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We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and
demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators.

We consider both the malicious noise model of Valiant [Valiant 1985; Kearns and Li 1988] and the adversarial label noise
model of Kearns, Schapire, and Sellie [1994]. For malicious noise, where the adversary can corrupt both the label and the
features, we provide a polynomial-time algorithm for learning linear separators in <d under isotropic log-concave distribu-
tions that can tolerate a nearly information-theoretically optimal noise rate of η = Ω(ε), improving on the Ω

(
ε3

log2(d/ε)

)
noise-tolerance of [Klivans et al. 2009a]. In the case that the distribution is uniform over the unit ball, this improves on the
Ω
(

ε
d1/4

)
noise-tolerance of [Kalai et al. 2005] and the Ω

(
ε2

log(d/ε)

)
of [Klivans et al. 2009a]. For the adversarial label

noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is
constrained to be at most η, we also give a polynomial-time algorithm for learning linear separators in <d under isotropic
log-concave distributions that can handle a noise rate of η = Ω (ε). In the case of the uniform distribution, this improves
over the results of [Kalai et al. 2005] which either required runtime super-exponential in 1/ε (ours is polynomial in 1/ε) or
tolerated less noise.1

Our algorithms are also efficient in the active learning setting, where learning algorithms only receive the classifications
of examples when they ask for them. We show that, in this model, our algorithms achieve a label complexity whose depen-
dence on the error parameter ε is polylogarithmic (and thus exponentially better than that of any passive algorithm). This
provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise
or adversarial label noise.

Our algorithms and analysis combine several ingredients including aggressive localization, minimization of a progres-
sively rescaled hinge loss, and a novel localized and soft outlier removal procedure. We use localization techniques (previ-
ously used for obtaining better sample complexity results) in order to obtain better noise-tolerant polynomial-time algorithms.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms: Algorithms,Theory

ACM Reference Format:
Pranjal Awasthi, Maria Florina Balcan and Philip M. Long, 2016. The Power of Localization for Efficiently Learning Linear
Separators with Noise. J. ACM V, N, Article A (January YYYY), 26 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Overview. Dealing with noisy data is one of the main challenges in machine learning and is an
active area of research. In this work we study the noise-tolerant learning of linear separators, ar-
guably the most popular class of functions used in practice [Cristianini and Shawe-Taylor 2000].
Learning linear separators from correctly labeled (non-noisy) examples is a very well understood
problem with simple efficient algorithms that are effective both in the classical passive learning
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setting [Kearns and Vazirani 1994; Vapnik 1998] and in the more modern active learning frame-
work [Dasgupta 2011]. However, for noisy settings, except for the special case of uniform random
noise, very few positive algorithmic results exist even for passive learning. In the context of the-
oretical computer science more broadly, problems of noisy learning are related to seminal results
in approximation-hardness [Arora et al. 1993; Guruswami and Raghavendra 2006], cryptographic
assumptions [Blum et al. 1994; Regev 2005], and are connected to other classical questions in learn-
ing theory (e.g., learning DNF formulas [Kearns et al. 1994]), and appear as barriers in differential
privacy [Gupta et al. 2011].

In this paper we present new techniques for designing efficient algorithms for learning linear sep-
arators in the presence of malicious noise and adversarial label noise. These models were originally
proposed for a setting in which the algorithm must work for an arbitrary, unknown distribution. As
we will see, bounds on the amount of noise tolerated for this distribution-free setting were weak,
and no significant progress was made for many years. This motivated research investigating the role
of the distribution generating the data on the tolerable level of noise: a breakthrough result of [Kalai
et al. 2005] and subsequent work of [Klivans et al. 2009a] showed that indeed better bounds can be
obtained for the uniform and isotropic log-concave distributions. In this paper, we continue this line
of research. For the malicious noise case, where the adversary can corrupt both the label and the fea-
tures of the observation (and it has unbounded computational power and access to the entire history
of the learning algorithm’s computation), we design an efficient algorithm that can learn with accu-
racy 1− ε while tolerating an Ω(ε) noise rate. This is within a constant factor of the statistical limit
even in the case of the uniform distribution. In particular, unlike previous works, our noise tolerance
limit has no dependence on the dimension d of the space. We also show similar improvements for
adversarial label noise, and furthermore show that our algorithms can naturally exploit the power of
active learning. Active learning is a widely studied modern learning paradigm, where the learning
algorithm only receives the class labels of examples when it asks for them. We show that in this
model, our algorithms achieve a label complexity whose dependence on the error parameter ε is ex-
ponentially better than that of any passive algorithm. This provides the first polynomial-time active
learning algorithm for learning linear separators in the presence of adversarial label noise, solving
an open problem posed in [Balcan et al. 2006; Monteleoni 2006]. It also provides the first analysis
showing the benefits of active learning over passive learning under the challenging malicious noise
model.

Our work brings a new set of algorithmic and analysis techniques including localization (previ-
ously used for obtaining better sample complexity results) and soft outlier removal that we believe
will have other applications in learning theory and optimization. Localization [Bartlett et al. 2005;
Boucheron et al. 2005; Zhang 2006; Balcan et al. 2007; Bshouty et al. 2009; Koltchinskii 2010;
Hanneke 2011; Balcan and Long 2013] refers to the practice of progressively narrowing the focus
of a learning algorithm to an increasingly restricted range of possibilities (which are known to be
safe given the information up to a certain point in time), thereby improving the stability of estimates
of the quality of these possibilities based on random data.

In the following we start by formally defining the learning models we consider. We then present
the most relevant prior work, and then our main results and techniques.

Passive and Active Learning. Noise Models. In this work we consider the problem of learn-
ing linear separators in two learning paradigms: the classical passive learning setting and the more
modern active learning scenario. As is typical [Kearns and Vazirani 1994; Vapnik 1998], we as-
sume that there exists a distribution D over <d and a fixed unknown target function whose pa-
rameter vector is w∗. In the noise-free case, in the passive supervised learning model the algo-
rithm is given access to a distribution oracle EX(D,w∗) from which it can get training samples
(x, sign(w∗ · x)) where x ∼ D. The goal of the algorithm is to output a hypothesis w such that
errD(w) = Prx∼D[sign(w∗ ·x) 6= sign(w ·x)] ≤ ε. In the active learning model [Cohn et al. 1994;
Dasgupta 2011] the learning algorithm is given as input a pool of unlabeled examples drawn from
the distribution oracle. The algorithm can then query for the labels of examples of its choice from
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the pool. The goal is to produce a hypothesis of low error while also optimizing for the number of
label queries (also known as label complexity). The hope is that in the active learning setting we
can output a classifier of small error by using many fewer label requests than in the passive learn-
ing setting by actively directing the queries to informative examples (while keeping the number of
unlabeled examples polynomial).

In this work we focus on two noise models. The first one is the malicious noise model of [Valiant
1985; Kearns and Li 1988] where samples are generated as follows: with probability (1 − η) a
random pair (x, y) is output where x ∼ D and y = sign(w∗ · x); with probability η the adversary
can output an arbitrary pair (x, y) ∈ <d × {−1, 1}. We will call η the noise rate. Each of the
adversary’s examples can depend on the state of the learning algorithm and also the previous draws
of the adversary. We will denote the malicious oracle as EXη(D,w∗). The goal remains, however,
to output a hypothesis w such that Prx∼D[sign(w∗ · x) 6= sign(w · x)] ≤ ε.

In this paper, we consider an extension of the malicious noise model to the the active learning
model as follows. There are two oracles, an example generation oracle and a label revealing oracle.
The example generation oracle works as usual in the malicious noise model: with probability (1−η)
a random pair (x, y) is generated where x ∼ D and y = sign(w∗ · x); with probability η the
adversary can output an arbitrary pair (x, y) ∈ <d×{−1, 1}. In the active learning setting, unlike the
standard malicious noise model, when an example (x, y) is generated, the algorithm only receives
x, and must make a separate call to the label revealing oracle to get y. The goal of the algorithm is
still to output a hypothesis w such that Prx∼D[sign(w∗ · x) 6= sign(w · x)] ≤ ε.

In the adversarial label noise model, before any examples are generated, the adversary may choose
a joint distribution P over <d × {−1, 1} whose marginal distribution over <d is D and such that
Pr(x,y)∼P (sign(w∗ · x) 6= y) ≤ η. In the active learning version of this model, once again we will
have two oracles, an example generation oracle and a label revealing oracle. We note that the results
from our theorems in this model translate immediately into similar guarantees for the agnostic model
of [Kearns et al. 1994] (used commonly both in passive and active learning (e.g., [Kalai et al. 2005;
Balcan et al. 2006; Hanneke 2007]) – see Appendix C for details.

We will be interested in algorithms that run in time poly(d, 1/ε) and use poly(d, 1/ε) examples.
In addition, for the active learning scenario we want our algorithms to also optimize for the number
of label requests. In particular, we want the number of labeled examples to depend only polyloga-
rithmically in 1/ε. The goal then is to quantify for a given value of ε, the tolerable noise rate η(ε)
which would allow us to design an efficient (passive or active) learning algorithm.

