B°m
= e (_Q (khﬂ(k/e) )) ' (10)

which completes the proof.0
Now, let us work on a bound for smai(h). Here is the basic idea. We can pair each bor-
derline case with its counterpart in which the label is nedat.emma 3 implies that the two

> p(h )H h}



cases are nearly equally likely. Since both the linear dlassind the Bayes optimal clas-
sifier make an incorrect classification in one of the caseslitlear classifier approximates
the accuracy of the Bayes optimal classifier, on average,lmweerline cases.

Lemma 6 For all h,
Pr(f(X) # Y[H = h) < "™ Pr(fope(X,H) # Y|H = h). (11)

Proof: When a pair of examples differs only in the label, any cléessiin particular, the
linear classifierf, must classify one example of each pair correctly, thus

Pr(f(X)# Y|H =h)
<) max{Pr(Y =1]X =x,H=h),Pr(Y = —1|X = x,H = h)}

xPr(X = x|H = h).
SinceHq, ..., H;, form a Markov blanket foi’,

Pr(f(X)# Y[H =h)
<Y max{Pr(Y =1|H =h),Pr(Y = —1|[H=h)} x Pr(X =x[H =h). (12)

Supposey maximizesPr(Y = y|H = h). Then
Pr(Y = y|/H = h)
Pr(Y = —yH=h)
_ Pr(Y=y,H=h)
- Pr(Y=-y,H=h)
= exp(u(h,y)) (by Lemma 3)
< exp(p(h)).

Putting this together with (12), we get

Pr(f(X) # Y[H =h)
<> ™ min{Pr(y = 1/H = h), Pr(Y = —1/H = h)} x Pr(X = x/H = h).
The Bayes optimal classifier cannot avoid making a mistakenerlabel or the other which

implies (11). O
Proof (of Theorem 1): Let us condition on the event that

Hi=hi,..., H, = h. (13)
We have

Pr(f(X) #Y[H = h)
< Pr(fopt(X, H) # Y[H = h) + Pr(f(X) # fopt(X, H)[H = h).
Letx > 0 be a parameter, independenttofbut possibly depending on the source), that

will be fixed later in the argument. We will ugseas a dividing line between large and small
margin cases. In particular, f{h) < In(1 + ), then Lemma 6 implies

Pr(f(X) # Y[H = h) < (1 + 0)Pr(fopt (X, H) # Y[H = h).
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If p(h) > In(1 + x), then Lemma 5 implies that

e (kan(k/e) ln(l/opt))
B B2In%(1 + k)

suffices for
Pr(f(X) # Y|H = h) < Pr(fopt(X,H) # Y |H = h) + opt”.
So, in either case,
Pr(f(X) # Y[H =h) < (1 + &)Pr(fopt (X, H) # Y|H = h) + opt.
Sincex was chosen independently lof averaging oveh yields
Pr(f(X) #Y) < (14 5)Pr(fopt (X, H) # Y) + opt®.

Letting = go to zero arbitrarily slowly wittopt and setting: = opt?> completes the proof.
0

The hidden variables can afford to be much less influentithigf have similar degrees
of association with the class designation. This is illustleby considering the idealized case
in which all associations are equally strong.

Theorem 2 Suppose there i< « < 1/4 such that each hidden variablg; hasPr(H; =
ylY =y) =1/2 + aforbothy € {—1,1}.

If in addition for 3 > 0, each hidden variablg-affects at leasitn observed variables,
andopt is the error rate of the Bayes optimal classifier, for

a0
o ((elijop

then there is a linear classifier whose error rate is
opt + o(opt).

Proof: The proof is a modification of the proof of Theorem 1; we ondgcribe the modifi-
cations that are needed.

First,w; = In 122 for all i, sow; = O(a).

Replacing (10) with

k _ 2 2
y (Z w; (H; - fia-)) > p(hﬂ < exp (%) (14)
=1
and otherwise arguing as in Theorem 1 leads to the concltisain

2
— (ka loi(zl/opt))
suffices for the linear classifier to have eroptt + o(opt).

As argued in the proof of Theorem 1, the error rate of the Baymsmal classifier
that uses only the observed variables is at least as largeeasritor rate of the optimal
classifier that also uses the hidden variables, and, foceswonsidered in this theorem, the
latter classifier simply takes a majority vote over the valoéthe hidden variables. This
classifier is incorrect when a majority of the hidden vaiattiake values different from the
label. Applying the Hoeffing bound, this happens with praligbexp(—2(a?k)), and thus,
ok = O(log(1/opt)) which completes the proof.0

Pr
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4 A convex loss bound

In this section, we show that a convex upper bound on the eterf a linear classifier can
in turn be bounded in terms of the error rate of the Bayesiwgitclassifier. We will use the
hinge loss.

