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Abstract. We consider the problem of classification using a variant of
the agnostic learning model in which the algorithm’s hypothesis is eval-
uated by comparison with hypotheses that do not classify all possible
instances. Such hypotheses are formalized as functions from the instance
space X to {0, %, 1}, where * is interpreted as “don’t know”. We provide
a characterization of the sets of {0, %, 1}-valued functions that are learn-
able in this setting. Using a similar analysis, we improve on sufficient
conditions for a class of real-valued functions to be agnostically learn-
able with a particular relative accuracy; in particular, we improve by a
factor of two the scale at which scale-sensitive dimensions must be finite
in order to imply learnability.

1 Introduction

In agnostic learning [13,17], an algorithm tries to find a hypothesis that general-
izes nearly as well as is possible using any hypothesis in some class that is known
a priori; this class is sometimes called the comparison class. This framework can
be applied for analyzing algorithms for two-class classification problems; in this
case, one can view hypotheses as functions from some domain X to {0,1}.

In this paper, we consider a modified framework in which the members of the
comparison class do not classify all elements of the domain, and are regarded to
be wrong an any domain elements that they do not classify. Formally, hypotheses
in this framework map X to {0, %, 1}, where x is regarded as “don’t know”. This
offers a clean way to make formal use of the intuition that points are unlikely to
fall in the unclassified region, since results in this framework are strong to the
extent that this is true.

For example, it can be used to formalize the assumption that there is a half-
space that is likely to classify instances correctly with a certain margin; such a
halfspace has small error, even if instances falling close to its separating hyper-
plane are regarded as being classified incorrectly (i.e. are mapped to x). This
viewpoint is implicit in the manner in which the “margin percentile bounds” for
generalization of support vector machines [3,2,11] are formulated. These results
bound the probability that there is some halfspace that classifies a large fraction



of a random sample correctly with a large margin, but fails to generalize well.
Such results are interesting when it is likely, for a collection of random examples,
that some halfspace gets most of the examples correct with a large margin, and
this is the case when some halfspace is likely to classify individual random exam-
ples correctly with a large margin. A similar line of reasoning suggests that this
assumption is implicit in Ben-David and Simon’s [6] choice of analysis for their
computationally efficient algorithm; indeed, agnostic learning of {0, %, 1}-valued
functions in the model studied here abstracts the optimization criterion studied
in their paper (see also [7]).

In this paper, we show that a generalization of the VC-dimension to {0, *,1}-
valued functions introduced in [4] provides a characterization of learnability in
this setting, in that a class of functions is learnable if an only if its generalized
VC-dimension is finite.

Next, we turn to the problem of learning with real-valued hypotheses. Scale-
sensitive notions of the dimension of a class of real-valued functions have been
used to characterize the learnability of classes of real-valued functions in different
settings [1, 5]: loosely, these results say that a class can be learned to any accuracy
if and only if its dimension is finite at all scales. Previous work [4] considered
the following question: at what scale does the dimension need to be finite for
learning to a particular relative accuracy to be possible? This work left roughly
a factor of two gap between the scales at which finite dimension is necessary and
is sufficient. In this paper, we close this gap, improving by a factor of two the
bound on the scale at which the dimension of a class of real-valued functions
must be finite for it to be agnostically learnable.

The model of agnostic learning of {0, x,1}-valued functions calls to mind
the “sleeping experts” framework [12], but there are many differences, including
the usual differences between batch and online learning settings. Blum, et al
[8] studied a variant of the model of PAC learning with membership queries in
which queries falling in a given region are answered with “don’t know” and the
distribution assigned zero weight to this “don’t know” region.

2 Characterization of agnostic learnability with
{0, %, 1}-valued hypothesis

2.1 Definitions

Say a set F' of functions from X to {0,%,1} shatters elements z1, ...,xq of X if

{0, 1} C{(f(z1), ... f(za)) : f € F}.

Define VCdim(F') [19,4] to be the size of the largest set shattered by F.

An example is an element of X x {0,1} and a sample is a finite sequence of
examples. A hypothesis is a function from X to {0,*,1}. Define £ : {0,%,1} x
{0,1} = {0,1} by £(g,y) = 1 iff § # y. For a hypothesis h, and a probability
distribution P over X x {0,1}, define the error of h with respect to P, to be
erp(h) = Pr; )~ p(h(z) # y).



