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Linear classifiers are nearly optimal
when hidden variables have diverse effects

Nader H. Bshouty · Philip M. Long

Abstract We analyze classification problems in which data is generated by a two-tiered
random process. The class is generated first, then a layer of conditionally independent hidden
variables, and finally the observed variables. For sources like this, the Bayes-optimal rule
for predicting the class given the values of the observed variables is a two-layer neural
network. We show that, if the hidden variables have non-negligible effects on many observed
variables, a linear classifier approximates the error rate of the Bayes optimal classifier up
to lower order terms. We also show that the hinge loss of a linear classifier is not much
more than the Bayes error rate, which implies that an accurate linear classifier can be found
efficiently.

Keywords learning theory· bayes-optimal· linear classification· hidden variables

1 Introduction

In many classification problems, groups of features are positively associated, even among
examples of a given class. For example, when classifying news articles as to whether they
are about sports or not, words about soccer tend to appear in the same articles. Similarly, dis-
eases often coordinately affect the production rates of members of biomolecular pathways.

One way to model this phenomenon is to use a probability distribution with hidden
variables [18,4,33,25,22]. In one model of this type, the class designation directly and con-
ditionally independently affects the hidden variables, each of which in turn drives a set of
observed variables (see Figure 1). Each hidden variable canbe interpreted as indicating
whether a group of observed variables have been collectively affected by the class of the
item. For example, a hidden variable could indicate whetheran article is about soccer or
not. Its descendents would include words that are especially common in articles about soc-
cer, like “corner” and “striker”. It is intuitive that the Bayes optimal classifier for a source
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Fig. 1 A probability model in which the dependence of the observed variables on the class designation is
mediated by a layer of hidden variables.

like this is a two-layer feed-forward neural network, with the hidden layer of the neural net-
work corresponding to the layer of hidden variables in the generative model. (We provide a
proof because we are not aware of a reference for this in the literature.)

Despite this fact, for many problems clearly possessing such hierarchical structure,
learning algorithms that use linear hypotheses achieve excellent, often even state-of-the-
art, performance (see, e.g. [20,28,32,31,19]). This mightappear paradoxical, because one
might think that such algorithms must be doomed to fail because they use an inordinately
limited hypothesis space.

In this paper, we show that, despite the fact that the optimalclassifier has a more complex
structure, a linear classifier can provide a good approximation. We also show that the hinge
loss of the linear classifier is not much more than the Bayes error rate; this can be combined
with known tools [34,2] to imply that nearly optimal accuracy can be obtained efficiently.
Both results hold when the hidden variables influence many observed variables – this is to
be expected for example in text classification problems, where subtopics may have many
constituent words.

Here is the rough idea of the proof. When a hidden variable affects many observed
features, a linear combination of those observed features should be expected to be highly
concentrated – the combination will be close to one value when the hidden variable takes
one value, and close to another value when the hidden variable takes the other value. Conse-
quently, this linear combination of the observed features can be viewed as an approximation
to a rescaling of the hidden variable. If we replace each hidden variable with the appropriate
linear combination of the observed variables that it affects, and construct a linear classifier
using the replacements, the result is a linear classifier of the original features.

2 Definitions

2.1 The structure of the source

In a hidden variable model, the joint distribution of the class labelY , hidden variables
H1, ..., Hk, and observed variablesX11, ..., X1m1

, ..., Xk1, ..., Xkmk
(all of which take val-

ues in{−1, 1}) satisfies the conditional independence constraints shownin the Bayes Net of
Figure 1. The hidden variablesH1, ..., Hk are collectively conditionally independent given
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the class designationY . Each hidden variableHi in turn has a collection of observed vari-
ablesXi1, ..., Ximi

that are conditionally independent givenHi.
We can think of the model as generating labeled random examples(x, y) in stages, by

– generating the class labely, and fixing it, then
– independently sampling the hidden variablesh1, ..., hk using the appropriate class con-

ditional distribution, fixing them, and finally
– independently sampling the observed variables

x11, ..., x1m1
, ..., xk1, ..., xkmk

,

each from the appropriate conditional distribution given the values of its parent.

Note that we may assume without loss of generality that for any indicesi andj, we have

Pr(Xij = 1|Hi = 1) > Pr(Xij = 1|Hi = −1),

since otherwise, we could replaceXij with its negation.

Definition 1 (β-effect) We say that a hidden variableHi β-affectsobserved variableXij if

Pr(Xij = 1|Hi = 1)−Pr(Xij = 1|Hi = −1) > β.

2.2 Other probability tools

Definition 2 (Total variation distance) Thetotal variation distancebetween probability dis-
tributionsP andQ over a common domainU , denoted bydTV (P,Q), ismaxE⊆U |P (E)−

Q(E)|.

Lemma 1 (Hoeffding bound [17], see [27])Let U1, ..., Uℓ be independent real random
variables, each of which takes values in an interval of length κ. Then

Pr

[∣

∣

∣

∣

∣

ℓ
∑

i=1

Ui −E

(

ℓ
∑

i=1

Ui

)∣

∣

∣

∣

∣

≥ γ

]

≤ 2e−
2γ2

κ2ℓ .

3 Linear approximation

Here is our main result.

Theorem 1 Suppose that a hidden variable modelP satisfies, forβ > 0, that each hidden
variableβ-affects at leastm observed variables, for

m = ω

(

k log2(k/opt) log(1/opt)

β2

)

,

whereopt is the error rate of the Bayes optimal classifier. Suppose

X = (X11, ..., X1m1
, ..., Xk1, ..., Xkmk

)

are the observed variables. Then there is a linear classifierf such that

Pr(X,Y )∼P (f(X) 6= Y ) ≤ opt + o(opt). (1)
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Note that, asopt gets smaller, (1) guarantees a closer approximation. This explains why
the bound onm grows with1/opt.