Definition 9 (Hinge loss) For z € R, define the hinge los%z) by max{1 — z,0}.

Next is our bound on the hinge loss of a linear classifier. Nlo& the bound isiot in
terms of the optimal hinge loss, but rather in terms of thénogdt prediction error rate. In
fact, as before, we actually prove a bound in terms of ther eate of a classifier that has
access to the hidden variables.

Theorem 3 Suppose that a hidden variable model satisfies,sfar 0, that each hidden
variable g-affects at leastn observed variables, for

2 k
kin? (5h)
/BQOth

whereopt is the error rate of the Bayes optimal classifier. Suppose
X = (X11, 0, Xtmgsooos X1 o0y Xbomy, )
are the observed variables. Then there is a weight vector
V = (V11, s Vlmy s ooy Ukl s Vkrng )

andvg € R such that
1
E(l(Y(vp+v-X))) =0 (opt log o_pt) .

Our proof of Theorem 3 has two parts. First, we bound the @rpeloss of the clas-
sifier that minimizes the classification error rate. Then Wwewsthat the linear classifier
constructed in Theorem 1 approximates this loss.

Lemma 7 If wo, ..., wy, are the weights of the Bayes optimal classifier (for miningzrror
rate using the hidden variablds) andw = (wy, ..., wy), then

E({(Y (wo + w - H))) = O(opt log(1/opt)).
Proof: Recall the following definitions:
p(h,y) =y (wo +w-h), p(h) =maxu(h,y).
Since the Bayes optimal classifier picks the more likely @alty, Lemma 3 implies that

Pr(Y # fopt(X,H)[H = h)

T=Pr(Y Z fop O HE =)~ P70
which in turn implies
Pr(Y # fopt(X, H)H = h) = ——— (15)

= T+ exp(p(h)
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and therefore

1
e he{;,l}k T eppm) < T (o

Furthermore,

E(((Y (wo +w - H)))
=E({(Y(wo +w-H)) x 1,5)>1) + E((Y (wo + w - H)) x 1,5)<1),

v_\/herelp(H)>1 is the _indigator function for the event thatH) > 1. Since for any realiza-
tionh of H, p(h) < 1implies{(Y (wg + w - h)) < 2, we have

E(U(Y (wo + w - H))) < BE(Y (wo +w - H)) % Lygrys1) + 2Pr(p(H) < 1).  (17)

Let us start by bounding the first term of (17). Since

— p(h,y) > 1impliesé(y(wo + w - h)) =0,
= p(h,y) € {—p(h), p(h)}, and
— always,{(y(wo +w - h)) <1+ p(h),

we have

E({(Y(wo +w-H)) x 1,51)>1)

<Y (14 p(h) x Pr(u(H,Y) = —p(W)[H = h) x Pr(h)
he{-1,1}*:p(h)>1

< 3 (14 p(h) x Pr(u(H,Y) = —p(h)[H = h) x Pr(h)

he{-1,1}*
1+ p(h) r b
S Trempy <P ©r09)

_ 1+ p(h)
= ( Z T ep(p(a)) Pr(h))

he{—-1,1}*:p(h)<21In(1/opt) L

1+ p(h)
+ _ 1) prn)
(he{—l,l}k:p(h)>2ln(l/opt) 1+ exp(p(h) )

1+2mn(/opt) o
: (he{—lJ}k:Z 1+ exp(p(h)) x P (h))

p(h)<21In(1/opt)
1+ 21In(1/opt)
+ ( > eyl Pr(h)
he{—1,1}#:p(h)>21n(1/opt)

sinceopt < 1/2, and(1 + z)/(1 + exp(z)) is nonincreasing in whenz > 21n 2. Applying
(16) to bound the first sum, and noting that the second summ% which is
o(optlog(1/opt)), we get

E((Y (wo +w - H)) X 1ye)>1) = O(opt log(1/opt)). (18)
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Now, let us turn to the second term of (17). By (15), the caadél probability that the
Bayes optimal algorithm makes a prediction error, givet tiih) < 1, is at least /(1 + ).
Thus
opt > PrF) <)
1+e

which impliesPr(p(H) < 1) = O(opt). Putting this together with (18) and (17) completes
the proof. O

What remains is to show that a linear classifier in the obskvaeables can approximate
the ¢-loss of the Bayes optimal classifier. It will be useful foistto use a conversion from
tail bounds to bounds on the expectation. While resultsisfabrt are known, we include a
proof because we don't know a reference for precisely thitesient.