Previous Work. In the context of passive learning, Kearns and Li’s analysis [1988] implies that
halfspaces can be efficiently learned with respect to arbitrary distributions in polynomial time while
tolerating a malicious noise rate of Ω̃

(
ε
d

)
. Kearns and Li [1988] also showed that malicious noise

at a rate greater than ε
1+ε cannot be tolerated (and a slight variant of their construction shows that

this remains true even when the distribution is uniform over the unit sphere). The Ω̃
(
ε
d

)
bound for

the distribution-free case was not improved for many years. Kalai et al. [2005] showed that,2 when
the distribution is uniform, the poly(d, 1/ε)-time averaging algorithm tolerates malicious noise at
a rate Ω(ε/

√
d). They also described an improvement to Ω̃(ε/d1/4) based on the observation that

uniform examples will tend to be well-separated, so that pairs of examples that are too close to one
another can be removed, and this limits an adversary’s ability to coordinate the effects of its noisy
examples. [Klivans et al. 2009a] analyzed another approach to limiting the coordination of the noisy
examples: they proposed an outlier removal procedure that used PCA to find any direction u onto
which projecting the training data led to suspiciously high variance, and removing examples with
the most extreme values after projecting onto any such u. Their algorithm tolerates malicious noise
at a rate Ω(ε2/ log(d/ε)) under the uniform distribution.

2These results from [Kalai et al. 2005] are most closely related to our work. We describe some of their other results, more
prominently featured in their paper, later.
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Motivated by the fact that many modern machine learning applications have massive amounts
of unannotated or unlabeled data, there has been significant interest in designing active learning
algorithms that most efficiently utilize the available data, while minimizing the need for human in-
tervention. Over the past decade there has been substantial progress on understanding the underlying
statistical principles of active learning, and several general characterizations have been developed
for describing when active learning could have an advantage over the classical passive supervised
learning paradigm both in the noise free settings and in the agnostic case [Freund et al. 1997; Das-
gupta 2005; Balcan et al. 2006; Balcan et al. 2007; Hanneke 2007; Dasgupta et al. 2007; Castro
and Nowak 2007; Balcan et al. 2008; Koltchinskii 2010; Beygelzimer et al. 2010; Wang 2011; Das-
gupta 2011; Raginsky and Rakhlin 2011; Balcan and Hanneke 2012; Hanneke 2014]. However,
despite many efforts, except for very simple noise models (random classification noise [Balcan and
Feldman 2013] and linear noise [Dekel et al. 2012]), to date there are no known computationally
efficient algorithms with provable guarantees in the presence of noise. In particular, there are no
computationally efficient algorithms for the agnostic case, and furthermore no result exists show-
ing the benefits of active learning over passive learning in the malicious noise model, where the
adversary may also corrupt the features.

We discuss additional related work in Appendix A.

1.1. Our Results
The following are our main results.

THEOREM 1.1. There is a polynomial-time algorithm A1 for learning linear separators with
respect to isotropic log-concave distributions in <d in the presence of adversarial label noise, and
positive constants C and ε0 such that, for all 0 < ε < ε0, and all δ > 0, if η < Cε, then the output
w of A1 satisfies Pr(x,y)∼D[sign(w · x) 6= sign(w∗ · x)] ≤ ε with probability at least 1− δ.

Further, A1 uses at most poly(d, log(1/ε), log(1/δ)) labeled examples.

THEOREM 1.2. There is a polynomial-time algorithm A2 for learning linear separators with
respect to isotropic log-concave distributions in <d in the presence of malicious noise, and positive
constants C and ε0 such that, for all 0 < ε < ε0, and all δ > 0, if η < Cε, then the output w of A2

satisfies Pr(x,y)∼D[sign(w · x) 6= sign(w∗ · x)] ≤ ε with probability at least 1− δ.
A2 uses at most poly(d, log(1/ε), log(1/δ)) labeled examples.

As a restatement of Theorem 1.1, in the agnostic setting considered in [Kalai et al. 2005], we
can output a halfspace of error at most O(η + α) in time poly(d, 1/α). In the case of the uniform
distribution, Kalai, et al, achieved error η + α by learning a low degree polynomial in time whose
dependence on the inverse accuracy is super-exponential. On the other hand, this result of [Kalai
et al. 2005] applies when the target halfspace does not necessarily go through the origin.

Our algorithms naturally exploit the power of active learning. (Indeed, as we will see, an active
learning algorithm proposed in [Balcan et al. 2007] provided the springboard for our work.) We
show that in this model, the label complexity of both algorithms is polylogarithmic in 1/ε. Our
efficient algorithm that tolerates adversarial label noise solves an open problem posed in [Balcan
et al. 2006; Monteleoni 2006]. Furthermore, our paper provides the first active learning algorithm
for learning linear separators in the presence of non-trivial amount of adversarial noise that can
affect not only the label, but also the features.

Our work exploits the power of localization for designing noise-tolerant polynomial-time algo-
rithms. Such localization techniques have been used for analyzing sample complexity for passive
learning (see [Bartlett et al. 2005; Boucheron et al. 2005; Zhang 2006; Bshouty et al. 2009; Balcan
and Long 2013]) or for designing active learning algorithms (see [Balcan et al. 2007; Koltchinskii
2010; Hanneke 2011; Balcan and Long 2013]). Ideas useful for making such a localization strategy
computationally efficient, and tolerating malicious noise, are described in Section 1.2.
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We note that all our algorithms are proper in that they return a linear separator. (Linear models
can be evaluated efficiently, and are otherwise easy to work with.) We summarize our results, and
the most closely related previous work, in Tables I and II.

Table I: Comparison with previous poly(d, 1/ε)-time algs. for uniform distribution

Passive Learning Prior work Our work
malicious η = Ω

(
ε

d1/4

)
[Kalai et al. 2005] η = Ω (ε)

η = Ω
(

ε2

log(d/ε)

)
[Klivans et al. 2009a]

adversarial η = Ω

(
ε√

log(1/ε)

)
[Kalai et al. 2005] η = Ω (ε)

Active Learning NA η = Ω (ε)
(malicious and adversarial)

Table II: Comparison with previous poly (d, 1/ε)-time algorithms isotropic log-concave distributions

Passive Learning Prior work Our work
malicious η = Ω

(
ε3

log2(d/ε)

)
[Klivans et al. 2009a] η = Ω (ε)

adversarial η = Ω
(

ε3

log(1/ε)

)
[Klivans et al. 2009a] η = Ω (ε)

Active Learning NA η = Ω (ε)
(malicious and adversarial)

1.2. Techniques

Hinge Loss Minimization As minimizing the 0-1 loss in the presence of noise is NP-hard [Johnson
and Preparata 1978; Garey and Johnson 1990], a natural approach is to minimize a surrogate convex
loss that acts as a proxy for the 0-1 loss. A common choice in machine learning is to use the
hinge loss: max (0, 1− y(w · x)) . In this paper, we use the slightly more general `τ (w, x, y) =

max
(

0, 1− y(w·x)
τ

)
, and, for a set T of examples, we let `τ (w, T ) = 1

|T |
∑

(x,y)∈T `τ (w, x, y).

Here τ is a parameter that changes during training. It can be shown that minimizing hinge loss
with an appropriate normalization factor can tolerate a noise rate of Ω(ε2/

√
d) under isotropic log-

concave distributions in<d. This is also the limit for such a strategy since a more powerful malicious
adversary can concentrate all the noise directly opposite to the target vector w∗ and make sure that
the hinge-loss is no longer a faithful proxy for the 0-1 loss.
Localization in the instance and concept space Our first key insight is that by using an iterative
localization technique, we can limit the harm caused by an adversary at each stage and hence can still
do hinge-loss minimization despite significantly more noise. In particular, the iterative algorithm we
propose proceeds in stages and at stage k, we have a hypothesis vector wk of a certain error rate.
The goal in stage k is to produce a new vector wk+1 with error rate a constant factor smaller than
wk’s. In order to reduce the error rate, we focus on a band of size bk = e−ck around the boundary
of the linear classifier whose normal vector is wk, i.e. Swk,bk = {x : |wk · x| < bk}. For the rest
of the paper, we will repeatedly refer to this key region of borderline examples as “the band”. The
key observation made in [Balcan et al. 2007] is that outside the band, all the classifiers still under
consideration (namely those hypotheses within radius rk of the previous weight vector wk) will
have very small error. Furthermore, the probability mass of this band under the original distribution
is small enough, so that in order to make the desired progress we only need to find a hypothesis of
constant error rate over the data distribution conditioned on being within margin bk of wk. This idea

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Awasthi, Balcan and Long

was used in [Balcan et al. 2007] to obtain active learning algorithms with improved label complexity
ignoring computational complexity considerations3.

In this work, we build on this idea to produce polynomial time algorithms with improved noise
tolerance. To obtain our results, we exploit several new ideas: (1) the performance of the rescaled
hinge loss minimization in smaller and smaller bands, (2) an analysis of properties of the distribution
obtained after conditioning on the band that enables us to more sensitively identify cases in which
the adversary concentrates the effects of noisy examples, (3) another type of localization — a novel
soft outlier removal procedure.

We first show that if we minimize a variant of the hinge loss that is rescaled depending on the
width of the band, it remains a faithful enough proxy for the 0-1 error even when there is signifi-
cantly more noise. As a first step towards this goal, consider the setting where we pick τk propor-
tionally to bk, the size of the band, and rk is proportional to the error rate of wk, and then minimize
a normalized hinge loss function `τk(w, x, y) = max(0, 1 − y(w·x)

τk
) over vectors w in B(wk, rk),

the ball of radius rk centered at wk. We first show that w∗ has small hinge loss within the band.
Furthermore, within the band the adversarial examples cannot hurt the hinge loss of w∗ by a lot.
To see this notice that if the malicious noise rate is η, within Swk−1,bk the effective noise rate is
O(η/bk). Also, with high probability, the hinge loss for vectors w ∈ B(wk, rk) is at most Õ(

√
d).