We prove Theorem 1 through a series of lemmas. We will establish the stronger guar-
antee that the linear classifier approximates the behavior of an idealized classifier that has
access to the hidden variables. The optimal classifierfopt that uses the valuesh1, ..., hk of
the hidden variablesH1, ..., Hk along withx11, ..., xkmk

is at least as accurate as the opti-
mal classifier that only usesx11, ..., xkmk

, since when optimizing over classifiers that have
access toh1, ..., hk, one possibility is use a classifier that ignores them.

Our first lemma is thatfopt depends only on the hidden variables.

Lemma 2 For any realizationh of the hidden variables, and any realizationx of the ob-
served variables,

Pr(Y = 1|H = h,X = x) = Pr(Y = 1|H = h), (2)

so that
fopt(h,x) = argmaxyPr(Y = y|H = h). (3)

Proof: Since
fopt(h,x) = argmaxyPr(Y = y|H = h andX = x)

and (2) follows from the fact thatH1, ..., Hk form a Markov blanket forY , we get (3). ⊓⊔

Our next lemma, which is proved using established techniques [14], characterizesfopt.

Lemma 3 There is aw ∈ R
k and aw0 ∈ R such that, for all realizationsh = (h1, ..., hk)

of the hidden variables, and all realizationsx = (x11, ..., xk,mk
) of the observed variables,

Pr(Y = y,H = h)

Pr(Y = −y,H = h)
= exp (y (w0 +w · h)) , (4)

and therefore
fopt(h,x) = sign(w0 +w · h).

Proof: Maximizing the right-hand side of (3) is equivalent to maximizing

Pr(Y = y|H = h)

Pr(Y = −y|H = h)
=

Pr(Y = y,H = h)

Pr(Y = −y,H = h)
, (5)

which decomposes nicely, facilitating analysis, as we willsee.
The odds ratio (5) can be written as follows

Pr(Y = y,H = h)

Pr(Y = −y,H = h)
=

Pr(Y = y)

Pr(Y = −y)

k
∏

i=1

Pr(Hi = hi|Y = y)

Pr(Hi = hi|Y = −y)

and a case analysis verifies that for eachi, we have

Pr(Hi=hi|Y =y)

Pr(Hi=hi|Y =−y)
= exp

(

y

2
ln

(

Pr(Hi=1|Y =1)Pr(Hi=−1|Y =1)

Pr(Hi=−1|Y =−1)Pr(Hi=1|Y =−1)

)

+
yhi
2

ln

(

Pr(Hi=1|Y =1)Pr(Hi=−1|Y =−1)

Pr(Hi=−1|Y =1)Pr(Hi=1|Y =−1)

))

.

Thus, if for eachi ∈ {1, ..., k}, we define

wi =
1

2
ln

(

Pr(Hi = 1|Y = 1)Pr(Hi = −1|Y = −1)

Pr(Hi = −1|Y = 1)Pr(Hi = 1|Y = −1)

)

,
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let

w0 = ln

(

Pr(Y = y)

Pr(Y = −y)

)

+ 1
2

∑k
i=1 ln

(

Pr(Hi=1|Y=1)Pr(Hi=−1|Y=1)
Pr(Hi=−1|Y=−1)Pr(Hi=1|Y=−1)

)

(6)

and setw = (w1, ..., wk), we get (4) which immediately implies thatfopt(x,h) = sign(w0+

w · h). ⊓⊔

Our next lemma will concern estimates of the hidden variables constructed from the
observed variables. First, let us define some notation.

Definition 3 (Xi) For eachi, letXi consist of all indicesj such that

Pr(Xij = 1|Hi = 1)−Pr(Xij = 1|Hi = −1) > β. (7)

Definition 4 (H+
i andH−

i ) For eachi, define

H+
i =

1

|Xi|

∑

j∈Xi

E(Xij |Hi = 1)

H−
i =

1

|Xi|

∑

j∈Xi

E(Xij |Hi = −1).

Note that (7) implies thatH+
i −H−

i > 2β.

Definition 5 (φi) For eachi, defineφi : R → R to be the affine transformation of the real
line that mapsH+

i to 1, andH−
i to −1; that is,

φi(x) =
2x− (H+

i +H−
i )

H+
i −H−

i

.

Definition 6 (Ĥi) For eachi, define

Ĥi = φi





1

|Xi|

∑

j∈Xi

Xij



 ,

so that
E(Ĥi|Hi = hi) = hi. (8)

Our next definition is the linear approximation tofopt that we will analyze.

Definition 7 (f) Define
f(X) = sign(w0 +w · Ĥ),

whereĤ = (Ĥ1, ..., Ĥk).

As we have discussed, a key aspect of the analysis will be to argue that
∑k
i=1 wiĤi is

likely to be a good approximation to
∑k
i=1 wiHi. To control the variance of

k
∑

i=1

wi
(

Hi − Ĥi
)

for this purpose, we need to show that we can assume without loss of generality that each
weightwi is not very big. This is the subject of the next lemma.
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Fig. 2 The dependence structure of the probability distribution used in the proof of Lemma 4.

Lemma 4 There is a hidden variable sourceQ whose total variation distance fromP is at

mostǫ, and for whichW
def
= max1≤i≤k |wi| = O(log(k/ǫ)) and |w0| = O(k log(k/ǫ)).

Proof: Suppose we modifiedP by adding a secondary labelỸ and a layer of hidden vari-
ablesH̃1, ..., H̃k so that

– Ỹ is obtained by flippingY with probabilityǫ/(k + 1),
– the conditional distribution ofH1, ..., Hk given Ỹ was the same as the old conditional

distribution givenY , and
– eachH̃i was obtained by negating the value ofHi with probabilityǫ/(k + 1), and
– the conditional distributions ofXi1, ..., Ximi

givenH̃i were the same as the old condi-
tional distributions ofXi1, ..., Ximi

givenHi.