)

Lemma 8 If Z is a real-valued random variable, > 0, and for ally > 0, Pr(Z > n) <

e*’72“, then
E(Z) < 3y/1/u.

Proof: We have

E(Z) <Y \i/uPr(Z € (v/(i — 1)/u, /i/u])
=1
< VifuPr(Z > /(i 1) /u)
=1
<Y Viju(lfe)e™
=1

2

l/ui(e —

completing the proof. O
Now we are ready for the loss bound.

Lemma?9 If

2 k
kin? (5h)
/BQOth

then there is a weight vector
V = (V11, ey Vlimy s ooy Ukl s Vkrny )
andvg € R such that
[E((Y (vo + v - X)) — E(¢{(Y (wo +w - H)))| = O(opt).

Proof: Define the linear classifief as in the proof of Theorem 1. Letandv, be the pa-
rameters off, as in the statement of this theorem. Recall hats constructed by replacing
eachH; with H;, a linear combination of some of the observed variablestlaev applying
the Bayes optimal classifier for using the hidden variallemsequentlyy - X = w - H and
vy = wo.

Let Q be the approximation t& constructed in Lemma 4. For now, let us continue our
analysis for such a soureg, and return to treating the general case at the end of thé. proo
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Since/ is 1-Lipschitz,

[E((Y (vo + v - X)) = E(((Y (wo + w - H)))|
< E(|(vo + v - X) = (wo +w - H)|)
=E(lw- (H-H)))

sincev - X = w - H andvg = wo.
The proof of Lemma 5 establishes that, for 0,

2 02
- ‘B m
P C(H-H)|>1n) < -
r(fw - )LnLexp( an(k/e))
which means, using Lemma 8, that

N 112 €
B(jw - (8 - B < ey | 2O

for a constant; .
We are almost there, but our analysis was fordtag@proximationQ to P that satisfies
|w;| = O(log(k/¢)) for i > 1 and|wg| = O(klog(k/¢€)). We have showed that

k1n?(k/€)
B*m
Now we want to show thd (4(Y (vo+v-X))) cannot be too much less thanp (£(Y (vo+

v-X))) andEq (4(Y (wo +w - H))) cannot be too much more th@p (£(Y (wo + w - H))).
Since

[EQ(U(Y (vo + v - X)) — Eq(U(Y (wo + w - H)))| < 1 (19)

[Bp (Y (00 +v - X)) — Bo(E(¥ (v + v - X)))| < (ga;emvo v X») drv (P,Q),

(20)
we need a bound of(Y (vg + v - X)). We have
(Y (vo + v - X))
<1+ [Y(vo+v-X)|
<1+ vl + v+ X|. (21)
Recall thatv - X = w - H, so
v X[ =|w-H| < |[|w||o|[H|l1 < O(log(k/e))|[H]|1.
Definition 6 (of f1;) immediately implies thajtr7;| < 3 for all 4, so that
N 2k
[[H|1 < 5 (22)

Lemma 4 givesy = wg = O(klog(k/¢)), and putting this together with (22), (21) and (20),
we have

|Ep(¢(Y (vo + v - X)) — Eq(£(Y (vo + v - X)))| <O (M%Uf/ﬁ)) .
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We may similarly show that
[Ep(U(Y (wo + w - H))) — Eq(é(Y (wo +w - H)))| < O (kelog(k/c))

(note the absence &f). Applying (19) yields

2
Ep (Y (vo +v - X)) — Ep(U(Y (wo + w - H)))| < &1 "’11;2(:1/6) +0 (k“"%(k/e)> .

Settinge = © B(]’C—ff makes the second term at mest, and applying the bound on
completes the proof. O

5 Bayes Optimal Models are Two-layer Neural Networks

In this section, we show that, even with further restrictiam the structure of the source, a
two-layer neural network is needed to compute the exact 8agtmal classifier.

Theorem 4 Suppose that there are real constants3 > 0 and a positive integem such
that

— eachH; is independently equal t6 with probability1/2 + «,
- m; =mforall s >0, and
— eachX;; is independently equal t&; with probability1/2 + 3.