Hence the maximum amount by which the adversary can affect the hinge loss is Õ(η
√
d/bk). Using

this approach we get a noise tolerance of Ω̃(ε/
√
d).

In order to get better tolerance in the adversarial, or agnostic, setting, we note that examples x
for which |w · x| is large for w close to wk−1 are the most harmful, and, by analyzing the variance
of w · x for such directions w, we can more effectively limit the amount by which an adversary can
“hurt” the hinge loss. This then leads to an improved noise tolerance of Ω(ε).

Our algorithm that tolerates adversarial label noise does not work for the malicious noise model:
it can be foiled by an algorithm that concentrates η measure on an incorrectly labeled example
within Θ(ε) of the separating hyperplane of the target, but with a very large norm. If the norm of
this noisy example is large enough, its hinge loss can overwhelm the hinge losses of clean examples.
We cope with this using a soft localized outlier removal procedure at each stage (described next).
This procedure assigns a weight to each data point indicating the algorithm’s confidence that the
point is not “noisy”. We then minimize the weighted hinge loss. Combining this with the variance
analysis mentioned above leads to a noise of tolerance of Ω(ε) in the malicious case.
Soft Localized Outlier Removal Outlier removal has been used for learning linear classifiers before
[Blum et al. 1997; Klivans et al. 2009a]. In [Klivans et al. 2009a], the goal of outlier removal was to
limit the ability of the adversary to coordinate the effects of noisy examples – excessive such coordi-
nation was detected and removed. Our outlier removal procedure (Algorithm 3) is similar in spirit to
that of [Klivans et al. 2009a] with two key differences. First, as in [Klivans et al. 2009a], we will use
the variance of the examples in a particular direction to measure their coordination. However, due to
the fact that in round k, we are minimizing the hinge loss only with respect to vectors that are close
to wk−1, we only need to limit the variance in these directions. As training proceeds, the band is
increasingly shaped like a pancake, with wk−1 pointing in its flattest direction. Hypotheses that are
close to wk−1 also point in flat directions; the variance in those directions is Θ(b2k) which is much
smaller than variance found in a generic direction. This allows us to limit the harm of the adversary
to a greater extent than was possible in the analysis of [Klivans et al. 2009a]. The second differ-
ence is that, unlike previous outlier removal techniques, rather than making discrete remove-or-not
decisions, we instead weigh the examples and then minimize the weighted hinge loss. Each weight
indicates the algorithm’s confidence that an example is not noisy. We show that these weights can
be computed by solving a linear program with infinitely many constraints. We then show how to de-

3We note that the localization considered by [Balcan et al. 2007] is a more aggressive one than those considered in disagree-
ment based active learning literature [Balcan et al. 2006; Hanneke 2007; Koltchinskii 2010; Hanneke 2011; Wang 2011] and
earlier in passive learning [Bartlett et al. 2005; Boucheron et al. 2005; Zhang 2006].
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sign an efficient separation oracle for the linear program using recent general-purpose optimization
techniques [Sturm and Zhang 2003; Bienstock and Michalka 2014].

1.3. Recent developments
Subsequent to the publication of this work in preliminary form [Awasthi et al. 2014], Daniely [2015]
combined the techniques of this paper with the polynomial-separation technique of [Kalai et al.
2005] to achieve a PTAS for agnostic learning of halfspaces with respect to the uniform distribu-
tion. (Recall that agnostic learning is essentially equivalent to learning with adversarial label noise,
as outlined in Appendix C.) Awasthi et al. [2015] provided efficient (active and passive) learning al-
gorithms for learning linear separators in the presence of (sufficiently benign) bounded noise (a.k. a.
Massart noise)4 to arbitrarily small excess error under the uniform distribution over the unit sphere
in Rd. Awasthi et al. [2016] improved on this algorithm (to allow for any constant bounded noise),
and extended the technique to apply to the related problems of attribute efficient learning of lin-
ear separators and the popular signal processing problem of 1-bit compressed sensing (both in the
passive learning model). The soft outlier technique introduced in our work has also been recently
applied successfully in agnostically learning mixtures of distributions [Diakonikolas et al. 2016].

2. PRELIMINARIES

Recall that `τ (w, x, y) = max
(

0, 1− y(w·x)
τ

)
and `τ (w, T ) = 1

|T |
∑

(x,y)∈T `τ (w, x, y). Simi-
larly, the expected hinge loss w.r.t. D is defined as Lτ (w,D) = Ex∼D(`τ (w, x, sign(w∗ ·x))). Our
analysis will also consider the distribution Dw,γ obtained by conditioning D on membership in the
band, i.e. the set {x : |w · x| ≤ γ}.

We present our algorithms in the active learning model. Since we will prove that our active algo-
rithm only uses a polynomial number of unlabeled samples, this will imply a guarantee for passive
learning setting. At a high level, our algorithms are iterative learning algorithms that operate in
rounds. In each round k we focus on points that fall near the decision boundary of the current hy-
pothesis wk−1 and use them in order to obtain a new vector wk of lower error. In the malicious
noise case, in round k we first do a soft outlier removal and then minimize hinge loss normalized
appropriately by τk.

When analyzing the malicious noise model, we will refer to the examples generated by the ad-
versary as the noisy examples, and the other examples as the clean examples.

For vectors u and v, denote the angle between them by θ(u, v). Let B(u, r) be the ball of radius
r centered at u.

The description of the algorithms and their analysis is simplified if we assume that it starts with a
preliminary weight vector w0 whose angle with the target w∗ is acute, i.e. that satisfies θ(w0, w

∗) <
π/2. We show in Appendix B that this is without loss of generality for the types of problems we
consider.

A probability distribution is isotropic log-concave if its density can be written as exp(−ψ(x)) for
a convex function ψ, its mean is 0, and its covariance matrix is I .

3. ADVERSARIAL LABEL NOISE
Algorithm 1 is our algorithm for learning in the presence of adversarial label noise. In the analysis
below, we assume that the algorithm has access to w0 such that θ(w0, w

∗) < π/2. This can be
shown to be without loss of generality (see Appendix B)).

Theorem 1.1 follows immediately from the following theorem analyzing Algorithm 1.

THEOREM 3.1. Let a distribution D over Rd be isotropic log-concave. Let w∗ be the (unit
length) target weight vector. There are settings of the parameters of Algorithm 1, and positive con-

4The Massart noise is widely studied in statistical learning theory(see e.g. [Boucheron et al. 2005]) and can be thought of as a
realistic generalization of the random classification noise, where where the label of each example x is flipped independently
with constant probability η(x) < 1/2.
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Input: allowed error rate ε, probability of failure δ, an oracle that returns x, for (x, y) sampled
from EXη(f,D), and an oracle for getting the label from an example; a sequence of sample sizes
mk > 0; a sequence of cut-off values bk > 0; a sequence of hypothesis space radii rk > 0; a
precision value κ > 0

(1) Draw m1 labeled examples and put them into a working set W .
(2) For k = 1, . . . , s = dlog2(1/ε)e

(a) Find vk ∈ B(wk−1, rk) to approximately minimize training hinge loss over W s.t. ‖vk‖2 ≤ 1:
`τk (vk,W ) ≤ minw∈B(wk−1,rk)∩B(0,1)) `τk (w,W ) + κ/8.

(b) Normalize vk to have unit length, yielding wk = vk
‖vk‖2

.
(c) Clear the working set W .
(d) Until mk+1 additional data points are put in W , given an unlabeled example x for (x, f(x)) obtained

from EXη(f,D), if |wk · x| ≥ bk, then reject x else ask for the label of x and put the example into
W

Output: Weight vector ws of error at most ε with probability 1− δ.
Algorithm 1: COMPUTATIONALLY EFFICIENT ALGORITHM TOLERATING ADVERSARIAL LABEL
NOISE

stants M , C and ε0, such that, for all ε < ε0, for any δ > 0, if the rate η of adversarial noise
satisfies η < Cε, a number nk = poly(d,Mk, log(1/δ)) of unlabeled examples in round k and a
number mk = O

(
d log

(
d
εδ

)
(d+ log(k/δ))

)
of labeled examples in round k ≥ 1, and w0 such

that θ(w0, w
∗) < π/2, after s = O(log(1/ε)) iterations, finds ws satisfying err(ws) ≤ ε with

probability ≥ 1− δ.

The rest of this section is dedicated to the proof of Theorem 3.1.

3.1. Relevant properties of isotropic log-concave distributions
We start by listing some properties of i.l.c. distributions that we will use in our analysis.

LEMMA 3.2 ([LOVÁSZ AND VEMPALA 2007; VEMPALA 2010]). Assume that D is isotropic
log-concave in Rd and let f be its density function.

(a) Prx∼D [||x||2 ≥ α
√
d] ≤ e−α+1.

(b) Projections of D onto subspaces of Rd are isotropic log-concave.
(c) If d = 1, then Prx∼D [x ∈ [a, b]] ≤ |b− a|.
(d) There is an absolute constant c1 such that, if d = 1, f(x) > c1 for all x ∈ [−1/9, 1/9].
(e) There is an absolute constant c2 such that for any two unit vectors u and v in Rd we have

c2θ(v, u) ≤ Prx∼D(sign(u · x) 6= sign(v · x)).
(f) For any d, there are positive c3(d) and c4(d) such that f(x) ≤ c3(d) exp(−c4(d)||x||).