(See Figure 2.) If we did this, the joint distribution of

Ỹ , H̃1, ..., H̃k, X11, ..., X1m1
, ..., Xk1, ..., Xkmk

would have total variation distance at mostǫ from the distribution over

Y,H1, ..., Hk, X11, ..., X1m1
, ..., Xk1, ..., Xkmk

,

because the probability that any of flips are executed is at most (k+1)(ǫ/(k+1)) = ǫ. This
means that the probability of error of any classifier with respect to the original sourceP is
at mostǫmore than its error probability with respect to the modified sourceQ. Furthermore,

Ỹ , H̃1, ..., H̃k, X11, ..., X1m1
, ..., Xk1, ..., Xkmk

have the same conditional independence structure as the original source, butPr(H̃i =

h|Ỹ = y) is always in the interval[ǫ/(k + 1), 1 − ǫ/(k + 1)], and so isPr(Ỹ = y). Thus,
for i ≥ 1, since, for the modified sourceQ,

wi =
1

2
ln

(

Pr(H̃i = 1|Ỹ = 1)Pr(H̃i = −1|Ỹ = −1)

Pr(H̃i = −1|Ỹ = 1)Pr(H̃i = 1|Ỹ = −1)

)
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we have

1

2
ln

(

(ǫ/(k + 1))× (ǫ/k + 1)

1× 1

)

≤ wi

≤
1

2
ln

(

1× 1

(ǫ/(k + 1))× (ǫ/k + 1)

)

and, similarly,

ln

(

ǫ/(k + 1)

1

)

+ 1
2

∑k
i=1 ln

(

ǫ/(k+1)×ǫ(k+1)
1×1

)

≤ w0

≤ ln

(

1

ǫ/(k + 1)

)

+ 1
2

∑k
i=1 ln

(

1×1
ǫ/(k+1)×ǫ(k+1)

)

,

and simplifying completes the proof.⊓⊔
Now our goal is to approximate the optimal classifier forQ. To keep the notation simple,

until further notice, let us reuse the notationfopt,w, etc. to refer to optimal classification for
Q, and dispense with the tildes. Another way to think of this isthat we are assuming without
loss of generality (moduloǫ-approximation) that the weights of the optimal classifier for P
have magnitude at mostW .

From here, our analysis will make use of the standard notion of a margin.

Definition 8 (µ and ρ) Define

µ(h, y) = y (w0 +w · h)

so that (4) can be rewritten as

Pr(Y = y,H = h)

Pr(Y = −y,H = h)
= exp (µ(h, y)) .

We can think ofρ(h) = maxy µ(h, y) as a measure of the extent to whichh determines the
value ofy.

Our analysis will proceed by showing that, for anyh, conditioned on the event that
H = h, the linear classifierf obtained by usingĤ1, ..., Ĥk makes prediction errors at a
slightly larger rate thanfopt. This will be achieved through two bounds. The first bound
will capture the intuition that, whenρ(h) is not too small, then approximatingH by Ĥ

is unlikely to perturb correct classifications. The second bound will capture the intuition
that, whenρ(h) is small, evenfopt is inaccurate enough that any classifier approximates its
accuracy to within a small factor.

We begin with the case in whichρ is big.

Lemma 5 For anyh,

Pr(f(X) 6= fopt(X,H)|H = h) ≤ Pr

(∣

∣

∣

∣

∣

k
∑

i=1

wi
(

Hi − Ĥi
)

∣

∣

∣

∣

∣

≥ ρ(h)
∣

∣

∣
H = h

)

≤ exp

(

−Ω

(

ρ(h)2β2m

k ln2(k/ǫ)

))

.
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Proof: The first inequality follows directly from the definition ofρ.
By (8), after conditioning onH = h, we haveE(Ĥi) = hi, so the expectation of

S =

k
∑

i=1

wi
(

Hi − Ĥi
)

is 0. To apply the Hoeffding bound (Lemma 1), we need to show thatS is the sum of
independent random variables, each of which takes values ina small interval. Unwinding
the definition ofĤi, we get

S =

k
∑

i=1

wi



hi − φi





1

|Xi|

∑

j∈Xi

Xij









=

k
∑

i=1

wi



hi +
H+
i +H−

i

H+
i −H−

i

−
1

|Xi|(H
+
i −H−

i )

∑

j∈Xi

Xij



 .

Moving out the sum overj,

S =

k
∑

i=1

∑

j∈Xi

wi

(

hi
|Xi|

+
H+
i +H−

i

|Xi|(H
+
i −H−

i )
−

1

|Xi|(H
+
i −H−

i )
Xij

)

. (9)

The independence structure of the source implies that, after conditioning on the event that
H1 = h1, ..., Hk = hk, the various variablesXij are mutually independent, and therefore so
are the various terms of the double sum in (9). Recall that thedefinition ofβ-effect implies
that(H+

i −H−
i ) ≥ 2β, and that we assumed that|Xi| ≥ m. Since|wi| ≤ W , each term in

(9) can be upper and lower bounded as follows:

wi

(

hi
|Xi|

+
H+
i +H−

i

|Xi|(H
+
i −H−

i )

)

−
W

2βm

≤ wi

(

hi
|Xi|

+
H+
i +H−

i

|Xi|(H
+
i −H−

i )
−

1

|Xi|(H
+
i −H−

i )
Xij

)

≤ wi

(

hi
|Xi|

+
H+
i +H−

i

|Xi|(H
+
i −H−

i )

)

+
W

2βm
,

so that each term of the right-hand side of (9) is bounded in aninterval of length W
βm .

Applying the Hoeffding bound (Lemma 1) to the terms of the right-hand side of (9), we get

Pr

[
∣

∣

∣

∣

∣

k
∑

i=1

wi
(

hi − Ĥi
)

∣

∣

∣

∣

∣

> ρ(h)
∣

∣

∣
H = h

]

≤ 2 exp

(

−2ρ(h)2β2m

kW 2

)

≤ exp

(

−Ω

(

ρ(h)2β2m

k ln2(k/ǫ)

))

. (10)

which completes the proof.⊓⊔
Now, let us work on a bound for smallρ(h). Here is the basic idea. We can pair each bor-

derline case with its counterpart in which the label is negated. Lemma 3 implies that the two
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cases are nearly equally likely. Since both the linear classifier and the Bayes optimal clas-
sifier make an incorrect classification in one of the cases, the linear classifier approximates
the accuracy of the Bayes optimal classifier, on average, over borderline cases.