Defined = 1422 g — % and, for each € {1, ..., k}, si(x) = Y7 i

The Bayes optimal classifier is

A+1
= sign (Z log ( B5(0 1+ A )) (23)

Proof: Notice that for any € {—1, 1},

Pr[Y = y|(Vi,j) Xij = zij]

_ Pr[Y =y|Pr[(Vi, j) Xy = z45]Y = y]
N Pr((Vi, j)X;j = 4]

_ Pr((Vi,j)X;; = x5V = y]

o 2Pr[(Vi,5) X5 = @)

and therefore

Pr[Y = 1|(Vi, ) Xi; = x45] > Pr[Y = —1|(Vi, j) X5 = x45]
if and only if

Pr((Vi, j)X;; = x;|Y = 1] > Pr[(Vi, ) X;; = x5V = —1].
Therefore, the Bayes optimal classifier gives

h(x) = sign (Pr[(Vi, /) Xi; = x4V = 1] — Pr[(Vi, j) X5 = 245V = —1]).
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Sincelog is a monotone function we also have

h(x) = sign (log Pr[(Vi, ) Xi; = x4;|Y = 1] — log Pr[(Vi, j) X;; = z4;|Y = —1])
Pr((Vi, j)X;j = z5|Y = 1] )

oo (log Pr((Vi, j) Xij = zi;]Y = —1] @)

Let S; = H,Y (so thatS; that is1 with probability 3 + o and—1 with probability & — ),
andT;; = X;;H; (s0T;; is 1 with probability% + B and—1 with probability% — ). Now
sinceT;; andsS; are independent df, and, the eventgV;)T;; S; = z;;] are independent

PI‘[(VZ,])XU = l’ij|Y = 1]
= Pr((Vi,j)T3; ;Y = zi;|Y = 1]
= Pr[(Vi, j)T3;S; = xi5|Y = 1]
= Pr((Vi,)Ti;S; = 4]
k
= [[Prlvi)Ti; Si = wi).
=1

Similarly,

Pr((Vi, /) Xij = zi;|Y = —1] = H Pr((Vj)T;;Si = —xij]-

By (24) we get

h(x)

— gien 10 Pr[(Vi,j)Xij = mij|Y = 1]
- . Pr((Vi,7)Xi; = x4V = —1]

. k Pr((V4)T;;Si = x45]
= sign (Z tog (Pruwmﬂ% = —;w]) ' -

=1

Now, since for every,

Pr|
_ ﬁ PI‘[Tij = :E”]
=1 PI‘[TZ'J' = :Clj]
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we have

Pr((Vj)T;;5; = xij]

= Pr[(V))T, ij = l’z]]PI‘[S = 1]+ Pr[(Vj)T, i = xij]Pr[Si =—1]
(Pr[(V))T;j = wi;]A + Pr[(V))Ty; = —a;))

Pr((V))T;; = ;] (( Pri(vy)Ti; = m“]]) A+ 1)

~a)
( ) Pr((V/)T; = —i
[1; Pr(T;; = w4
_ (% a) Pr((V5)T;; = —x4j] (H Pr[TZJJ x;}) A+ 1)
(5-a) Pl

Pr[TJ = ] n 1)

Pr[TZJ = —x;]

and, similarly,
PI‘[(V])T”S = —:Eij]
= Pr[(Vj)T. ij = xij]Pr[S' =1]
+Pr((Vj)T;; = x4;]Pr[S; = —1]

(% - O‘) (PI‘[(V]) ij = —xu]A—FPI‘[(V_]) ij = xz]])

(% — a) Prl(V))Ti; =~y (A n ﬁ Bzij) .

j=1

k Bw” +1
= sign (;log ( A+H Bmij ))
Aexp (E " (In B):cij> +1
= sign
o1 A+ exp (Zm:l (In B)mij>
— sign (Z log (le A++A1)>

completing the proof. O
One useful representation uses the following Taylor series

N AN Ve 3+1 z—1 5+...
N z+1 3\z+1 5\z+1

Now by (25),

M;r

and gives

( 20—1

0o 206) m

. -1 (1

x) = slgn< E E 57 — 1 tanh?~! (ijg_l(lnB)xij))7

i=14¢=1

(26)
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e?v—1

wheretanh y = S

The hyperbolic tangent is a standard squashing functiothfohidden nodes in a two-
layer neural network [16], and raising it to a positive odd&/pomaintains the sigmoid shape.
Thus the Bayes optimal classifier described in Theorem 4 eahdught of as a two-layer
neural network.

The classifier of (23) approximately,

— for eachi, computes an estimaié of H; by taking a majority vote ovek;1, ..., X;m,
and
— outputs a vote ovev;.

Intuitively, this is not a linear classifier, since, for exaley X,,,, matters less if the value of
V; is already more-or-less determined by the valuex'gf ..., Xj(,,,_1). This is formalized
in the following.

Theorem5 If k = m = 3, for anya > 0, there is a value o8 € (0,1/2), so that the
classifierh defined in (23) is not linear.