A learning strategy is a mapping from samples to hypotheses. A prediction
strategy [15] takes as input a sample and an element of X, and outputs an element
of {0,1}.

A set F' of functions from X to {0,x,1} is said to be agnostically learnable if
there is a learning strategy such that, for all €, > 0, there is a natural number
m such that, for any probability distribution P over X x {0,1}, if m examples
are drawn independently at random according to P, and the resulting sample is
passed to A which outputs a hypothesis h, then, with probability at least 1 — 4,
erp(h) < (infreperp(f)) +e.

2.2 Overview of some technical issues involved

The model of agnostic learning of {0, *,1}-valued functions falls within the gen-
eral decision-theoretic framework proposed by Haussler [13]. In a special case
of Haussler’s framework, there is an instance space X, an action space 4, an
outcome space Y, a loss function £ : A x Y — R* and a comparison class F
of functions mapping X to A. Given examples (z1,¥1), ---, (Tm, Yym) drawn inde-
pendently at random according to a probability distribution P over X x Y, a
learning algorithm outputs a hypothesis h mapping X to A. Roughly, the goal
is for B, y)~p(l(h(2),y)) to be close to infser E¢,, ) p(U(f(2),y)).

The model of this paper can be recovered by setting A = {0,*,1},Y = {0,1},
and letting £ be the discrete loss, i.e. £(g,y) = 1if § # y and £(g§,y) =0if § = y.

Unfortunately, some of the general analysis techniques [19,18,13] that have
been applied in a wide range of concrete problems falling within this framework
cannot be applied in the {0, x,1} case. The by now standard analysis considers
a class of loss functions defined as follows. For each f, define £;: X xY — R*
to give the loss incurred by f, i.e. £5(z,y) = £(f(x),y). Then bp = {{; : f € F}.
The usual analysis proceeds by showing that conditions on F' imply that g is
somehow “limited”. For example, if A = {0,1}, Y = {0,1} and £ is the discrete
loss, then VCdim(£r) < VCdim(F). In our setting, it appears that nothing useful
of this type is true; the set F of all functions from N to {0, *} has VCdim(F) = 0,
but VCdim({r) = oc.

Instead, we use an approach from [10,4], in which given

(3;1, f(z.l))a eeey (mma f(mm))a

and wanting to evaluate h(z), the algorithm constructs a small cover of the
restrictions of the functions in F'to 1, ..., ., . In this context, loosely speaking,
a cover of a set of functions is another set of functions for which each element
of the set being covered is approximated well by some element of the set doing
the covering. To analyze such an algorithm in this setting required a lemma
about the existence of small covers. All bounds we know on covering numbers
for learning applications proceed by first bounding packing numbers, and then
appealing to a general bound on covering numbers in terms of packing numbers.
(Roughly, a packing number of a set is the size of the largest pairwise distant
subset.) It appears that this cannot work in this setting, because the relevant



notion of “approximation” (defined below) is not a metric. The main technical
novelty in this paper is a proof of a covering lemma, that does not rely on packing.

2.3 The covering lemma

For this subsection, fix a finite set Z. Say that a function g from Z to {0,1} k-
covers a function f from Z to {0,*,1}if |[{z € Z: f(2) # * and f(2) #g(2)}| <
k.

Say that a set G of {0, 1}-valued functions k-covers a set F of {0, *, 1}-valued
functions if each function in F' is k-covered by some function in G.

For technical reasons, it will be useful for a moment to consider learning when
the examples can be labelled with . In this context, an % can be interpreted as
“doesn’t matter”. For a hypothesis h, a function f from Z to {0,%,1}, and a
probability distribution D over Z, define the error of h with respect to f and
D, to be

ery,p(h) = Pro~p((h(2) # f(2)) A (f(2) # *))

We will make use of the following known result about this model.