Parts (a)-(d) are from [Lovász and Vempala 2007]. Part (e) is implicit in [Vempala 2010], and set
out explicitly in [Balcan and Long 2013]. Part (f) is from [Klivans et al. 2009b].

We will use the following lemma as a tool to analyze the variance in directions close to the
hypothesis at any given time.

LEMMA 3.3. For any C > 0, there exist constants c, c′ such that, for any isotropic log-concave
distribution D, for any a such that, ‖a‖2 ≤ 1, and ||u− a||2 ≤ r, for any 0 < γ < C, and for any
K ≥ 4, we have

Pr
x∼Du,γ

(
|a · x| > K

√
r2 + γ2

)
≤ ce−c

′K
√

1+ γ2

r2 .

PROOF. W.l.o.g. we may assume that u = (1, 0, 0, · · · , 0).
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Learning Linear Separators with Noise A:9

Let a′ = (a2, ..., ad), and, for a random x = (x1, x2, ..., xd) drawn from Du,γ , let x′ =
(x2, ..., xd). We may rewrite the probability that we want to bound as

Pr
x∼Du,γ

(
|a · x| > K

√
r2 + γ2

)
=

Prx∼D

(
|a · x| > K

√
r2 + γ2 and |x1| ≤ γ

)
Prx∼D (|x1| ≤ γ)

. (1)

Lemma 3.2 implies that there is a positive constant c1 such that the denominator satisfies the fol-
lowing lower bound:

Pr
x∼D

(|x1| ≤ γ) ≥ c1 min{γ, 1/9} ≥ c1γ

9C
. (2)

So now, we just need an upper bound on the numerator. We have

Pr
x∼D

(
|a · x| > K

√
r2 + γ2 and |x1| ≤ γ

)
≤ Pr
x∼D

(
|a′ · x′| > K

√
r2 + γ2 − γ and |x1| ≤ γ

)
≤ Pr
x∼D

(
|a′ · x′| > (K − 1)

√
r2 + γ2 and |x1| ≤ γ

)
.

Define a′′ = a′

‖a′‖ . Define random variable Y to be a′′ · x and a random variable X to be x1 where
x is drawn from D. Then we have E[X] = E[x1] = 0. E[Y ] = E[a′′ · x] = 0. Furthermore,
E[X2] = 1, E[Y 2] = 1 and E[XY ] = 0. Hence, the joint distribution of X and Y is isotropic log-
concave. Let f(X,Y ) be the p.d.f. of this distribution. Then the numerator can be upper bounded as
follows:

4 Pr
x∼D

(
a′ · x′ > (K − 1)

√
r2 + γ2 and 0 ≤ x1 ≤ γ

)
≤ 4

∫ γ

0

∫ ∞
(K−1)

√
r2+γ2

‖a′‖

f(X,Y )dXdY.

Applying Part (f) of Lemma 3.2 with d = 2, there are constants c and c′ such that the numerator is
at most

c

∫ γ

0

∫ ∞
(K−1)

√
r2+γ2

‖a′‖

exp(−c′
√
X2 + Y 2)dXdY

≤ c
∫ γ

0

∫ ∞
(K−1)

√
r2+γ2

‖a′‖

exp(−c′Y )dXdY

≤ c′′γ exp(−c′ (K − 1)
√
r2 + γ2

‖a′‖
),

in part because the fact that ‖a′‖ ≤ r implies that (K−1)
√
r2+γ2

‖a′‖ > 3. Hence the numerator of (1)

is at most ≤ c′′γ exp(−c′(K − 1)
√

1 + γ2

r2 ), completing the proof.

Armed with Lemma 3.3, now we are ready for the variance bound. It improves on a bound from
an earlier version of this paper [Awasthi et al. 2014], matching what was obtained in that version for
the special case of the uniform distribution. This improvement is what leads to closing a log factor
gap in the tolerable rate of noise for i.l.c. distributions.

LEMMA 3.4. Assume that D is isotropic log-concave.
For any c3, there is a constant c4 such that, for all 0 < γ ≤ c3, for all a such that ‖u− a‖2 ≤ r

and ‖a‖2 ≤ 1

Ex∼Du,γ ((a · x)2) ≤ c4(r2 + γ2).
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A:10 Awasthi, Balcan and Long

Proof: Let z =
√
r2 + γ2. Setting, with foresight, t = 16z2, we have

Ex∼Du,γ ((a · x)2)

=

∫ ∞
0

Pr
x∼Du,γ

((a · x)2 ≥ α) dα

≤ t+

∫ ∞
t

Pr
x∼Du,γ

((a · x)2 ≥ α) dα. (3)

Since t ≥ 16z2, Lemma 3.3 implies that, for absolute constants c and c′, we have

Ex∼Du,γ ((a · x)2) ≤ t+ c

∫ ∞
t

exp(−c′
√
α

r
)dα.

Now, we want to evaluate the integral. Using a change of variables u2 = α, we get∫ ∞
t

exp
(
−c′
√
α/r

)
dα = 2

∫ ∞
√
t

u exp (−c′u/r) du =
2r2

c′2

(√
t

r
+ 1

)
exp

(
−c′
√
t/r
)
.

Putting it together, we get

Ex∼Du,γ ((a ·x)2) ≤ t+ 2cr2

c′2

(√
t

r
+ 1

)
exp

(
−c′
√
t/r
)
≤
(

1 +
c

2c′2

)
t+

2cr2

c′2
exp

(
−4c′

z

r

)
and, since t = 16z2 and z

r ≥ 1, we get the desired bound.
Finally, we will use a lemma from [Balcan and Long 2013] that generalizes and strengthens a

key lemma from [Balcan et al. 2007]. It is used to show that, during the learning process, most
large-margin examples are classified correctly.

LEMMA 3.5 (THEOREM 4 OF [BALCAN AND LONG 2013]). For any c5 > 0, there is a c6 >
0 such that the following holds. Let u and v be two unit vectors in Rd, and assume that θ(u, v) =
α < π/2. If D is isotropic log-concave in Rd, then Prx∼D[sign(u · x) 6= sign(v · x) and |v · x| ≥
c6α] ≤ c5α.

3.2. Parameters for the algorithm
For easy reference throughout the proof, here we collect together the settings of the parameters of
the algorithm.

Let M = max{ 2
c2π

, 2}, where c2 is from Lemma 3.2. Let c′1 be the value of c6 in Lemma 3.5
corresponding to the case where c5 is c2

4M ; then let bk = c′1M
−k.

Let c′2 be c1 from Lemma 3.2. Let rk = min{M−(k−1)/c2, π/2}, where c2 is from Lemma 3.2
and κ = 1

4c′1M
. Let τk = c1 min{bk−1,1/9}κ

6 , where c1 is the value from Lemma 3.2.
Let z2k = r2k + b2k−1.

3.3. The error within a band in each iteration
At each iteration, Algorithm 1 concentrates its attention on examples in the band. Our next theorem
analyzes its error on these examples.

THEOREM 3.6. For k ≤ dlogM (1/ε)e, if errD(wk−1) ≤M−(k−1), with probability 1− δ
k+k2

(over the random examples in round k), after round k of Algorithm 1, we have errDwk−1,bk−1
(wk) ≤

κ.

We will prove Theorem 3.6 using a series of lemmas below. First, we bound the hinge loss of the
target w∗ within the band Swk−1,bk−1

. Since we are analyzing a particular round k, to reduce clutter
in the formulas, for the rest of this section, let us refer to `τk as `, and Lτk(·, Dwk−1,bk−1

) as L(·).
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LEMMA 3.7. L(w∗) ≤ κ/6.

PROOF. Notice that y(w∗ · x) is never negative, so, on any clean example (x, y), we have

`(w∗, x, y) = max

{
0, 1− y(w∗ · x)

τk

}
≤ 1,

and, furthermore, w∗ will pay a non-zero hinge only inside the region where |w∗ · x| < τk. Hence,

L(w∗) ≤ Pr
Dwk−1,bk−1

(|w∗ · x| ≤ τk) =
Prx∼D(|w∗ · x| ≤ τk & |wk−1 · x| ≤ bk−1)

Prx∼D(|wk−1 · x| ≤ bk−1)
.

Using Part (d) of Lemma 3.2, for the value of c1 in that definition, we can lower bound the
denominator:

Pr
x∼D

(|wk−1 · x| < bk−1) ≥ 2c1 min{bk−1, 1/9}.

Part (c) of Lemma 3.2 also implies that the numerator is at most

Pr
x∼D

(|w∗ · x| ≤ τk) ≤ 2τk.

Hence, we have

L(w∗) ≤ 2τk
2c1 min{bk−1, 1/9}

= κ/6.

Let P̃ be the joint distribution used by the algorithm, which includes the noisy labels chosen by
the adversary. Let N = {(x, y) : sign(w∗ · x) 6= y} consist of noisy examples, so that P̃ (N) ≤ η.
Let P be the joint distribution obtained by applying the correct labels. Let P̃k be the distribution on
the examples given to the algorithm in round k (obtained by conditioning P̃ to examples that fall
within the band), and let Pk be the corresponding joint distribution with clean labels.