Proof: Assume for contradiction that € R*" is the weight vector of a linear classifigr
equal ton, i.e.

sign ZZwijmij = h(x)
(]

forall x e {—1,1}F™.
We claim that this implies that computes a majority vote. By symmetry, for anyany
permutationy of {1, ..., k} and any permutatiog over{1, ..., m}, we have

h(x) =sign | Y > wijzeiypi) | - (27)
i

In general, for reak andb, if sign(a) = sign(b), thensign(a + b) = sign(a) = sign(b).
Thus, (27) implies

h(x) = sign Z Z Z Z Wij T (i)(5)
o ¥ i g

This in turn implies

h(x) =sign | (k— 1)I(m — 1)! Zwij inj
.3 (2]

because the permutatiogsand+ pair each weight with each feature an equal number of
times. Rescaling, we get

h(x) = sign Zmij ,
¥

the majority function.
To arrive at a contradiction, suppoke= m = 3, and

x=((1,1,1),(1,-1,-1),(1,-1,-1)).
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Note that the majority function evaluatesit@mn x. On the other hand, using the definition
in (23), we have

. B*A 41 B™'A+1
h(x) = sign (log (m) + 2log (m .

As 3 gets closer td /2, B gets arbitrarily large. But

B3A+1 B lA+1
lim log [ 2212 ) 4 2l0g ( 221~
Bgllooog(B3+A)+ Og(B*1+A

=logA—2logA <0

and therefore there is a value ®Guch that:(x) = —1, a contradiction. O

6 Some related work

A number of papers have considered why the Naive Bayes #igaorivhich outputs a linear
hypothesis, works well despite class-conditional depeciés among the features [12,3,
21]. While Naive Bayes works suprisingly well, other linedassifiers typically perform
better [8,7]. Note that Naive Bayes may not work for the sesmonsidered in this paper.
The hidden variable model studied here is a generalizatidcheoNeyman Model of
Evolution [24]. A PAC algorithm for learning the probabjlidlistribution over the leaves for
such models is known [9]. Using known tools, this algoritham e used as a subroutine in
a polynomial-time algorithm for approximating the Bayeptithal classifier for sources in
which the class-conditional distributions are of this fdin10]. The linear approximation
pointed out in this paper could be a step toward a more effialgorithm for this problem.
The proof of Theorem 1 used the observation that the Bay@salptlassifier that has
access to the hidden variables can be approximated by thsif@a using small weights.
Some recent research [30,11] established a related réseilgnalogous statement in our
setting would concern the case in which the marginal ovehitiden variables is uniform.

7 Conclusion

The analysis of this paper illustrates the expressive pofimear models even in the pres-
ence of class-conditional dependence among the featuheseXact mathematical state-
ments of this paper are among many possible choices tha tfidetween a clean and
interpretable analysis, and a broadly relevant one, iedifft ways.

For example, it would not be hard to extend the approximatioapply to sources in
which some observed variables depend on multiple hiddeablas. As long as each hidden
variable has enough variables that depend on it alone, wearsstruct the linear approxi-
mation as a function only of the observed variables thatwigpa specific hidden variables.
Our analysis may also easily be extended to the case in whichlanited number of vari-
ables depend directly on the class designation (as was dqulieitty in the preliminary
version of this paper [6]).

If each hidden variabléf; can take on more than two values, it is not hard to see that
the Bayes optimal classifier that has access to them is a Ilfoaation of binary-valued
indicator functions for events likéf; = h;, so our analysis should extend easily to this
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case (though we would appear to need a collection of obsemeables for each hidden
variable-value pair).

The Hoeffding bounds that we use to analyze concentratiamticequire that the vari-
ables in the sums are binary-valued, so our analysis carbalstraightforwardly extended
to real-valued observed variables.

The analysis can also be extended without much modificatidrandle limited condi-
tional dependence among the observed variables assowidted given hidden variable,
with some degradation in the bounds, by applying genet#izs: of the Hoeffding bound
to this case (see [29, 13, 26]).

We also provided a bound on the hinge loss of the linear ¢lessi terms of the Bayes
error rate, thereby showing that the Bayes error rate capj®zimated efficiently. It is not
clear whether this approximation bound can be improved.e@&grools that have recently
been developed for the analysis of learning with convexfiasstions [34, 2] may be useful
for this.

As we mentioned previously, our analysis guarantees a rckgggroximation to the
Bayes optimal aspt, the Bayes optimal error, gets small, which explains whyene-
sources are needed in this case. It would be interesting¢ondime the optimal dependence
of parameters in bounds like ours, suchhag Theorem 1, opt.

Finally, it may be interesting to explore the possible tdfiebetween the computational
complexity of learning algorithms and the quality of thgdpaoximations to the Bayes opti-
mal error rate for sources like this, possibly exploiting timear approximation pointed out
in this paper, among other things.
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