Lemma 6 For all h,

Pr(f(X) 6= Y |H = h) ≤ eρ(h)Pr(fopt(X,H) 6= Y |H = h). (11)

Proof: When a pair of examples differs only in the label, any classifier, in particular, the
linear classifierf , must classify one example of each pair correctly, thus

Pr(f(X) 6= Y |H = h)

≤
∑

x

max{Pr(Y = 1|X = x,H = h),Pr(Y = −1|X = x,H = h)}

×Pr(X = x|H = h).

SinceH1, ..., Hk form a Markov blanket forY ,

Pr(f(X) 6= Y |H = h)

≤
∑

x

max{Pr(Y = 1|H = h),Pr(Y = −1|H = h)} ×Pr(X = x|H = h). (12)

Supposey maximizesPr(Y = y|H = h). Then

Pr(Y = y|H = h)

Pr(Y = −y|H = h)

=
Pr(Y = y,H = h)

Pr(Y = −y,H = h)

= exp(µ(h, y)) (by Lemma 3)

≤ exp(ρ(h)).

Putting this together with (12), we get

Pr(f(X) 6= Y |H = h)

≤
∑

x

eρ(h) min{Pr(Y = 1|H = h),Pr(Y = −1|H = h)} ×Pr(X = x|H = h).

The Bayes optimal classifier cannot avoid making a mistake onone label or the other which
implies (11). ⊓⊔

Proof (of Theorem 1): Let us condition on the event that

H1 = h1, ..., Hk = hk. (13)

We have

Pr(f(X) 6= Y |H = h)

≤ Pr(fopt(X,H) 6= Y |H = h) +Pr(f(X) 6= fopt(X,H)|H = h).

Let κ > 0 be a parameter, independent ofh (but possibly depending on the source), that
will be fixed later in the argument. We will useκ as a dividing line between large and small
margin cases. In particular, ifρ(h) ≤ ln(1 + κ), then Lemma 6 implies

Pr(f(X) 6= Y |H = h) ≤ (1 + κ)Pr(fopt(X,H) 6= Y |H = h).
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If ρ(h) > ln(1 + κ), then Lemma 5 implies that

m = Ω

(

k ln2(k/ǫ) ln(1/opt)

β2 ln2(1 + κ)

)

suffices for

Pr(f(X) 6= Y |H = h) ≤ Pr(fopt(X,H) 6= Y |H = h) + opt2.

So, in either case,

Pr(f(X) 6= Y |H = h) ≤ (1 + κ)Pr(fopt(X,H) 6= Y |H = h) + opt2.

Sinceκ was chosen independently ofh, averaging overh yields

Pr(f(X) 6= Y ) ≤ (1 + κ)Pr(fopt(X,H) 6= Y ) + opt2.

Letting κ go to zero arbitrarily slowly withopt and settingǫ = opt2 completes the proof.
⊓⊔

The hidden variables can afford to be much less influential ifthey have similar degrees
of association with the class designation. This is illustrated by considering the idealized case
in which all associations are equally strong.

Theorem 2 Suppose there is0 < α < 1/4 such that each hidden variableHi hasPr(Hi =

y|Y = y) = 1/2 + α for bothy ∈ {−1, 1}.
If in addition for β > 0, each hidden variableβ-affects at leastm observed variables,

andopt is the error rate of the Bayes optimal classifier, for

m = ω

(

log2(1/opt)

β2

)

,

then there is a linear classifier whose error rate is

opt + o(opt).

Proof: The proof is a modification of the proof of Theorem 1; we only describe the modifi-
cations that are needed.

First,wi = ln 1+2α
1−2α for all i, sowi = Θ(α).

Replacing (10) with

Pr

[

Y

(

k
∑

i=1

wi
(

Hi − Ĥi
)

)

> ρ(h)

]

≤ exp

(

−cρ(h)2β2m

α2k

)

(14)

and otherwise arguing as in Theorem 1 leads to the conclusionthat

m = ω

(

kα2 log(1/opt)

β2

)

suffices for the linear classifier to have erroropt + o(opt).
As argued in the proof of Theorem 1, the error rate of the Bayesoptimal classifier

that uses only the observed variables is at least as large as the error rate of the optimal
classifier that also uses the hidden variables, and, for sources considered in this theorem, the
latter classifier simply takes a majority vote over the values of the hidden variables. This
classifier is incorrect when a majority of the hidden variables take values different from the
label. Applying the Hoeffing bound, this happens with probability exp(−Ω(α2k)), and thus,
α2k = O(log(1/opt)) which completes the proof.⊓⊔
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4 A convex loss bound

In this section, we show that a convex upper bound on the errorrate of a linear classifier can
in turn be bounded in terms of the error rate of the Bayes-optimal classifier. We will use the
hinge loss.

Definition 9 (Hinge loss) For z ∈ R, define the hinge lossℓ(z) bymax{1− z, 0}.

Next is our bound on the hinge loss of a linear classifier. Notethat the bound isnot in
terms of the optimal hinge loss, but rather in terms of the optimal prediction error rate. In
fact, as before, we actually prove a bound in terms of the error rate of a classifier that has
access to the hidden variables.

Theorem 3 Suppose that a hidden variable model satisfies, forβ > 0, that each hidden
variableβ-affects at leastm observed variables, for

m = Ω





k ln2
(

k
βopt

)

β2opt2





whereopt is the error rate of the Bayes optimal classifier. Suppose

X = (X11, ..., X1m1
, ..., Xk1, ..., Xkmk

)

are the observed variables. Then there is a weight vector

v = (v11, ..., v1m1
, ..., vk1, ..., vkmk

)

andv0 ∈ R such that

E(ℓ(Y (v0 + v ·X))) = O

(

opt log
1

opt

)

.

Our proof of Theorem 3 has two parts. First, we bound the expected loss of the clas-
sifier that minimizes the classification error rate. Then we show that the linear classifier
constructed in Theorem 1 approximates this loss.