The key lemma here is to bound how far the expected loss with respect to the distribution P̃k
given to the algorithm is from to the expected loss with respect to the distribution Pk with the
cleaned labels. Informally, it shows that, to an extent, E(x,y)∈P̃k(`(w, x, y)) is an effective proxy
for E(x,y)∈Pk(`(w, x, y)).

LEMMA 3.8. There is an absolute positive constant c such that, if we define zk =
√
r2k + b2k−1

then for any w ∈ B(wk−1, rk), we have

|E(x,y)∈Pk`(w, x, y))−E(x,y)∈P̃k`(w, x, y))| ≤ c
√
η

ε

zk
τk
. (4)
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A:12 Awasthi, Balcan and Long

PROOF. Fix an arbitrary w ∈ B(wk−1, rk). Recalling that N is the set of noisy examples, and
that the marginals of Pk and P̃k on the inputs are the same, we have

|E(x,y)∈Pk(`(w, x, y))−E(x,y)∈P̃k(`(w, x, y))|
= |E(x,y)∈P̃k(`(w, x, y)− `(w, x, sign(w∗ · x)))|
= |E(x,y)∈P̃k(1(x,y)∈N (`(w, x, y)− `(w, x,−y)))|
≤ E(x,y)∈P̃k(1(x,y)∈N |`(w, x, y)− `(w, x,−y)|)

≤ 2E(x,y)∈P̃k

(
1(x,y)∈N

(
|w · x|
τk

))
=

2

τk
E(x,y)∈P̃k

(
1(x,y)∈N |w · x|

)
≤ 2

τk

√
Pr

(x,y)∼P̃k
(N)×

√
E(x,y)∈P̃k((w · x)2)

by the Cauchy-Schwarz inequality. Lemma 3.2 implies that, for an absolute constant c′,

Pr
(x,y)∈P̃k

(N) ≤
Pr(x,y)∈P̃ (N)

Pr(x,y)∈P̃ (Swk−1,bk−1
)
≤ η

c′M−k
≤ η

c′ε/M

since k ≤ dlogM (1/ε)e, and Lemma 3.4 implies E(x,y)∈P̃k((w · x)2) ≤ c′z2k.

Finally, we need some bounds about estimates of the hinge loss.

LEMMA 3.9. Let

cleaned(W ) = {(x, sign(w∗ · x)) : (x, y) ∈W}.

With probability 1− δ
k+k2 , for all w ∈ B(wk−1, rk), we have

|E(x,y)∈P̃ (`(w, x, y))−`(w,W )| ≤ κ/16, and |E(x,y)∈P (`(w, x, y))−`(w, cleaned(W ))| ≤ κ/16.

(5)

PROOF. See Appendix D.
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PROOF OF THEOREM 3.6. With probability 1 − δ
k+k2 , we have, for absolute constants c1 and

c2, the following:

errDwk−1,bk−1
(wk) = errDwk−1,bk−1

(vk)

≤ E(x,y)∈Pk(`(vk, x, y)) (since for each error, the hinge loss is at least 1)

≤ E(x,y)∈P̃k(`(vk, x, y)) + c1

√
η

ε
× zk
τk

(by Lemma 3.8)

≤ `(vk,W ) + c1

√
η

ε
× zk
τk

+ κ/16 (by Lemma 3.9)

≤ `(w∗,W ) + c1

√
η

ε
× zk
τk

+ κ/8

≤ E(x,y)∈P̃k(`(w∗, x, y)) + c1

√
η

ε
× zk
τk

+ κ/4 (by Lemma 3.9)

≤ E(x,y)∈P (`(w∗, x, y)) + c2

√
η

ε
× zk
τk

+ κ/4 (by Lemma 3.8)

≤ c2

√
η

ε
× zk
τk

+ κ/2,

since L(w∗) ≤ κ/6. Since zk/τk = Θ(1), there is an constant c3 such that, η ≤ c3ε suffices for
errDwk−1,bk−1

(wk) ≤ κ, completing the proof.

3.4. Putting it together
Now we are ready to put everything together. The proof of Theorem 3.1 follows the high level
structure of the proof of [Balcan et al. 2007]; the new element is the application of Theorem 3.6
which analyzes the performance of the hinge loss minimization algorithm for learning inside the
band.

Proof (of Theorem 3.1): We will prove by induction on k that after k ≤ s iterations, we have
errD(wk) ≤M−k with probability 1− δ(1− 1/(k + 1))/2.

When k = 0, all that is required is errD(w0) ≤ 1.
Assume now the claim is true for k−1 (k ≥ 1). Then by induction hypothesis, we know that with

probability at least 1−δ(1−1/k)/2,wk−1 has error at mostM−(k−1). Using Part (e) of Lemma 3.2,
this implies that θ(wk−1, w∗) ≤ M−(k−1)/c6. This in turn implies θ(wk−1, w∗) ≤ π/2. (When
k = 1, this is by assumption, and otherwise it is implied by Part (e) of Lemma 3.2.)

Let us define Swk−1,bk−1
= {x : |wk−1 · x| ≤ bk−1} and S̄wk−1,bk−1

= {x : |wk−1 · x| > bk−1}.
Since wk−1 has unit length, and vk ∈ B(wk−1, rk), we have θ(wk−1, vk) ≤ rk which in turn
implies θ(wk−1, wk) ≤ min{M−(k−1)/c6, π/2}.

Applying Lemma 3.5 to bound the error rate outside the band, we have both

Pr
x

[
(wk−1 · x)(wk · x) < 0, x ∈ S̄wk−1,bk−1

]
≤ M−k

4

and

Pr
x

[
(wk−1 · x)(w∗ · x) < 0, x ∈ S̄wk−1,bk−1

]
≤ M−k

4
.

Taking the sum, we obtain Prx
[
(wk · x)(w∗ · x) < 0, x ∈ S̄wk−1,bk−1

]
≤ M−k

2 . Therefore, we
have

err(wk) ≤ (errDwk−1,bk−1
(wk)) Pr(Swk−1,bk−1

) +
M−k

2
.
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Input: allowed error rate ε, probability of failure δ, an oracle that returns x, for (x, y) sampled from
EXη(f,D), and an oracle for getting the label y from an example; a sequence of unlabeled sample
sizes nk > 0, k ∈ Z+; a sequence of labeled sample sizes mk > 0; a sequence of cut-off values
bk > 0; a sequence of hypothesis space radii rk > 0; a sequence of removal rates ξk; a sequence of
variance bounds σ2

k; precision value κ; weight vector w0.

(1) Draw n1 unlabeled examples and put them into a working set W .
(2) For k = 1, . . . , s = dlog2(1/ε)e

(a) Apply Algorithm 3 to W with parameters u← wk−1, γ ← bk−1, r ← rk, ξ ← ξk, σ2 ← σ2
k and let

q be the output function q :W → [0, 1] . Normalize q to form a probability distribution p over W .
(b) Choose mk examples from W according to p and reveal their labels. Call this set T .
(c) Find vk ∈ B(wk−1, rk) to approximately minimize training hinge loss over T s.t. ‖vk‖2 ≤ 1:

`τk (vk, T ) ≤ minw∈B(wk−1,rk)∩B(0,1)) `τk (w, T ) + κ/8.
Normalize vk to have unit length, yielding wk = vk

‖vk‖2
.

(d) Clear the working set W .
(e) Until nk+1 additional data points are put in W , given unlabeled x for (x, f(x)) obtained from

EXη(f,D), if |wk · x| ≥ bk, then reject x else put into W .

Output: weight vector ws of error at most ε with probability 1− δ.
Algorithm 2: COMPUTATIONALLY EFFICIENT ALGORITHM TOLERATING MALICIOUS NOISE

Since Pr(Swk−1,bk−1
) ≤ 2bk−1, this implies

err(wk) ≤ (errDwk−1,bk−1
(wk))2bk−1 +

M−k

2
≤M−k

(
(errDwk−1,bk−1

(wk))2c′1M + 1/2
)
.

Recall that Dwk−1,bk−1
is the distribution obtained by conditioning D on the event that x ∈

Swk−1,bk−1
. Combining Theorem 3.6 with the induction hypothesis,

Pr(err(wk) > 1/Mk)

≤ Pr(err(wk) > 1/Mk|err(wk−1) ≤ 1/Mk−1) + Pr(err(wk−1) > 1/Mk−1)

≤ δ

2(k + k2)
+ δ(1− 1/k)/2

= δ(1− 1/(k + 1))/2.

This completes the proof of the induction, and therefore shows, with probability at least 1 − δ,
O(log(1/ε)) iterations suffice to achieve err(wk) ≤ ε.

A polynomial number of unlabeled samples are required by the algorithm and the num-
ber of labeled examples required by the algorithm is

∑
kmk = O(d(d + log log(1/ε) +

log(1/δ)) log(1/ε)).

4. LEARNING WITH MALICIOUS NOISE
The intuition in the case of malicious noise is the same as for adversarial noise, except that, because
the adversary can also change the marginal distribution over the instances, it is necessary to perform
an additional outlier removal step at each stage of the algorithm. Furthermore, we need a different
analysis since in this case the marginal distribution over the examples can change.

Theorem 1.2 follows immediately from the following theorem analyzing Algorithm 2.