Lemma 1 ([4]). Choose a set F' of functions from Z to {0,%,1}, and let d be
the VC-dimension of F. There is a mapping A from finite sequences of elements
of Z x{0,*,1} to hypotheses such that, for any probability distribution D over Z,
for any f € F, and for any positive integert, if z1, ..., z¢ are chosen independently
at random according to D, and A is applied to (z1, f(21)), -, (2, f(2¢)), and h
is the resulting hypothesis, then E(ery p(h)) < t+i1'

Lemma 2. Let m = |Z|. Choose a set F of functions from Z to {0,%,1} and
let d = VCdim(F'). Choose an integer k such that 1 < k < m. There is a set G
of {0,1}-valued functions and a subset F' of F such that (a) |F'| > |F|/2, (b)
G k-covers F', and (c) |G| < 312dm/k1

Proof: Define A as in Lemma 1. Let D be the uniform distribution over Z.
Let P be the uniform distribution over F. Choose t (its value will be set later).
Suppose that zi,...,z; are chosen independently at random according to D, f
is chosen independently according to P, and (21, f(21)), ..., (2¢, f(2¢)) are passed
to A; let A(zy,...,2:; f) be A’s hypothesis (viewed as a random variable). Then
Lemma 1 says that

d
Vfe FE,,  .~pt(eryp(A(z1,..., 25 f))) < e

Markov’s inequality implies that

2d
VfeF,Pr,  ..p (erf,D(A(zl,...,zt;f)) > T) <1/2.

Thus,

2d
Priop.,. . 2~Dt (erf,D(A(zla---athf)) > T) <1/2.



Fubini’s Theorem implies that

2d
E.. . .  :.~Dt (PI‘fNP(erf,D(A(Zl,---,Zt;f)) > T)) <1/2.

Thus,
2d
Ter, 20y Pryop (erf,D(A(zl,...,zt;f» > 7) <172 1)
Choose such a sequence zi,...,2;. Let G = {A(z1,...,2;f) : f € F}, and let
F' = {f € F:ersp(A(z1,..., 25 ) < %} Note that G 2dTm—covers F', and,
by (1), |F'| > |F|/2. Suppose t = [2dm/k]; then 22 < k. There are only 3¢
possible inputs to A with instances z1,...,z;. Thus, |[H| < 3!, completing the

proof. O

Theorem 1. Let m = |Z|. Choose a set F' of functions from Z to {0,%,1} and
let d = VCdim(F'). Choose an integer k such that 1 < k < m. There is a set G of
{0, 1}-valued functions that k-covers F' and for which |G| < [mlog, 3]3[24m/k1,

Proof: Construct a sequence G1, Ga, ..., Giog, |F|] Of sets of functions from X to
{0,1} by repeatedly applying Lemma 2 to k-cover at last half of the remaining
functions in F', and then deleting the covered functions. Let G = UG;. Then G
k-covers F, and |G| < [log, |F|]3[2?™/*1 < [mlog, 3]3/2¢m/k1,

2.4 Learning

Theorem 2. A set F' of functions from X to {0,%,1} is learnable if and only
if VCdim(F) is finite.

The necessity follows from the corresponding result for the {0,1} case [9].
The sufficiency is a direct consequence of the following theorem. The following
proof closely follows that of Theorem 21 of [4]; the main difference is that it
appeals to the new Theorem 1 of the present paper.

Theorem 3. Choose a set F of functions from X to {0,x,1} for which
VCdim(F) is finite. Let d = VCdim(F).

There is a prediction strategqy A and constants ¢ and mqg such that,
for any probability distribution P over X x {0,%,1}, for any m > my, if
(1,91), -, (Tm, ym) are drawn independently at random according to P, and
(Z1,Y1), e, (Tm—1,Ym—1) and T, are given to A, which outputs g, then

1/3
B(U(gm, ym)) ~ fnf erp(f) < ¢ (i) .

m
Proof: Assume without loss of generality that m is even. Choose a > 0 (its
value will be set later).

Choose a function @ that maps from X™ to the set of finite subsets of {0,1}™
such that, for any (z1, ..., Zm) € X™, (21, ..., Tn) is one of the smallest sets that



am-covers {(f(z1),..., f(zm)) : f € F} and &(z1, ..., Ty, ) is invariant under per-
mutations of its arguments. (When defining “am-covers” above, we are viewing
an element of {0,*,1}™ as a function from {1,...,m} to {0,%,1}.)