Lemma 7 If w0, ..., wk are the weights of the Bayes optimal classifier (for minimizing error
rate using the hidden variablesh) andw = (w1, ..., wk), then

E(ℓ(Y (w0 +w ·H))) = O(opt log(1/opt)).

Proof: Recall the following definitions:

µ(h, y) = y (w0 +w · h) , ρ(h) = max
y

µ(h, y).

Since the Bayes optimal classifier picks the more likely value ofy, Lemma 3 implies that

Pr(Y 6= fopt(X,H)|H = h)

1−Pr(Y 6= fopt(X,H)|H = h)
= exp(−ρ(h))

which in turn implies

Pr(Y 6= fopt(X,H)|H = h) =
1

1 + exp(ρ(h))
(15)
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and therefore

opt =
∑

h∈{−1,1}k

1

1 + exp(ρ(h))
×Pr(h). (16)

Furthermore,

E(ℓ(Y (w0 +w ·H)))

= E(ℓ(Y (w0 +w ·H))× 1ρ(H)>1) +E(ℓ(Y (w0 +w ·H))× 1ρ(H)≤1),

where1ρ(H)>1 is the indicator function for the event thatρ(H) > 1. Since for any realiza-
tion h of H, ρ(h) ≤ 1 impliesℓ(Y (w0 +w · h)) ≤ 2, we have

E(ℓ(Y (w0 +w ·H))) ≤ E(ℓ(Y (w0 +w ·H))× 1ρ(H)>1) + 2Pr(ρ(H) ≤ 1). (17)

Let us start by bounding the first term of (17). Since

– µ(h, y) > 1 impliesℓ(y(w0 +w · h)) = 0,
– µ(h, y) ∈ {−ρ(h), ρ(h)}, and
– always,ℓ(y(w0 +w · h)) ≤ 1 + ρ(h),

we have

E(ℓ(Y (w0 +w ·H))× 1ρ(H)>1)

≤
∑

h∈{−1,1}k:ρ(h)>1

(1 + ρ(h))×Pr(µ(H, Y ) = −ρ(h)|H = h)×Pr(h)

≤
∑

h∈{−1,1}k

(1 + ρ(h))×Pr(µ(H, Y ) = −ρ(h)|H = h)×Pr(h)

≤
∑

h∈{−1,1}k

1 + ρ(h)

1 + exp(ρ(h))
×Pr(h) (by (15))

=





∑

h∈{−1,1}k:ρ(h)≤2 ln(1/opt)

1 + ρ(h)

1 + exp(ρ(h))
×Pr(h)





+





∑

h∈{−1,1}k:ρ(h)>2 ln(1/opt)

1 + ρ(h)

1 + exp(ρ(h))
×Pr(h)





≤





∑

h∈{−1,1}k:ρ(h)≤2 ln(1/opt)

1 + 2 ln(1/opt)

1 + exp(ρ(h))
×Pr(h)





+





∑

h∈{−1,1}k:ρ(h)>2 ln(1/opt)

1 + 2 ln(1/opt)

1 + 1/opt2
×Pr(h)





sinceopt ≤ 1/2, and(1 + z)/(1 + exp(z)) is nonincreasing inz whenz > 2 ln 2. Applying
(16) to bound the first sum, and noting that the second sum is atmost 1+2 ln(1/opt)

1+1/opt2
which is

o(opt log(1/opt)), we get

E(ℓ(Y (w0 +w ·H))× 1ρ(H)>1) = O(opt log(1/opt)). (18)
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Now, let us turn to the second term of (17). By (15), the conditional probability that the
Bayes optimal algorithm makes a prediction error, given that ρ(h) ≤ 1, is at least1/(1 + e).
Thus

opt ≥
Pr(ρ(H) ≤ 1)

1 + e
,

which impliesPr(ρ(H) ≤ 1) = O(opt). Putting this together with (18) and (17) completes
the proof. ⊓⊔

What remains is to show that a linear classifier in the observed variables can approximate
theℓ-loss of the Bayes optimal classifier. It will be useful for this to use a conversion from
tail bounds to bounds on the expectation. While results of this sort are known, we include a
proof because we don’t know a reference for precisely this statement.

Lemma 8 If Z is a real-valued random variable,u > 0, and for all η > 0, Pr(Z ≥ η) ≤

e−η
2u, then

E(Z) ≤ 3
√

1/u.

Proof: We have

E(Z) ≤

∞
∑

i=1

√

i/uPr(Z ∈ (
√

(i− 1)/u,
√

i/u])

≤

∞
∑

i=1

√

i/uPr(Z >
√

(i− 1)/u)

≤

∞
∑

i=1

√

i/u(1/e)e−i

=
√

1/u
e2

(e− 1)2
,

completing the proof. ⊓⊔
Now we are ready for the loss bound.

Lemma 9 If

m = Ω





k ln2
(

k
βopt

)

β2opt2





then there is a weight vector

v = (v11, ..., v1m1
, ..., vk1, ..., vkmk

)

andv0 ∈ R such that

|E(ℓ(Y (v0 + v ·X)))−E(ℓ(Y (w0 +w ·H)))| = O(opt).

Proof: Define the linear classifierf as in the proof of Theorem 1. Letv andv0 be the pa-
rameters off , as in the statement of this theorem. Recall thatf was constructed by replacing
eachHi with Ĥi, a linear combination of some of the observed variables, andthen applying
the Bayes optimal classifier for using the hidden variables.Consequently,v ·X = w ·Ĥ and
v0 = w0.