THEOREM 4.1. Let a distribution D over Rd be isotropic log-concave. Let w∗ be the (unit
length) target weight vector. There are settings of the parameters of Algorithm 2, and positive con-
stants M , C and ε0, such that, for all ε < ε0, for any δ > 0, if the rate η of malicious noise
satisfies η < Cε, a number nk = poly(d,Mk, log(1/δ)) of unlabeled examples in round k and a
number mk = O

(
d log

(
d
εδ

)
(d+ log(k/δ))

)
of labeled examples in round k ≥ 1, and w0 such
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Input: a set S = {(x1, x2, . . . , xn)} of samples; the reference unit vector u; desired radius r; a
parameter ξ specifying the desired bound on the fraction of clean examples removed; a variance
bound σ2

(1) Find q : S → [0, 1] satisfying the following constraints:
(a) for all x ∈ S, 0 ≤ q(x) ≤ 1
(b) 1

|S|
∑

(x,y)∈S q(x) ≥ 1− ξ
(c) for all w ∈ B(u, r) ∩B(0, 1), 1

|S|
∑
x∈S q(x)(w · x)

2 ≤ σ2.

Output: A function q : S → [0, 1].

Algorithm 3: LOCALIZED SOFT OUTLIER REMOVAL PROCEDURE

that θ(w0, w
∗) < π/2, after s = O(log(1/ε)) iterations, finds ws satisfying err(ws) ≤ ε with

probability ≥ 1− δ.

The rest of this section is dedicated to the proof of Theorem 4.1.

4.1. Parameters for the algorithm
With the exception of the parameters σ2

k and ξk of the outlier removal procedure, the parameters are
set exactly as in Section 3.2.

The values of σ2
k and ξk are determined by our analysis: σ2

k is c(r2k + b2k−1), for the value of c
in Theorem 4.2 below, that corresponds to the choice, in the statement of Theorem 4.2, of C = c′1.
Finally, ξk = min( κ27 ,

κ2τ2
k

c4216z2k
), for the value of c4 in Lemma 3.4 corresponding to the choice

c3 = b0.

4.2. Analysis of the outlier removal subroutine
The analysis of the learning algorithm uses the following lemma about Algorithm 3.

THEOREM 4.2. For any C > 0, there is a constant c and a polynomial p such that, for all
ξ > 2η′ and all 0 < γ < C, if n ≥ p(1/η′, d, 1/ξ, 1/δ, 1/γ, 1/r), then, with probability 1− δ, the
output q of Algorithm 3 satisfies the following:

—
∑
x∈S q(x) ≥ (1− ξ)|S| (a fraction 1− ξ of the weight is retained)

— For all unit length w such that ‖w − u‖2 ≤ r,

1

|S|
∑
x∈S

q(x)(w · x)2 ≤ c(r2 + γ2). (6)

Furthermore, the algorithm can be implemented in polynomial time.

Our proof of Theorem 4.2 proceeds through a series of lemmas. Lemma 3.2 implies that we may
assume without loss of generality that the instances x1, ..., xn from S are distinct. Obviously, a
feasible q satisfies the requirements of the lemma. So all we need to show is

— there is a feasible solution q, and
— we can simulate a separation oracle: given a provisional solution q̂, we can find a linear constraint

violated by q̂ in polynomial time.

We will start by working on proving that there is a feasible q. First of all, a Chernoff bound
implies that n ≥ poly(1/η′, 1/δ) suffices for it to be the case that, with probability 1 − δ, at most
2η′ members of S are noisy. Let us assume from now on that this is the case.

We will show that q∗ which sets q∗(x) = 0 for each noisy point, and q∗(x) = 1 for each non-
noisy point, is feasible.

First, we use VC tools to show that, if enough examples are chosen, a bound like Lemma 3.4, but
averaged over the clean examples, likely holds for all relevant directions.
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LEMMA 4.3. If we draw ` times i.i.d. from D to form XC , with probability 1− δ, we have that
for any unit length a,

1

`

∑
x∈XC

(a · x)2 ≤ E[(a · x)2] +

√
O(d log(`/δ)(d+ log(1/δ)))

`
.

Proof: See Appendix D.
Lemma 4.3 and Lemma 3.4 together directly imply that

n = poly

(
d, 1/η′, 1/δ,

1

c(r2 + γ2)

)
= poly (d, 1/η′, 1/δ, 1/γ, 1/r)

suffices for it to be the case that, for all w ∈ B(u, r),

1

|S|
∑
(x,y)

q∗(x)(a · x)2 ≤ 2E[(a · x)2] ≤ 2c4(r2 + γ2),

where c4 is the value in Lemma 3.4 corresponding to setting c3 = C. If c = 2c4, we have that q∗ is
feasible.

So what is left is to prove is that a separation oracle for the convex program can be computed in
polynomial time. Very roughly, there is a linear constraint for each of a set of directions, limiting the
variance in that direction. We can find a violated constraint, if there is one, by finding the direction
with maximum variance, using something like PCA, but taking appropriate account of the fact that
we are only considering directions near u.

In detail, we may compute the separation oracle as follows. First, it is easy to check whether, for
all x, 0 ≤ q(x) ≤ 1, and whether

∑
x∈S q(x) ≥ (1− ξ)|S|. An algorithm can first do that. If these

pass, then it needs to check whether there is a w ∈ B(u, r) with ||w||2 ≤ 1 such that

1

|S|
∑
x∈S

q(x)(w · x)2 > c(r2 + γ2).

This can be done by finding w ∈ B(u, r) with ||w||2 ≤ 1 that maximizes
∑
x∈S q(x)(w · x)2, and

checking it.
Suppose X is a matrix with a row for each x ∈ S, where the row is

√
q(x)x. Then∑

x∈S q(x)(w · x)2 = wTXTXw, and, maximizing this over w is an equivalent problem to min-
imizing wT (−XTX)w subject to ‖w − u‖2 ≤ r and ||w|| ≤ 1. Since −XTX is symmetric,
problems of this form are known to be solvable in polynomial time [Sturm and Zhang 2003] (see
[Bienstock and Michalka 2014]).

4.3. The error within a band in each iteration
At each iteration, Algorithm 2 concentrates its attention on examples in the band. Our next theorem
analyzes its error on these examples.

THEOREM 4.4. For k ≤ dlogM (1/ε)e, if errD(wk−1) ≤M−(k−1), with probability 1− δ
k+k2

(over the random examples in round k), after round k of Algorithm 2, we have errDwk−1,bk−1
(wk) ≤

κ.

We will prove Theorem 4.4 using a series of lemmas below. First, we bound the hinge loss of the
target w∗ within the band Swk−1,bk−1

. Since we are analyzing a particular round k, to reduce clutter
in the formulas, for the rest of this section, let us refer to `τk as `, and Lτk(·, Dwk−1,bk−1

) as L(·).
First, Lemma 3.7, that L(w∗) ≤ κ/6, also applies here, using exactly the same proof.

During round k we can decompose the working setW into the set of “clean” examplesWC which
are drawn from Dwk−1,bk−1

and the set of “dirty” or malicious examples WD which are output by
the adversary. We will next show that the fraction of dirty examples in round k is not too large.
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LEMMA 4.5. There is an absolute positive constant c such that, with probability 1− δ
6(k+k2) ,

|WD| ≤ cηnkMk ≤ cMηnk
ε

(7)

PROOF. From Lemma 3.2 and the setting of our parameters, the probability that an example falls
in Swk−1

is at least Ω(M−k). Therefore, with probability (1 − δ
12(k+k2) ), the number of examples

we must draw before we encounter nk examples that fall within Swk−1,bk−1
is at most O(nkM

k).
The probability that each unlabeled example we draw is noisy is at most η. Applying a Chernoff
bound, with probability at least 1− δ

12(k+k2) , we have |WD| ≤ cηnkMk. Since k ≤ dlogM (1/ε)e,
this completes the proof.

Recall that the total variation distance between two probability distributions is the maximum
difference between the probabilities that they assign to any event.

We can think of q as soft indicator functions for “keeping” examples, and so interpret the inequal-
ity
∑
x∈W q(x) ≥ (1 − ξ)|W | as roughly akin to saying that most examples are kept. This means

that distribution p obtained by normalizing q is close to the uniform distribution over W . We make
this precise in the following lemma.

LEMMA 4.6. The total variation distance between p and the uniform distribution over W is at
most ξ.

PROOF. Lemma 1 of [Long and Servedio 2006] implies that the total variation distance ρ be-
tween p and the uniform distribution over W satisfies

ρ = 1−
∑
x∈W

min

{
p(x),

1

|W |

}
= 1−

∑
x∈W

min

{
q(x)∑
u∈W q(u)

,
1

|W |

}
.

Since q(u) ≤ 1 for all u, we have
∑
u∈W q(u) ≤ |W |, so that

ρ ≤ 1− 1

|W |
∑
x∈W

min{q(x), 1}.

Again, since q(x) ≤ 1, we have

ρ ≤ 1− (1− ξ)|W |
|W |

= ξ.

Next, we will relate the average hinge loss when examples are weighted according to p, i.e.,
`(w, p) to the hinge loss averaged over clean examples WC , i.e., `(w,WC). Here `(w,WC) and
`(w, p) are defined with respect to the unrevealed labels that the adversary has committed to.