Consider the prediction strategy A that chooses § = (§1, ..., §m) from among

the elements of &(z1,...,%y) in order to minimize Z:r;/lz £(g;,y;) (the error on

the first half of the sample only), and outputs §,-
For a € {0,1}™, b € {0, *,1}™, define

Eﬁ““(a, b) — % Z E(ai, bz);

" (a,b) = % > ai, bi).

i=1

Fix a distribution P on X x {0, 1}, and suppose (1,91), --., (Zm, Ym) are cho-
sen independently at random from P. Let z = (21, ...,Zm) and y = (Y1, -, Ym)-
Choose f* € F that satisfies erp(f*) < infscp erp(f)+a. Since &(x) am-covers

{(f(21), s f(zm)) : [ € F}
3 € B(z1, e Tm), Ot y) < @+ L ((F*(@1)s o, (@m),y). (2)

(If f*(z;) = =, whatever the values of t; and y;, £(t;,v;) < £(f*(z:),v:)-)
Applying the Hoeffding bound,

Pr (M ((f*(@1); s [* (@m)), y) > erp(f*) + @) < e 2™, (3)

Now, let U be the uniform distribution over {—1,1}™/2. Then, since & is
invariant under permutations,

Pr(3t € &(z) [£77(t,y) — £°(t,y)| > 2a)
S SUP(w,y) PruEU (at c ¢(.’L’), % E:l/f U (Z(tu?h) - K(ti+m/2a yi+m/2))‘ > QOZ)

For any fixed ¢t € &(z), Hoeffding’s inequality implies

m/2
2
PruEU E Z U; (Z(thyz) - K(tz’+m/25yi+m/2)) > 2a S 2€7a2m.
=1

So with probability at least 1 — |&(z)|2e= ™ for all ¢ in &(z),

|Kfirst (t, y) _ glast (t, y)| S 2a.



This implies

0t y) — £t y)| < @
and
[t (t,y) — "t y)| < a

So, combining with (3), with probability at least 1 — (1 + 2|d5(x)|)e_°‘2m, the
g € &(x) with minimal £%=*(§, y) satisfies
M G,y) <0, y) + o
S Kfirst(t*’y) + o
<Nt y) + 20

S Ea“((f*(wl)a RAE] f*(wm))ay) + 3a
<erp(f*) +4a

and hence
=(g,y) < erp(f*) + 5a
< inf }
< }relFerp(f) + 6o
That is,

2

Pr (e'm@,y) > inf erp(f) + sa) < (14 28(@))e"m

which implies

2

B(£*(§,9)  inf erp(f) < 6+ (1+ 2|(z) e,

Thus, since any of (Zp, /241, Ym/241)5 -+ (Tm, Ym) Was equally likely to have been
the last,

E(e(gm;ym)) - }TelfFEIP(f) < 6o + (1 + 2|¢(x)|)6_a2m‘

Let a = (2071‘1)1/ s zlnm Theorem 1 implies that there is are constants c;
and mg such that for all m > my,
E(l(Jm,ym)) — flfelfw erp(f) < 6a + exp(crd/a — o’m). 4)

The following sequence of implications are immediate:

2c1d /3 2lnm
a>|— and a >
m m

1
o’m/2 > erd/a and o*m/2 > In o

1
a’m > ad/a+1n o

exp(cid/a — a®*m) < a.



Applying (4), we get
E({l(§m,ym)) — inf erp(f) < Ta.
feFr

Substituting the value of a completes the proof. O

Armed with Theorem 3, straightforward application of known techniques [14]
(almost identical to the last paragraph of the proof of Theorem 21 in [4]) gets
us the rest of the way to prove Theorem 2.