LetQ be the approximation toP constructed in Lemma 4. For now, let us continue our
analysis for such a sourceQ, and return to treating the general case at the end of the proof.
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Sinceℓ is 1-Lipschitz,

|E(ℓ(Y (v0 + v ·X)))−E(ℓ(Y (w0 +w ·H)))|

≤ E(|(v0 + v ·X)− (w0 +w ·H)|)

= E(|w · (Ĥ−H)|)

sincev ·X = w · Ĥ andv0 = w0.
The proof of Lemma 5 establishes that, forη > 0,

Pr(|w · (Ĥ−H)| ≥ η) ≤ exp

(

−
cη2β2m

k ln2(k/ǫ)

)

which means, using Lemma 8, that

E(|w · (Ĥ−H)|) ≤ c1

√

k ln2(k/ǫ)

β2m

for a constantc1.
We are almost there, but our analysis was for theǫ-approximationQ to P that satisfies

|wi| = O(log(k/ǫ)) for i ≥ 1 and|w0| = O(k log(k/ǫ)). We have showed that

∣

∣EQ(ℓ(Y (v0 + v ·X)))−EQ(ℓ(Y (w0 +w ·H)))
∣

∣ ≤ c1

√

k ln2(k/ǫ)

β2m
. (19)

Now we want to show thatEQ(ℓ(Y (v0+v·X))) cannot be too much less thanEP (ℓ(Y (v0+

v ·X))) andEQ(ℓ(Y (w0+w ·H))) cannot be too much more thanEP (ℓ(Y (w0+w ·H))).
Since

∣

∣EP (ℓ(Y (v0 + v ·X)))−EQ(ℓ(Y (v0 + v ·X)))
∣

∣ ≤

(

max
X,Y

ℓ(Y (v0 + v ·X))

)

dTV (P,Q),

(20)
we need a bound onℓ(Y (v0 + v ·X)). We have

ℓ(Y (v0 + v ·X))

≤ 1 + |Y (v0 + v ·X)|

≤ 1 + |v0|+ |v ·X|. (21)

Recall thatv ·X = w · Ĥ, so

|v ·X| = |w · Ĥ| ≤ ||w||∞||Ĥ||1 ≤ O(log(k/ǫ))||Ĥ||1.

Definition 6 (ofĤi) immediately implies that|Ĥi| ≤ 2
β for all i, so that

||Ĥ||1 ≤
2k

β
. (22)

Lemma 4 givesv0 = w0 = O(k log(k/ǫ)), and putting this together with (22), (21) and (20),
we have

∣

∣EP (ℓ(Y (v0 + v ·X)))−EQ(ℓ(Y (v0 + v ·X)))
∣

∣ ≤ O

(

kǫ log(k/ǫ)

β

)

.
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We may similarly show that
∣

∣EP (ℓ(Y (w0 +w ·H)))−EQ(ℓ(Y (w0 +w ·H)))
∣

∣ ≤ O (kǫ log(k/ǫ))

(note the absence of̂H). Applying (19) yields

|EP (ℓ(Y (v0 + v ·X)))−EP (ℓ(Y (w0 +w ·H)))| ≤ c1

√

k ln2(k/ǫ)

β2m
+O

(

kǫ log(k/ǫ)

β

)

.

Settingǫ = Θ
(

βopt2

k2

)

makes the second term at mostopt, and applying the bound onm

completes the proof. ⊓⊔

5 Bayes Optimal Models are Two-layer Neural Networks

In this section, we show that, even with further restrictions on the structure of the source, a
two-layer neural network is needed to compute the exact Bayes optimal classifier.

Theorem 4 Suppose that there are real constantsα, β > 0 and a positive integerm such
that

– eachHi is independently equal toY with probability1/2 + α,
– mi = m for all i > 0, and
– eachXij is independently equal toHi with probability1/2 + β.

DefineA = 1+2α
1−2α ,B = 1+2β

1−2β , and, for eachi ∈ {1, ..., k}, si(x) =
∑m
j=1 xij .

The Bayes optimal classifier is

h(x) = sign

(

k
∑

i=1

log

(

Bsi(x)A+ 1

Bsi(x) + A

)

)

. (23)

Proof: Notice that for anyy ∈ {−1, 1},

Pr[Y = y|(∀i, j)Xij = xij ]

=
Pr[Y = y]Pr[(∀i, j)Xij = xij |Y = y]

Pr[(∀i, j)Xij = xij ]

=
Pr[(∀i, j)Xij = xij |Y = y]

2Pr[(∀i, j)Xij = xij ]

and therefore

Pr[Y = 1|(∀i, j)Xij = xij ] > Pr[Y = −1|(∀i, j)Xij = xij ]

if and only if

Pr[(∀i, j)Xij = xij |Y = 1] > Pr[(∀i, j)Xij = xij |Y = −1].

Therefore, the Bayes optimal classifier gives

h(x) = sign
(

Pr[(∀i, j)Xij = xij |Y = 1]−Pr[(∀i, j)Xij = xij |Y = −1]
)

.
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Sincelog is a monotone function we also have

h(x) = sign
(

logPr[(∀i, j)Xij = xij |Y = 1]− logPr[(∀i, j)Xij = xij |Y = −1]
)

= sign

(

log
Pr[(∀i, j)Xij = xij |Y = 1]

Pr[(∀i, j)Xij = xij |Y = −1]

)

. (24)

Let Si = HiY (so thatSi that is1 with probability 1
2 + α and−1 with probability 1

2 − α),
andTij = XijHi (soTij is 1 with probability 1

2 + β and−1 with probability 1
2 − β). Now

sinceTij andSi are independent ofY , and, the events[(∀j)TijSi = xij ] are independent

Pr[(∀i, j)Xij = xij |Y = 1]

= Pr[(∀i, j)TijSiY = xij |Y = 1]

= Pr[(∀i, j)TijSi = xij |Y = 1]

= Pr[(∀i, j)TijSi = xij ]

=

k
∏

i=1

Pr[(∀j)TijSi = xij ].

Similarly,

Pr[(∀i, j)Xij = xij |Y = −1] =

k
∏

i=1

Pr[(∀j)TijSi = −xij ].