LEMMA 4.7. There are absolute constants C1, C2 and C3 such that, with probability 1 −
δ

2(k+k2) , if we define zk =
√
r2k + b2k−1, then for any w ∈ B(wk−1, rk), we have

`(w,WC) ≤ `(w, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/32 (8)

and

`(w, p) ≤ 2`(w,WC) + κ/32 +
C2η

ε
+ C3

√
η

ε
× zk
τk
. (9)
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PROOF. Assume without loss of generality that each element (x, y) ∈ W is distinct. Fix an
arbitrary w ∈ B(wk−1, rk). By Theorem 4.2, Lemma 4.5, Lemma 3.2, Lemma 3.4, and Lemma 4.3,
we know that, with probability 1− δ

2(k+k2) , there are absolute constants K1, K2 and K3 such that

1

|W |
∑
x∈W

q(x)(w · x)2 ≤ K1z
2
k (10)

|WD| ≤
K2ηnk
ε

(11)

1

|WC |
∑

(x,y)∈WC

(w · x)2 ≤ K3z
2
k. (12)

(We will need the value of K3 later: we may use

K3 = 2c4 (13)

for the value of c4 in Lemma 3.4 corresponding to c3 = b0.)
Assume that (10), (11) and (12) all hold.
Since

∑
x∈W q(x) ≥ (1− ξk)|W | ≥ |W |/2, we have that (10) implies∑

x∈W
p(x)(w · x)2 ≤ 2K1z

2
k. (14)

First, let us bound the weighted loss on noisy examples in the training set. In particular, we will
show that ∑

(x,y)∈WD

p(x)`(w, x, y) ≤ K2η/ε+ ξk +
√

2K1K2η/ε+ ξk

(
zk
τk

)
. (15)

To see this, notice that,

∑
(x,y)∈WD

p(x)`(w, x, y) =
∑

(x,y)∈WD

p(x) max

{
0, 1− y(w · x)

τk

}
≤ Pr

p
(WD) +

1

τk

∑
(x,y)∈WD

p(x)|w · x| = Pr
p

(WD) +
1

τk

∑
(x,y)∈W

p(x)1WD
(x, y)|w · x|

≤ Pr
p

(WD) +
1

τk

√ ∑
(x,y)∈W

p(x)1WD
(x, y)

√ ∑
(x,y)∈W

p(x)(w · x)2 (by the Cauchy-Schwarz inequality)

≤ Pr
p

(WD) +
√

2K1 Pr
p

(WD)

(
zk
τk

)
≤ K2η

ε
+ ξk +

√
2K1K2η/ε+ ξk

(
zk
τk

)
where the second to last inequality follows by (14) and the last one by Lemma 4.6 and (11).

Similarly, we will show that

∑
(x,y)∈W

p(x)`(w, x, y) ≤ 1 +
√

2K1

(
zk
τk

)
. (16)
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To see this notice that,

∑
(x,y)∈W

p(x)`(w, x, y) =
∑

(x,y)∈W

p(x) max

{
0, 1− y(w · x)

τk

}

≤ 1 +
1

τk

∑
(x,y)∈W

p(x)|w · x| ≤ 1 +
1

τk

√ ∑
(x,y)∈W

p(x)(w · x)2

≤ 1 +
√

2K1

(
zk
τk

)
,

by (14).
Next, we have

`(w,WC) =
1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) + (1WC
(x, y)− q(x))`(w, x, y)


≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) +
∑

(x,y)∈WC

(1− q(x))`(w, x, y)


≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) +
∑

(x,y)∈WC

(1− q(x))

(
1 +
|w · x|
τk

)
≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) + ξk|W |+
1

τk

∑
(x,y)∈WC

(1− q(x))|w · x|


≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) + ξk|W |+
1

τk

√ ∑
(x,y)∈WC

(1− q(x))2
√ ∑

(x,y)∈WC

(w · x)2


by the Cauchy-Schwarz inequality. Recall that 0 ≤ q(x) ≤ 1, and

∑
(x,y)∈W q(x) ≥ 1 − ξk|W |.

Thus,

`(w,WC) ≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) + ξk|W |+
1

τk

√
ξk|W |

√ ∑
(x,y)∈WC

(w · x)2


≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y) + ξk|W |+
√
ξk|W ||WC |K3

(
zk
τk

)
by (12). Since |WC | ≥ |W |/2, we have

`(w,WC) ≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y)

+ 2ξk +
√

2ξkK3

(
zk
τk

)
.
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We have chosen ξk small enough that

`(w,WC) ≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y)

+ κ/32

=

∑
(x,y)∈W q(x)

|WC |

 ∑
(x,y)∈W

p(x)`(w, x, y)

+ κ/32

= `(w, p) +

(∑
(x,y)∈W q(x)

|WC |
− 1

) ∑
(x,y)∈W

p(x)`(w, x, y)

+ κ/32

≤ `(w, p) +

(
|W |
|WC |

− 1

) ∑
(x,y)∈W

p(x)`(w, x, y)

+ κ/32

≤ `(w, p) +

(
|W |
|WC |

− 1

)(
1 +

√
2K1

(
zk
τk

))
+ κ/32,

by (16). Applying (11) yields (8).
Also,

`(w, p) =
∑

(x,y)∈W

p(x)`(w, x, y)

=
∑

(x,y)∈WC

p(x)`(w, x, y) +
∑

(x,y)∈WD

p(x)`(w, x, y)

≤
∑

(x,y)∈WC

p(x)`(w, x, y) +K2η/ε+ ξk +
√

2K1K2η/ε+ ξk

(
zk
τk

)
(by (15)).

=

∑
(x,y)∈WC

q(x)`(w, x, y)∑
(x,y)∈WC

q(x)
+K2η/ε+ ξk +

√
2K1K2η/ε+ ξk

(
zk
τk

)
≤
∑

(x,y)∈WC
`(w, x, y)∑

(x,y)∈WC
q(x)

+K2η/ε+ ξk +
√

2K1K2η/ε+ ξk

(
zk
τk

)
(since ∀x, q(x) ≤ 1)).

≤
∑

(x,y)∈WC
`(w, x, y)

|WC | − ξ|W |
+K2η/ε+ ξk +

√
2K1K2η/ε+ ξk

(
zk
τk

)
≤ 2`(w,WC) +K2η/ε+ ξk +

√
2K1K2η/ε+ ξk

(
zk
τk

)
,

by (11), which in turn implies (9).

PROOF OF THEOREM 4.4. Exploiting the fact that, with high probability, `(w, x, y) =

O

(√
d log

(
d
εδ

))
for all (x, y) ∈ Swk−1,bk−1

and w ∈ B(wk−1, rk) as in the proof of Lemma 3.9,

with probability 1− δ
2(k+k2) , for all w ∈ B(wk−1, rk),

|L(w)− `(w,WC)| ≤ κ/32 (17)

and
|`(w, p)− `(w, T )| ≤ κ/32. (18)
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Also with probability 1 − δ
2(k+k2) , both (8) and (9) hold. Let us assume from here on that all of

these hold.
Then we have

errDwk−1,bk−1
(wk) = errDwk−1,bk−1

(vk)

≤ L(vk) (since for each error, the hinge loss is at least 1)
≤ `(vk,WC) + κ/16 (by (17))

≤ `(vk, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/8 (by (8))

≤ `(vk, T ) +
C1η

ε

(
1 +

zk
τk

)
+ κ/4 (by (18))

≤ `(w∗, T ) +
C1η

ε

(
1 +

zk
τk

)
+ κ/4 (since w∗ ∈ B(wk−1, rk))

≤ `(w∗, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/3 (by (18)).

This, together with (9) and (17), gives

errDwk−1,bk−1
(wk) ≤ 2`(w∗,WC) +

C2η

ε
+ C3

√
η

ε
× zk
τk

+
C1η

ε

(
1 +

zk
τk

)
+ 2κ/5

≤ 2L(w∗) +
C2η

ε
+ C3

√
η

ε
× zk
τk

+
C1η

ε

(
1 +

zk
τk

)
+ κ/2

≤ κ/3 +
C2η

ε
+ C3

√
η

ε
× zk
τk

+
C1η

ε

(
1 +

zk
τk

)
+ κ/2,

by Lemma 3.7.
Now notice that zk/τk is Θ(1). Hence an Ω(ε) bound on η suffices to imply that

errDwk−1,bk−1
(wk) ≤ κ with probability (1− δ

k+k2 ).

The rest of the analysis is exactly the same as for the case of adversarial label noise.

5. DISCUSSION
We note that the idea of localization in the concept space is traditionally used in statistical learn-
ing theory both in supervised and active learning for getting sharper rates [Boucheron et al. 2005;
Bshouty et al. 2009; Koltchinskii 2010]. Furthermore, the idea of localization in the instance space
has been used in margin-based analysis of active learning [Balcan et al. 2007; Balcan and Long
2013]. In this work we used localization in both senses in order to get polynomial-time algorithms
with better noise tolerance. It would be interesting to further exploit this idea for other concept
spaces.

Our algorithms run in polynomial time, and therefore use a polynomial number of examples.
Notably, they use only polylogarithmically many class labels. Our bounds on the total number of
examples used by our algorithms are, however, somewhat worse than the best bounds known for
the noise-free case. In order to find and remove outliers, the precision with which we need statistics
on the training data to match properties of the underlying distribution gets finer as the number of
variables increases. When combined with the usual effect in VC analyses regarding growth of the
richness of behavior with the number of variables (which could be partially mitigated using local-
ized analysis in place of the VC tools that we have used here), this leads to the increased requirement
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on the number of examples. Substantially improving the sample complexity and finding more com-
putationally efficient noise-tolerant algorithms is a potentially useful topic for future research.