Proof (for Theorem 2): Theorem 3, together with Fubini’s theorem, im-
plies that there is a learning algorithm whose hypothesis h satisfies E(erp(h) —
inf;eperp(f)) = c(d/t)'/?, where this expectation is with respect to ¢ ran-
dom examples. Markov’s inequality implies that Pr(erp(h) — infrcrerp(f) >
2¢(d/t)'/?) < 1/2. If we run the algorithm repeatedly ~ log, 2/J times using t
examples each time, with probability 1 — §/2, one of resulting hypotheses will
satisfy erp(h) — infseperp(f) < 2¢(d/t)'/?. Hoeffding’s inequality implies that
poly(t,1/9) additional examples are sufficient to test of all the returned hy-
potheses, and find one that satisfies erp(h) — inf;ererp(f) < 4c(d/t)Y/? with
probability 1 — 6. O

2.5 Rounding

One might hope that all the *’s in a class of {0,*,1} valued functions can be
“rounded” to 0 or 1 without increasing its VC-dimension. This would lead to
a better bound than Theorem 3, and perhaps a simpler proof of Theorem 2.
Unfortunately, it is not true.

Proposition 1. There is a set X, and a set F of functions from X to
{0,%,1} such that for any set G of functions from X to {0,1} that 0-covers
F, VCdim(G) > VCdim(F).

Proof: Define F' as in Figure 1. By inspection, VCdim(F') = 1. It is not possible

Fig. 1. F from Proposition 1 in table form.

for a single function to 0-cover two elements of F', since each pair of functions in
F' differ on some domain element on which neither evaluates to *. Thus, any G
that O-covers F' must have |G| > 5, and therefore, by the Sauer-Shelah Lemma,
VCdim(G) > 1. O



3 Real-valued hypotheses

For a function f from X to [0,1], a real threshold r and a non-negative margin
7, define 9, (f) : X — {0, %, 1} to indicate whether f(z) is above or below r by
a margin vy as follows

1if f(z) >r+~
(rpy(f))(@) =S 0if f(z) <r—v
«if |f(z) —r| < 7.

For a class F' of functions from X to [0, 1], let ¢, (F) = {¢r~(f) : f € F}. Let
fatVp(y) = max, VCdim(¢, (F)). (This notion of dimension was proposed by
Alon, et al [1].)

For this section, let us broaden the notion of an example to be an arbitrary
element of X x [0, 1] and redefine a learning and a prediction strategy accordingly.
For a probability distribution P over X x [0,1] and a function h from X to
[0,1], let erp(h) = E(4,y)~p(|h(2) — y|). For € > 0, we then say that a set F' of
functions from X to [0, 1] is agnostically learnable to within e if there is a learning
strategy A such that, for all 6 > 0, there is a natural number m such that, for any
probability distribution P over X x [0, 1], if m examples are drawn independently
at random according to P, and the resulting sample is passed to A which outputs
a hypothesis h, then, with probability at least 1—6, erp(h) < (inf ;e erp(f))+e.

The following is the main result of this section.

Theorem 4. For any set F' of functions from X to [0,1], if there is an o > 0
such that fatV g (e — ) is finite, then F is agnostically learnable to within €.

This improves on the sufficient condition (Ja > 0,fatVp(e/2 —a) < o0) from
[4] by a factor of two on the scale at which the dimension of F' is examined. The
finiteness of fatV g (e+ a) for some positive a has been shown to be necessary [4].
It implies a similar improvement on the sufficient condition stated in terms of
Kearns and Schapire’s [16] fat-shattering function [1,4], closing a factor of two
gap there as well.

Say that a set F of functions from X to [0,1] is agnostically predictable to
within € > 0 if there is a sample size m and a prediction strategy A such that, for
any probability distribution P over X x [0,1], if (z1,¥1), ..., (Zm,ym) are drawn
independently at random according to P, and (z1,y1), -, (Tm—1,Ym—1), Tm are
passed to A, which outputs ¢, then E(|§m, — ym|) —infrererp(f) <e.

We will make use of the following lemma, implicit in [14,4].

Lemma 3. For any X, and any set F of functions from X to [0,1], if F is
agnostically predictable to within € > 0, then F is agnostically learnable to within
any € > e.

This enables us to prove Theorem 4 by analyzing a prediction strategy.

As in the previous section, we wanted a covering lemma whose proof doesn’t
go via packing; loosely speaking, here this is because one loses a factor of two
converting between packing and covering.



3.1 Small covers

Choose a finite set Z. For functions f and g from Z to [0,1], let ¢1(f,g) =
ﬁ Y ez |f(2) —g(2)]. Say that a set G of functions from Z to [0, 1] e-covers a
set F' of functions from Z to [0, 1] if for every f € F, there is a g € G for which
61(f,g9) <e Let N(e, F) be the size of the smallest e-cover of F.