By (24) we get

h(x)

= sign

(

log
Pr[(∀i, j)Xij = xij |Y = 1]

Pr[(∀i, j)Xij = xij |Y = −1]

)

= sign

(

k
∑

i=1

log

(

Pr[(∀j)TijSi = xij ]

Pr[(∀j)TijSi = −xij ]

)

)

. (25)

Now, since for everyi,

Pr[(∀j)Tij = xij ]

Pr[(∀j)Tij = −xij ]

=

m
∏

j=1

Pr[Tij = xij ]

Pr[Tij = −xij ]

=

m
∏

j=1

Bxij ,
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we have

Pr[(∀j)TijSi = xij ]

= Pr[(∀j)Tij = xij ]Pr[Si = 1] +Pr[(∀j)Tij = −xij ]Pr[Si = −1]

=
(

1

2
− α

)

(

Pr[(∀j)Tij = xij ]A+Pr[(∀j)Tij = −xij ]
)

=
(

1

2
− α

)

Pr[(∀j)Tij = −xij ]

((

Pr[(∀j)Tij = xij ]

Pr[(∀j)Tij = −xij ]

)

A+ 1

)

=
(

1

2
− α

)

Pr[(∀j)Tij = −xij ]

((

∏

j Pr[Tij = xij ]
∏

j Pr[Tij = −xij ]

)

A+ 1

)

=
(

1

2
− α

)

Pr[(∀j)Tij = −xij ]



A
∏

j

Pr[Tij = xij ]

Pr[Tij = −xij ]
+ 1





=
(

1

2
− α

)

Pr[(∀j)Tij = −xij ]



A

m
∏

j=1

Bxij + 1



 .

and, similarly,

Pr[(∀j)TijSi = −xij ]

= Pr[(∀j)Tij = −xij ]Pr[Si = 1]

+Pr[(∀j)Tij = xij ]Pr[Si = −1]

=
(

1

2
− α

)

(

Pr[(∀j)Tij = −xij ]A+Pr[(∀j)Tij = xij ]
)

=
(

1

2
− α

)

Pr[(∀j)Tij = −xij ]



A+

m
∏

j=1

Bxij



 .

Now by (25),

h(x) = sign

(

k
∑

i=1

log

(

A
∏m
j=1 B

xij + 1

A+
∏m
j=1 B

xij

))

= sign





k
∑

i=1

log





A exp
(

∑m
j=1(lnB)xij

)

+ 1

A+ exp
(

∑m
j=1(lnB)xij

)









= sign

(

k
∑

i=1

log

(

Bsi(x)A+ 1

Bsi(x) + A

)

)

,

completing the proof. ⊓⊔
One useful representation uses the following Taylor series

ln x = 2

[(

x− 1

x+ 1

)

+
1

3

(

x− 1

x+ 1

)3

+
1

5

(

x− 1

x+ 1

)5

+ · · ·

]

and gives

h(x) = sign

( k
∑

i=1

∞
∑

ℓ=1

(

2α

)2ℓ−1

2ℓ− 1
tanh2ℓ−1

(

1

2

m
∑

j=1

(lnB)xij

))

, (26)
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wheretanh y = e2y−1
e2y+1

.

The hyperbolic tangent is a standard squashing function forthe hidden nodes in a two-
layer neural network [16], and raising it to a positive odd power maintains the sigmoid shape.
Thus the Bayes optimal classifier described in Theorem 4 can be thought of as a two-layer
neural network.

The classifier of (23) approximately,

– for eachi, computes an estimateVi of Hi by taking a majority vote overXi1, ..., Xim,
and

– outputs a vote overVi.

Intuitively, this is not a linear classifier, since, for example,Xim matters less if the value of
Vi is already more-or-less determined by the values ofXi1, ..., Xi(m−1). This is formalized
in the following.

Theorem 5 If k = m = 3, for anyα > 0, there is a value ofβ ∈ (0, 1/2), so that the
classifierh defined in (23) is not linear.

Proof: Assume for contradiction thatw ∈ R
km is the weight vector of a linear classifierf

equal toh, i.e.

sign





∑

i

∑

j

wijxij



 = h(x)

for all x ∈ {−1, 1}km.
We claim that this implies thath computes a majority vote. By symmetry, for anyx, any

permutationφ of {1, ..., k} and any permutationψ over{1, ..., m}, we have

h(x) = sign





∑

i

∑

j

wijxφ(i)ψ(j)



 . (27)

In general, for reala andb, if sign(a) = sign(b), thensign(a + b) = sign(a) = sign(b).
Thus, (27) implies

h(x) = sign





∑

φ

∑

ψ

∑

i

∑

j

wijxφ(i)ψ(j)



 .

This in turn implies

h(x) = sign



(k − 1)!(m− 1)!





∑

i,j

wij





∑

i,j

xij





because the permutationsφ andψ pair each weight with each feature an equal number of
times. Rescaling, we get

h(x) = sign





∑

i,j

xij



 ,

the majority function.
To arrive at a contradiction, supposek = m = 3, and

x = ((1, 1, 1), (1,−1,−1), (1,−1,−1)).
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Note that the majority function evaluates to1 onx. On the other hand, using the definition
in (23), we have

h(x) = sign

(

log

(

B3A+ 1

B3 +A

)

+ 2 log

(

B−1A+ 1

B−1 + A

))

.

As β gets closer to1/2, B gets arbitrarily large. But

lim
B→∞

log

(

B3A+ 1

B3 + A

)

+ 2 log

(

B−1A+ 1

B−1 + A

)

= logA− 2 logA < 0

and therefore there is a value ofβ such thath(x) = −1, a contradiction. ⊓⊔

6 Some related work

A number of papers have considered why the Naive Bayes algorithm, which outputs a linear
hypothesis, works well despite class-conditional dependencies among the features [12,3,
21]. While Naive Bayes works suprisingly well, other linearclassifiers typically perform
better [8,7]. Note that Naive Bayes may not work for the sources considered in this paper.

The hidden variable model studied here is a generalization of the Neyman Model of
Evolution [24]. A PAC algorithm for learning the probability distribution over the leaves for
such models is known [9]. Using known tools, this algorithm can be used as a subroutine in
a polynomial-time algorithm for approximating the Bayes-Optimal classifier for sources in
which the class-conditional distributions are of this form[1,10]. The linear approximation
pointed out in this paper could be a step toward a more efficient algorithm for this problem.