While we have chosen to focus on isotropic log-concave distributions to present our techniques
in a clean setting, it appears that, using tools from [Balcan and Long 2013; Awasthi et al. 2014], our
analysis can be applied to a broader class of distributions with minor changes, including “nearly log-
concave distributions”, defined as in [Applegate and Kannan 1991]. One property of the distribution
that is needed for our analysis is that it is fairly likely that a random example falls fairly close to
the separating hyperplane of the target. While this may not be the case in some applications, such
applications are typically easier, and might be handled separately. Provably noise-tolerant learning
of linear classifiers for natural classes of distributions that include such cases is another important
topic for future work.
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A. ADDITIONAL RELATED WORK
Passive Learning. Blum et al. [Blum et al. 1997] considered noise-tolerant learning of halfspaces

under a more idealized noise model, known as the random noise model, in which the label of each
example is flipped with a certain probability, independently of the feature vector. Some other, less
closely related, work on efficient noise-tolerant learning of halfspaces includes [Bylander 1994;
Blum et al. 1997; Feldman et al. 2006; Guruswami and Raghavendra 2009; Servedio 2001; Awasthi
et al. 2010; Long and Servedio 2011; Birnbaum and Shalev-Shwartz 2012].

Active Learning. As we have mentioned, most prior theoretical work on active learning focuses
on either sample complexity bounds (without regard for efficiency) or on providing polynomial time
algorithms in the noiseless case or under simple noise models (random classification noise [Balcan
and Feldman 2013] or linear noise [Cesa-Bianchi et al. 2010; Dekel et al. 2012]).

In [Cesa-Bianchi et al. 2010; Dekel et al. 2012] online learning algorithms in the selective sam-
pling framework are presented, where labels must be actively queried before they are revealed.
Under the assumption that the label conditional distribution is a linear function determined by a
fixed target vector, they provide bounds on the regret of the algorithm and on the number of labels
it queries when faced with an adaptive adversarial strategy of generating the instances. As pointed
out in [Dekel et al. 2012], these results can also be converted to a distributional PAC setting where
instances xt are drawn i.i.d. In this setting they obtain exponential improvement in label complexity
over passive learning. These interesting results and techniques are not directly comparable to ours.
One important difference is that (as pointed out in [Gonen et al. 2013]) the exponential improve-
ment they give is not possible in the noiseless version of their setting. In other words, the addition
of linear noise defined by the target makes the problem easier for active sampling. By contrast RCN
can only make the classification task harder than in the realizable case.

Recently, [Balcan and Feldman 2013] showed the first polynomial time algorithms for actively
learning thresholds, balanced rectangles, and homogenous linear separators under log-concave dis-
tributions in the presence of random classification noise. Active learning with respect to isotropic
log-concave distributions in the absence of noise was studied in [Balcan and Long 2013].

An algorithm for active learning with a general hypothesis space was proposed and analyzed by
Zhang and Chaudhuri [2014]. Efficient algorithms for tracking a drifting linear classifier when the
distribution is uniform were described by Hanneke, Kanade and Yang [2015].

B. ACUTE INITIALIZATION
We will prove that we may assume without loss of generality that the algorithm receives as input a
w0 whose angle with the target w∗ is acute.

Suppose we have an algorithm B as a subroutine that satisfies the guarantee of Theorem 3.1,
given access to such a w0. Then we can arrive at an algorithm A which works without it as follows.
With probability 1, for a random u, either u or −u has an acute angle with w∗. We may then run B
with both choices, and with ε set to πc2

4 , where c2 is the constant in Part (e) of Lemma 3.2. Then we
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can use hypothesis testing on O(log(1/δ)) examples, and, with high probability, find a hypothesis
w′ with error less than πc2

4 . Part (e) of Lemma 3.2 then implies that A may then set w0 = w′, and
call B again.

C. RELATING ADVERSARIAL LABEL NOISE AND THE AGNOSTIC SETTING
In this section we study the agnostic setting of [Kearns et al. 1994; Kalai et al. 2005] and describe
how our results imply constant factor approximations in that model. In the agnostic model, data
(x, y) is generated from a distribution D over <d × {1,−1}. For a given concept class C, let
OPT be the error of the best classifier in C. In other words, OPT = argminf∈CerrD(f) =
argminf∈CPr(x,y)∼D[f(x) 6= y]. The goal of the learning algorithm is to output a hypothesis h
which is nearly as good as f , i.e., given ε > 0, we want errD(h) ≤ c · OPT + ε, where c is the
approximation factor. Any result in the adversarial model that we study, translates into a result for
the agnostic setting via the following lemma.

LEMMA C.1. For a given concept class C and distribution D, if there exists an algorithm in
the adversarial noise model which runs in time poly(d, 1/ε) and tolerates a noise rate of η = Ω(ε),
then there exists an algorithm for (C,D) in the agnostic setting which runs in time poly(d, 1/ε) and
achieves error O(OPT + ε).

PROOF. Let f∗ be the optimal halfspace with errorOPT . In the adversarial setting, w.r.t. f∗, the
noise rate η will be exactly OPT . Set ε′ = c(OPT + ε) as input to the algorithm for the adversarial
model. By the guarantee of the algorithm we will get a hypothesis h such that Pr(x,y)∼D[h(x) 6=
f∗(x)] ≤ ε′ = c(OPT + ε). Hence by triangle inequality, we have errD(h) ≤ errD(f∗) +
c(OPT + ε) = O(OPT + ε).

For the case when C is the class of origin centered halfspaces in Rd and the marginal of D is
the uniform distribution over Sd−1, the above lemma along with Theorem 1.1 implies that we can
output a halfspace of accuracy O(OPT + ε) in time poly(d, 1/ε). The work of [Kalai et al. 2005]
achieves a guarantee of O(OPT + ε) in time exponential in 1/ε by doing L2 regression to learn a
low degree polynomial, and that L1 regression can achieve a stronger guarantee of OPT + ε. As
noted above, their approach also does not require that the halfspace to be learned goes through the
origin.

D. PROOF OF VC LEMMAS
In this section, we apply some standard VC tools to establish some lemmas about estimates of
expectations.

Definition D.1. Say that a set F of real-valued functions with a common domain X shatters
x1, ..., xd ∈ X if there are thresholds t1, ..., td such that

{(sign(f(x1)− t1), ..., sign(f(xd)− td)) : f ∈ F} = {−1, 1}d.

The pseudo-dimension of F is the size of the largest set shattered by F .

We will use the following bound.

LEMMA D.2 (SEE [ANTHONY AND BARTLETT 1999]). Let F be a set of functions from a
common domain X to [a, b] and let d be the pseudo-dimension of F , and let D be a probability dis-

tribution over X . Then, for m = O
(

(b−a)2
α2 (d+ log(1/δ))

)
, if x1, ..., xm are drawn independently

at random according to D, with probability 1− δ, for all f ∈ F ,∣∣∣∣∣Ex∼D(f(x))− 1

m

m∑
t=1

f(xt)

∣∣∣∣∣ ≤ α.
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D.1. Proof of Lemma 3.9
The pseudo-dimension of the set of linear combinations of d variables is known to be d [Pollard
2011]. Since, for any non-increasing function ψ : R → R and any F , the pseudo-dimension of
{ψ ◦ f : f ∈ F} is at most that of F (see [Pollard 2011]), the pseudo-dimension of {`(w, ·) : w ∈
Rd} is at most d.

Now, to apply Lemma D.2, we want an upper bound on the loss. The first step is a bound in terms
of the norm.

LEMMA D.3. There is a constant c such that, for any w ∈ B(wk−1, rk), and all x,

`(w, x, y) ≤ c(1 + ||x||2).

PROOF.

`(w, x, y) ≤ 1 +
|w · x|
τk

≤ 1 +
|wk−1 · x|+ ‖w − wk−1‖2||x||2

τk

≤ 1 +
bk−1 + rk||x||2

τk
= 1 +

c′1M
−k + min{M−(k−1)/c6, π/2}||x||2

c2 min{c′1M−k,c1}κ
6c3

.

If the support of D is bounded, Lemma D.3 gives a useful worst-case bound on the loss. Next,
we give a high-probability bound that holds for all isotropic log-concave distributions.

LEMMA D.4. For an absolute constant c, with probability 1− δ
6(k+k2) ,

max
x∈WC

||x||2 ≤ c
√
d ln

(
|WC |k
δ

)
. (19)

PROOF. Applying Part (a) of Lemma 3.2 together with a union bound, we have

Pr(∃x ∈WC , ||x|| > α) ≤ c9|WC | exp(−α/
√
d),

and α =
√
d ln

(
12c9|WC |k2

δ

)
makes the RHS at most δ

6(k+k2) .

Let D′ be the distribution obtained by conditioning D on the event that ||x|| < R, where R is
the RHS of (19). By Lemma D.4, the total variation distance between drawing the members of WC

independently random from D, and drawing them from D′, it at most 1− δ
6(k+k2) , so it suffices to

prove (5) with respect to D′. Applying Lemma D.3, and Lemma D.2 then completes the proof of
(5).

D.2. Proof of Lemma 4.3
Define fa by fa(x) = (a · x)2. The pseudo-dimension of the set of all such functions is O(d)

[Klivans et al. 2009a]. As the proof of Lemma 3.9, w.l.o.g., all x have ||x||2 ≤ O(
√
d log(`/δ)),

and applying Lemma D.2 completes the proof.
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