For @« > 0 and u € R, let Q,(u) denote the quantized version of u, with
quantization width a. That is, define Q4 (u) = a|u/a]. Let Q4 ([0,1]) = {Qqa(u) :
u € [0,1]}. For a function f from Z to R, define Q4 (f) : Z = R by (Qu(f))(z) =
Qo (f(z)). Finally, for a set F of such functions, define Q4 (F) = {Qu(f) : f €
F

Lemma 4. For any set F' of functions from Z to [0,1], any € > 0, and o < €/2,
N(e, F) < N(e -, Qa(F)).

For functions h and f from X to [0, 1], and a probability distribution D over
Z, define the error of h with respect to f and D, to be ery p(h) = Pr .p(Jh(2)—

f2))-

Lemma 5 ([4]). Choose a set F' of functions from Z to [0,1]. There is a map-
ping A from finite sequences of elements of Z x [0,1] to hypotheses such that,
for any probability distribution D over Z, for any f € F, and for any posi-
tive integer m, if z1,...,2¢ are chosen independently at random according to D,
A is applied to (21, f(21)), -, (¢, f(2t)), and h is the resulting hypothesis, then

E(ers,p(h)) < v + 2pell,

Lemma 6. Letm = |Z|. Choose 0 <y <e<1,b€eN, and a set F of functions
from Z to Qq4([0,1]). There is a set G of {0, 1}-valued functions and a subset
F'" of F such that

- |F'| > |F|/2,

— G e-covers F', and
2va(-y)'|

— 16 < b+ 1T

Proof: Define A as in Lemma 5. Let D be the uniform distribution over X,
and let P be the uniform distribution over F. Choose a positive integer ¢
(its value will be set later). Suppose that z1,...,2; are chosen independently
at random uniformly according to D, f is chosen independently according to P,
(21, (1)), .- (2¢, f(2¢)) are passed to A; let A(zy,..., 2z f) be A’s hypothesis.
Then Lemma 1 says that

2fatV ()

Vf € FJ Ezl,...,thDi (erf,D(A(zla 7zt7f))) < v + ¢

Arguing as in the proof of Lemma 2, we have

2fatV
321, ..., 2, Pryop (erf,D(A(zl,...,zt;f)) >+ %W)) <1/2. (5)



Choose such a sequence z1, ..., 2;. Then if G = {A(z1,...,2¢; f) : f € F}, and

2fatVp(y) }

F' = {f € F:eryp(A(z1,.,2e; f)) < v+ ;

then G (y + w)—covers F', and, by (5), |F'| > |F|/2. Suppose t =

[w], then v + w < €. There are only (b + 1) possible inputs to

A with instances 21, ..., z;. Thus, |[H| < (b+ 1)¢, completing the proof. O

Theorem 5. Suppose m = |Z|. Choose a set F' of functions from Z to [0,1],
and € and o € R for which 0 < a < € < 1. Then N(e, F) < (mlog,(3/a +
2))(3/a 4 2)(6/a+1)fath(e—a).

Proof: Let b = [3/a]. Then fatV(e — 3/b) < fatV(e — a). Construct a sequence
Gl,Gg,...,G[]Og2 Quyn(P)] of sets of functions from Z to {0,1} by repeatedly

applying Lemma 6 to (e — 1/b)-cover at last half of the remaining functions
in Q1/3(F), and then deleting the covered functions. Let G = UG;. Then G
(€ = 1/b)-covers Q1,,(F), and

|G| < (logy Q5 (F)[)(b + 1)*"™V e (=2/0)

|
< (mlogy(b+ 1)) (b + 1) Var e (c-2/b)
< (mlog, (b+ 1))(b + 1)2pfatVe(e=3/b)

since, straight from the definitions, fatVg, ,( (e — 2/b) < fatVp(e — 3/b). Ap-
plying Lemma 4 completes the proof. a

3.2 Learning

Like the proof of Theorem 3, the following proof closely follows that of Theorem
21 of [4], except that it appeals to the new Theorem 5.