The proof of Theorem 1 used the observation that the Bayes optimal classifier that has
access to the hidden variables can be approximated by the classifier using small weights.
Some recent research [30,11] established a related result;the analogous statement in our
setting would concern the case in which the marginal over thehidden variables is uniform.

7 Conclusion

The analysis of this paper illustrates the expressive powerof linear models even in the pres-
ence of class-conditional dependence among the features. The exact mathematical state-
ments of this paper are among many possible choices that trade off between a clean and
interpretable analysis, and a broadly relevant one, in different ways.

For example, it would not be hard to extend the approximationto apply to sources in
which some observed variables depend on multiple hidden variables. As long as each hidden
variable has enough variables that depend on it alone, we canconstruct the linear approxi-
mation as a function only of the observed variables that depend on specific hidden variables.
Our analysis may also easily be extended to the case in which an unlimited number of vari-
ables depend directly on the class designation (as was done explicitly in the preliminary
version of this paper [6]).

If each hidden variableHi can take on more than two values, it is not hard to see that
the Bayes optimal classifier that has access to them is a linear function of binary-valued
indicator functions for events likeHi = hi, so our analysis should extend easily to this
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case (though we would appear to need a collection of observedvariables for each hidden
variable-value pair).

The Hoeffding bounds that we use to analyze concentration donot require that the vari-
ables in the sums are binary-valued, so our analysis can alsobe straightforwardly extended
to real-valued observed variables.

The analysis can also be extended without much modification to handle limited condi-
tional dependence among the observed variables associatedwith a given hidden variable,
with some degradation in the bounds, by applying generalizations of the Hoeffding bound
to this case (see [29,13,26]).

We also provided a bound on the hinge loss of the linear classifier in terms of the Bayes
error rate, thereby showing that the Bayes error rate can be approximated efficiently. It is not
clear whether this approximation bound can be improved. General tools that have recently
been developed for the analysis of learning with convex lossfunctions [34,2] may be useful
for this.

As we mentioned previously, our analysis guarantees a closer approximation to the
Bayes optimal asopt, the Bayes optimal error, gets small, which explains why more re-
sources are needed in this case. It would be interesting to determine the optimal dependence
of parameters in bounds like ours, such asm in Theorem 1, onopt.

Finally, it may be interesting to explore the possible tradeoffs between the computational
complexity of learning algorithms and the quality of their approximations to the Bayes opti-
mal error rate for sources like this, possibly exploiting the linear approximation pointed out
in this paper, among other things.
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1. S. Anoulova, P. Fischer, S. Pölt, and H. U. Simon. Probably almost Bayes decisions.Inform. Comput.,
129(1):63–71, August 1996.

2. P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds.Journal of
the American Statistical Association, 101(473):138–156, 2006.

3. P. Bickel and E. Levina. Some theory of Fisher’s linear discriminant function, ‘Naive Bayes’, and some
alternatives when there are many more variables than observations.Bernoulli, 10(6):989–1010, 2004.

4. D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3,
2003.

5. A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30:1145–1159, 1997.

6. N. H. Bshouty and P. M. Long. Linear classifiers are nearly optimal when hidden variables have diverse
effects.COLT, 2009.

7. R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of supervised learning in
high dimensions.ICML, pages 96–103, 2008.

8. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms.ICML,
pages 161–168, 2006.

9. M. Cryan, L. A. Goldberg, and P. W. Goldberg. Evolutionarytrees can be learned in polynomial time in
the two-state general Markov model.SIAM J. Comput., 31(2):375–397, 2001.

10. L. Devroye, L. Györfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer, 1996.



21

11. I. Diakonikolas and R. Servedio. Improved approximation of linear threshold functions.24th Conference
on Computational Complexity (CCC), pages 161–172, 2009.

12. Pedro Domingos and Michael Pazzani. On the optimality ofthe simple Bayesian classifier under zero-
one loss.Machine Learning, 29:103–130, 1997.

13. D. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence.Random Structures &
Algorithms, 13(2):99–124, 1998.

14. R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification (2nd ed.). Wiley, 2000.
15. C. Ferri, P. Flach, and J. Hernández-Orallo. Learning decision trees using the area under the roc curve.

ICML, 2002.
16. J. A. Hertz, A. Krogh, and R. Palmer.Introduction to the theory of neural computation. Addison-Wesley,

1991.
17. W. Hoeffding. Probability inequalities for sums of bounded random variables.Joural of the Americal

Statistical Society, 58(301):13–30, March 1963.
18. T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis.Machine Learning,

42(1/2):177–196, 2001.
19. C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method

for large-scale linear svm.ICML, 2008.
20. T. Joachims. Text categorization with support vector machines: learning with many relevant features. In

Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137–142, 1998.
21. L. I. Kuncheva. On the optimality of naive bayes with dependent binary features.Pattern Recognition

Letters, 27(7):830–837, 2006.
22. H. Langseth and T. D. Nielsen. Classification using hierarchical naive bayes models.Machine Learning,

63(2):135–159, 2006.
23. P. M. Long and R. A. Servedio. Boosting the area under the ROC curve.NIPS, 2007.
24. J. Neyman.Molecular studies of evolution: a source of novel statistical problems, pages 1–27. Academic

Press, 1971.
25. C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic

analysis.J. Comp. Sys. Sci., 61(1):217–235, 2000.
26. S. Pemmaraju. Equitable coloring extends Chernoff-Hoeffding bounds.RANDOM, 2001.
27. D. Pollard.Convergence of Stochastic Processes. Springer Verlag, 1984.
28. R.E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization.Machine

Learning, 39(2/3):135–168, May/June 2000.
29. J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-hoeffding bounds for applications with limited

independence.SODA, 1993.
30. R. A. Servedio. Every linear threshold function has a low-weight approximator.Computational Com-

plexity, 16(2):180–209, 2007.
31. S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In

ICML, pages 807–814, 2007.
32. R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by shrunken

centroids of gene expression.PNAS, 99(10):6567–72, 2002.
33. N. L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning Re-

search, 5(6):697–723, 2004.
34. T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimiza-

tion. Annals of Statistics, 32(1):56–85, 2004.