Theorem 6. Choose a set F of functions from X to [0,1], and 0 < € < 1.
If there exists o > 0 such that fatVp(e — a) is finite, then F is agnostically
predictable to within e.

Proof: Let d = fatVp(e — @), K = /3, and § = a/15.

Choose a function @ that maps from X™ to the set of finite subsets of [0, 1]™
such that, for any (z1, ..., Zm) € X™, (21, ..., T ) is one of the smallest sets that
(e — 2k)-covers {(f(x1), ..., f(zm)) : f € F} and &(z1, ..., Zy) is invariant under
permutations of its arguments. (Recall once again that here we are viewing an
element of [0,1]™ as a function from {1,...,m} to [0, 1].)

Consider the prediction strategy A that, given input

(.’171,:1]1), ey (xm—laym—l)axma

chooses § = (1,...,Jm) from among the elements of &(z1,...,T;,) in order to
minimize szz/f |9 — yi|, and outputs G,.



For a € [0,1]™, b € [0,1]™, define

Eﬁrst (a, b)

I
SRR
ing
B
|

and
1
Y (a,b) = — i — bl
CURFMTELY

Choose any probability distribution P over X x [0, 1], and an even positive
integer m. Suppose (Z1,Y1), -, (Tm,Ym) are drawn independently at random
according to P, and (21,91), -, (m—1,Ym—1) and z,, are given to A, which out-
puts §,. Let £ = (21, ..., %) and y = (Y1, ..., ym). Choose f* € F that satisfies
erp(f*) <infgcrerp(f) + B. Since &(x) € — 2k-covers {(f(z1),..., f(zm)) : f €

F}
W€ P(x1, ey ), Mt y) < €= 26+ ((f*(21)s o, [ (Tm)),y)-  (6)

Applying the Hoeffding bound,

Pr (" ((f*@1), s [ (@m)),y) > exp(f7) + B) < ™2™, (7)

Now, let U be the uniform distribution over {0,1}™/2. Then, since & is in-
variant under permutations,

Pr(3t € &(z) |67 (t,y) — £°(t,y)| > 28)
< Sup(,,y) Prucu (3t€¢($) ‘% Z:l/f u; (0(ti,y:) — e(ti+m/2>yi+m/2))‘ > Zﬂ)

For any fixed ¢t € ¢(z), Hoeffding’s inequality implies

m/2
2 2
Prycu ( m Z w; (€t yi) = Lltipmyas Yirmy2)) | > 25) <2 P,
i1

So with probability at least 1 — |#(z)|2e—"™, for all t in &(z),

£ (b, y) — £+ (8, )| < 28.

This implies

07 (t,y) — £t y)| < B
and
|6 (t,y) — £"(t,y)| < B



So, combining with (7), with probability at least 1 — (1 + 2|q§(:c)|)e_52m, the
9 € &(x) with minimal £=*(§, y) satisfies
(G, y) < (g, y) + B
<Ot y) + 8
<Nt y) +28
< (@), 7 (Em),y) + €26+ 28
<erp(f*)+e—2k+3p

and hence
£°(j,y) < erp(f*) +€— 2k + 48
< }ggerp(f) +€— 2K+ 50.
That is,

Pr (£+4(3,) > Juf exp(f) + e — 2 +58) < (1+ 2f8(x))e "
which implies

E(E(3,9)) — nf exp(f) < e — 26+ 56 + (1+ 2j8(@))e 7

and hence, since any of (%, /241, Ym/241); -+ (Tm, Ym) Was equally likely to have
been the last,

E(|Jm — ym|) — }Ielgerp(f) <e—2k+56+(1+ 2|¢($)|)6752m'
Substituting x/5 for 3,
E(jm — ym|) — inf erp(f) <e—r+(1+ 2\3(z)|)e= "™/ ®)

Recall that d = fatV (e — a) = fatV(e — 3x), and @(z) is a minimum sized € — 2%
cover of {(f(z1),..., f(zm)) : f € F}; Theorem 5 and (8) imply that

E(|gm = ym|) = inf erp(f)

<e—r+ (1+2(mlogy(3/k +2))(3/k + 2)(6/st1d)e—r*m/25

Thus, if m is large enough, E(|Jn, —ym|) —infscperp(f) < € this completes the
proof. O
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